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Čech-Verdier-Artin-Mazur construction. 65
36 Characterization of a particular type of test functors with

values in (Cat). 69
37 The “asphericity story” told anew – the “key result”. 72
38 Asphericity story retold (cont’d): generalized nerve

functors. 76
39 Returning upon terminology: strict test categories, and strict

modelizers. 79
40 Digression on cartesian products of weak equivalences in

(Cat); 4 weak equivalences relative to a given base
object. 81

41 Role of the “inspiring assumption”, and of saturation
conditions on “weak equivalences”. 83

42 Terminology revised (model preserving functors).
Submodelizers of the basic modelizer (Cat). 84

43 The category f of simplices without degeneracies as a weak
test category – or “face complexes” as models for homotopy
types. 86

44 Overall review of the basic notions. 90
a) Weak test categories. 90



Contents vi

b) Test categories and local test categories. 92
c) Strict test categories. 94
d) Weak test functors and test functors (with values in
(Cat)). 95

III Grinding my way towards canonical modelizers 99
45 It’s burning again! Review of some “recurring striking

features” of modelizers and standard modelizing
functors. 99

46 Test functors with values in any modelizer: an observation,
with an inspiring “silly question”. 102

47 An approach for handling (Cat)-valued test functors, and
promise of a “key result” revised. The significance of
contractibility. 105

48 A journey through abstract homotopy notions (in terms of a
set W of “weak equivalences”). 108

49 Contractible objects. Multiplicative intervals. 115
50 Reflection on some main impressions. The foresight of an

“idyllic picture” (of would-be “canonical modelizers”). 118
51 The four basic “pure” homotopy notions with

variations. 119
A) Homotopy relation between maps 119
B) Homotopisms, and homotopism structures 121
C) Homotopy interval structures 123
D) Contractibility structures 124
E) Generating sets of homotopy intervals. Two standard

ways of generating multiplicative intervals.
Contractibility of Hom(X , Y )’s 126

F) The canonical homotopy structure: preliminaries on
π0. 129

52 Inaccuracies rectified. 131
53 Compatibility of a functor u : M → N with a homotopy

structure on M . 135
54 Compatibility of a homotopy structure with a set W of “weak

equivalences”. The homotopy structure hW . 136
55 Maps between homotopy structures. 139
56 Another glimpse upon canonical modelizers. Provisional

working plan – and recollection of some questions. 140
57 Relation of homotopy structures to 0-connectedness and π0.

The canonical homotopy structure hM of a category M . 143
58 Case of totally 0-connected category M . The category (Cat)

of (small) categories and homotopy classes of functors. 147
59 Case of the “next best” modelizer (Spaces) – and need of

introducing the π0-functor as an extra structure on a
would-be modelizer M . 149

60 Case of strictly totally aspheric topos. A timid start on
axiomatizing the set W of weak equivalences in (Cat). 151

61 Remembering about the promised “key result” at last! 153



Contents vii

62 An embarrassing case of hasty over-axiomatization. The
unexpected riches. . . 157

63 Review of terminology (provisional). 160
64 Review of properties of the “basic localizer” W(Cat). 163
65 Still another review of the test notions (relative to given

basic localizer W). 167
A) Total asphericity. 169
B) Weak W-test categories. 170
C) W-test categories. 171
D) Strict W-test categories. 172
E) Weak W-test functors and W-test functors. 173
F) W-test functors A→ (Cat) of strict W-test

categories. 176
66 Revising (and fixing?) terminology again. 177

IV Asphericity structures and canonical modelizers 184
67 Setting out for the asphericity game again: variance of the

category (HotA), for arbitrary small category A and aspheric
functors. 184

68 Digression on a “new continent”. 187
69 Digression on six weeks’ scratchwork: derivators, and

integration of homotopy types. 190
70 Digression on scratchwork (2): cohomological properties of

maps in (Cat) and in Aˆ. Does any topos admit a “dual”
topos? Kan fibrations rehabilitated. 196

71 Working program and rambling questions (group objects as
models, Dold-Puppe theorem. . . ). 200

72 Back to asphericity: criteria for a map in (Cat). 205
73 Asphericity criteria (continued). 211
74 Application to products of test categories. 213
75 Asphericity structures: a bunch of useful tautologies. 221
76 Examples. Totally aspheric asphericity structures. 227
77 The canonical functor (HotM )→ (Hot). 229
78 Test functors and modelizing asphericity structures: the

outcome (at last!) of an easy “observation”. 231
79 Asphericity structure generated by a contractibility structure:

the final shape of the “awkward main result” on test
functors. 235

80 Reminders and questions around canonical modelizers. 241
81 Contractibility as the common expression of homotopy,

asphericity and 0-connectedness notions. (An overall review
of the notions met with so far.) 244

82 Proof of injectivity of α : Contr(M) ,→W-Asph(M).
Application to Hom objects and to products of aspheric
functors A→ M . 251

83 Tautologies on Imα, and related questions. 256
84 A silly (provisional) answer to the “silly question” – and the

new perplexity f!(Mas) ⊂ M ′as? 257



Contents viii

85 Digression on left exactness properties of f! functors,
application to the inclusion i : ,→ (Cat). 263

86 Bimorphisms of contractibility structure as the (final?)
answer. Does the notion of a map of asphericity structures
exist? 267

V Homology and cohomology (abelianization of homotopy
types) 272
87 Comments on Thomason’s paper on closed model structure

on (Cat). 272
88 Review of pending questions and topics (questions 1) to 5),

including characterizing canonical modelizers). 273
89 Digression (continued) on left exactness properties of f!

functors. 280
90 Review of questions (continued): 6) Existence of test

functors and related questions. Digression on strictly
generating subcategories. 281

91 Review of questions (continued): 7) Homotopy types of
finite type, 8) test categories with boundary operations, 9)
miscellaneous. 290

92 Short range working program, and an afterthought on
abelianization of homotopy types: a handful of questions
around the Whitehead and Dold-Puppe theorems. 295

93 The afterthought continued: abelianizators, and “standard”
abelianizators for categories with boundary operators. 305

94 Afterthought (continued): retrospective on the “De Rham
complex with divided powers” and on some wishful thinking
about linearization of homotopy types and arbitrary
ground-ring extension in homotopy types. 311

95 Contractors 314
96 Vertical and horizontal topoi. . . (afterthought on

terminology). 321
97 “Projective” topoi. Morphisms and bimorphisms of

contractors. 323
98 Sketch of proof of f being a weak test category – and

perplexities about its being aspheric! 326
99 Afterthoughts on abelianization IV: Integrators. 328
100 Abelianization V: Homology versus cohomology. 333
101 Abelianization VI: The abelian integration operation L f ab

!
defined by a map f in (Cat) (versus abelian cointegration
Rf∗). 340

102 Abelianization VII: Integrators (for Aop) are abelianizators
(for A). 343

103 Integrators versus cointegrators. 346
104 Overall review on abelianization (1): Case of

pseudo-topoi. 348
A) Pseudo-topoi and adjunction equivalences. 348
B) Abelianization of a pseudo-topos. 350
C) Interior and exterior operations ⊗Z and HomZ. 352



Contents ix

105 Review (2): duality equivalences for “algebraic” topoi and
abelian topoi. 357
D) Duality for topoi of the type Aˆ, and tentative

generalizations. 357
106 Review (3): A formulaire for the basic integration and

cointegration operations ∗ and Hom. 368
E) A formulaire around the basic operations ∗ and

Hom. 368
107 Review (4): Case of general ground ring k. 379

F) Extension of ground ring from Z to k
(k-linearization). 379

108 Review (5): Homology and cohomology (absolute
case). 385
G) Homology and cohomology (absolute case). 385

109 Review (6): A further step in linearization: coalgebra
structures P → P ⊗k P in (Cat). 391

VI Schematization 400
110 More wishful thinking on “schematization” of homotopy

types. 400
111 Complexes of “unipotent bundles” as models, and

“schematic” linearization. 402
112 Postnikov dévissage and Kan condition for schematic

complexes. 414
113 “Soft” versus “hard” Postnikov dévissage, π1 as a group

scheme. 419
114 Outline of a program. 424
115 L(X ) as the pro-quasicoherent substitute for Ok(X ). 431
116 The need and the drive. 439
117 “Schematic” versus “formal” homology and cohomology

invariants. 441
118 The homotopy groups πi as derived functors of the “Lie

functors”. Lack of satisfactory models for S2 and S3. 445
119 Breakdown of an idyllic picture – and a tentative next best

“binomial” version of the “comparison theorem” for
schematic versus discrete linearization. 448

120 Digression on the Lazare “analyzers” for “binomial”
commutative algebra, λ-commutative algebra, etc. 453

121 The basic pair of adjoint functors
eK : Hotab0� Hot0 : LeH∗. 454

122 Rambling reflections on LeH∗, Postnikov invariants, S(H, n)’s –
and on the non-existence of a “total homotopy”-object
Lπ∗(X ) for ordinary homotopy types. 457

123 The hypothetical complexes nΠ∗ = Lπ∗(Sn), and comments
on homotopy groups of spheres. 463

124 Outline of a program (second version): an autodual
formulaire for the basic “four functors” LeH∗, Lπ∗, eK , eS. 466
A) Adjunction properties 468
B) Inversion formulæ 469



Contents x

C) Hurewicz map 470
D) Exactness properties 470
E) Conservativity properties 473
F) Base change properties 473
G) Comparison with ordinary homotopy types 473

125 Digression on Baues’ cofibration and fibration categories,
and on weak equivalences alone as the basic data for a
model category. 474

126 Dissymmetry of LeH∗ versus Lπ∗ (no filtration dual to
Postnikov dévissage). 476

127 Schematic homotopy types and Illusie’s derived category for
a topos. 478

128 Looking for the right notion of “bundles”; V -bundles versus
W -bundles. 480

129 Quasi-coherent homological quasi-isomorphisms, versus
weak equivalences. 483

130 A case for non-connected bundles. 485
131 Tentative description of the spherical functor eS, and

“infinitesimal” extension of the basic notion of
“bundles”. 486

132 A crazy tentative wrong-quadrant (bi)complex for the
homotopy groups of a sphere. 491

VII Linearization of homotopy types (2) 495
133 Birth of Suleyman. 495
134 Back to linearization in the modelizer (Cat): another

handful of questions around Kan-Dold-Puppe. 497
135 Proof of “integrators are abelianizators” (block against

homology receding?). 500
136 Preliminary perplexities about a full-fledged “six operations

duality formalism” within (Cat). 503
137 Looking for the relevant notions of properness and

smoothness for maps in (Cat). Case of ordered sets as a
paradigm for cohomology theory of conically stratified
spaces. 508

138 Niceties and oddities: Rf! commutes to colocalization, not
localization. 516

139 Retrospective on ponderings on abelianization, and on
coalgebra structures in (Cat). 521

140 The meal and the guest. 525

Bibliography 527

. . . (to be completed)



Scrivener’s preface

I wanted to read Pursuing Stacks (PS), and at the same time I wanted to
read it carefully enough to make sure I understood as much as possible,
and also make some notes and links to make it easier to navigate. That
was my primary motive for creating this LATEX-typeset version of the
work. I hope it may be of some use to others, but it is not necessarily
the best way to read PS.

One of the great pleasures of reading PS in the scanned typescript
with the handwritten margin notes is that you get a sense of intimacy
that is necessarily lost upon transcription.

However, I think it is a great shame that PS is not more widely read.
This situation is likely due to the obstacles involved with navigating and
parsing the typescript which only exists as djvu-file, accessible from
Maltsiniotis’ web-page:

http://webusers.imj-prg.fr/~georges.maltsiniotis/ps.html

I am of course aware that Maltsiniotis himself is preparing an edition
of the first five chapters of PS, and with Künzer and Toën an edition
of the last two chapters, both for the series Documents Mathématiques
of the French mathematical society. This has been announced since
2010, while we now have 2015. Thus, I decided that it might not be
an entirely wasted effort to publish my own edition of PS, knowing full
well that it will be succeeded by presumably better ones made by more
knowledgeable and capable individuals. In any event, should my files
contain some small help (e.g., in the forms of diagrams) towards the
goals of Maltsiniotis et al. they are more than welcome to it!

I’m also not including an index, which I don’t consider myself capable
of compiling. At least modern PDF-viewers are capable of search, and I
provide the TEX-files which can be used for grep-ing.

I have tried to stay true to Grothendieck’s voice, but on some matters
of grammar and orthography, I have taken the liberty of correcting
slightly:

• some “which”s to “that”s

• many “it’s”s to “its”s

• every “standart” to “standard”
and so on. It is my hope that these tiny corrections make for a better
reading experience, and I have put references in the margins to the

xi

http://webusers.imj-prg.fr/~georges.maltsiniotis/ps.html
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exact pages in the original typescript for those who want to compare
any particular bit with what came from the horse’s mouth.

For what it’s worth, my “philosophy” when TEX’ing PS was to imagine
that I did it right as AG was typing (or perhaps even dictating to me!
That would certainly explain the variance in punctuation.). Sometimes
I would ask him whether something should be an E or an e, and thus
catch little misprints. Unfortunately, I wasn’t there to ask about the
mathematical content, so I’ll leave that as intact as I found it, for the
reader to wrestle with. Among the many remarkable qualities of PS
is that it is a record of mathematics as it is being made, and not just a
polished record for a journal made after the fact.

Some people say that PS is mostly visions and loose ideas; while those
are certainly present, I hope perhaps to change this impression with this
edition where all the “Lemmata”, “Propositions”, “Corollaries”, etc., are
marked up in the usual way.

I hope you’ll forgive me for deviating from the Computer Modern font
family and choosing Bitstream Charter with Pichaureau’s mathdesign
package instead. I find it reads well on the screen and the density Though I swapped MathDesign’s

∞-symbol for Euler Math’s ∞-symbol.mimics that of the AG’s typewriter. If you don’t like it, you’re welcome
to compile your own version with different settings!

I give my work to the public domain, and hope merely that others
may find it useful. Some people might ask me to identify myself, to
which I can only reply: “I’d prefer not to.”

the scrivener



Part I

The Take-off (a letter to Daniel
Quillen)

Les Aumettes 19.2.1983 [p. 1]
Dear Daniel,

1 Last year Ronnie Brown from Bangor sent me a heap of reprints and The importance of innocence.

[cf. Künzer (2015)]
preprints by him and a group of friends, on various foundational matters
of homotopical algebra. I did not really dig through any of this, as I
kind of lost contact with the technicalities of this kind (I was never too
familiar with the homotopy techniques anyhow, I confess) – but this
reminded me of a few letters I had exchanged with Larry Breen in 1975,

[Grothendieck (1975)]where I had developed an outline of a program for a kind of “topological
algebra”, viewed as a synthesis of homotopical and homological algebra,
with special emphasis on topoi – most of the basic intuitions in this
program arising from various backgrounds in algebraic geometry. Some
of those intuitions we discussed, I believe, at IHES eight or nine years
before, at a time when you had just written up your nice ideas on
axiomatic homotopical algebra, published since in Springer’s Lecture

[Quillen (1967)]Notes. I write you under the assumption that you have not entirely lost
interest for those foundational questions you were looking at more than
fifteen years ago. One thing which strikes me, is that (as far as I know)
there has not been any substantial progress since – it looks to me that an
understanding of the basic structures underlying homotopy theory, or
even homological algebra only, is still lacking – probably because the few
people who have a wide enough background and perspective enabling
them to feel the main questions, are devoting their energies to things
which seem more directly rewarding. Maybe even a wind of disrepute for
any foundational matters whatever is blowing nowadays! In this respect,
what seems to me even more striking than the lack of proper foundations
for homological and homotopical algebra, is the absence I daresay of
proper foundations for topology itself! I am thinking here mainly of the
development of a context of “tame” topology, which (I am convinced)
would have on the everyday technique of geometric topology (I use this
expression in contrast to the topology of use for analysts) a comparable

1



§2 A short look into purgatory. 2

impact or even a greater one, than the introduction of the point of view
of schemes had on algebraic geometry. The psychological drawback
here I believe is not anything like messiness, as for homological and
homotopical algebra (as for schemes), but merely the inrooted inertia
which prevents us so stubbornly from looking innocently, with fresh eyes,
upon things, without being dulled and imprisoned by standing habits of
thought, going with a familiar context – too familiar a context! The task
of working out the foundations of tame topology, and a corresponding
structure theory for “stratified (tame) spaces”, seems to me a lot more
urgent and exciting still than any program of homological, homotopical [p. 1’]
or topological algebra.

2 The motivation for this letter was the latter topic however. Ronnie A short look into purgatory.
Brown and his friends are competent algebraists and apparently strongly
motivated for investing energy in foundational work, on the other hand
they visibly are lacking the necessary scope of vision which geometry
alone provides. They seem to me kind of isolated, partly due I guess to
the disrepute I mentioned before – I suggested to try and have contact
with people such as yourself, Larry Breen, Illusie and others, who have
the geometric insight and who moreover, may not think themselves too
good for indulging in occasional reflection on foundational matters and
in the process help others do the work which should be done.

At first sight it has seemed to me that the Bangor group had indeed
come to work out (quite independently) one basic intuition of the pro-
gram I had envisioned in those letters to Larry Breen – namely that
the study of n-truncated homotopy types (of semisimplicial sets, or
of topological spaces) was essentially equivalent to the study of so-
called n-groupoids (where n is any natural integer). This is expected
to be achieved by associating to any space (say) X its “fundamental
n-groupoid” Πn(X ), generalizing the familiar Poincaré fundamental
groupoid for n= 1. The obvious idea is that 0-objects of Πn(X ) should
be the points of X , 1-objects should be “homotopies” or paths between
points, 2-objects should be homotopies between 1-objects, etc. This
Πn(X ) should embody the n-truncated homotopy type of X , in much the
same way as for n= 1 the usual fundamental groupoid embodies the
1-truncated homotopy type. For two spaces X , Y , the set of homotopy-
classes of maps X → Y (more correctly, for general X , Y , the maps of X
into Y in the homotopy category) should correspond to n-equivalence
classes of n-functors from Πn(X ) to Πn(Y ) – etc. There are very strong
suggestions for a nice formalism including a notion of geometric re-
alization of an n-groupoid, which should imply that any n-groupoid
(or more generally of an n-category) is relativized over an arbitrary
topos to the notion of an n-gerbe (or more generally, an n-stack), these
become the natural “coefficients” for a formalism of non-commutative
cohomological algebra, in the spirit of Giraud’s thesis.

But all this kind of thing for the time being is pure heuristics – I
never so far sat down to try to make explicit at least a definition of
n-categories and n-groupoids, of n-functors between these etc. When I
got the Bangor reprints I at once had the feeling that this kind of work [p. 2]



§2 A short look into purgatory. 3

had been done and the homotopy category expressed in terms of ∞-
groupoids. But finally it appears this is not so, they have been working
throughout with a notion of ∞-groupoid too restrictive for the purposes
I had in mind (probably because they insist I guess on strict associativity
of compositions, rather than associativity up to a (given) isomorphism,
or rather, homotopy) – to the effect that the simply connected homotopy
types they obtain are merely products of Eilenberg-MacLane spaces, too
bad! They do not seem to have realized yet that this makes their set-up
wholly inadequate to a sweeping foundational set-up for homotopy.
This brings to the fore again to work out the suitable definitions for
n-groupoids – if this is not done yet anywhere. I spent the afternoon
today trying to figure out a reasonable definition, to get a feeling at
least of where the difficulties are, if any. I am guided mainly of course
by the topological interpretation. It will be short enough to say how far
I got. The main part of the structure it seems is expressed by the sets Fi
(i ∈ N) of i-objects, the source, target and identity maps

si
1, ti

1 : Fi → Fi−1 (i ≥ 1)

ki
1 : Fi → Fi+1 (i ∈ N)

and the symmetry map (passage to the inverse)

invi : Fi → Fi (i ≥ 1),

satisfying some obvious relations: ki
1 is right inverse to the source and notation:

da = ki
1(a),

ǔ= invi(u)
target maps si+1

1 , ti+1
1 , invi is an involution and “exchanges” source and

target, and moreover for i ≥ 2

si−1
1 si

1 = si−1
1 ti

1

�

def
= si

2 : Fi → Fi−2

�

ti−1
1 si

1 = ti−1
1 ti

1

�

def
= ti

2 : Fi → Fi−2

�

;

thus the composition of the source and target maps yields, for 0≤ j ≤ i,
just two maps

si
`, ti
`

: Fi → Fi−` = F j (`= i − j).

The next basic structure is the composition structure, where the usual
compoisition of arrows, more specifically of i-objects (i ≥ 1) v ◦ u
(defined when t1(u) = s1(v)) must be supplemented by the Godement-
type operations µ ∗λ when µ and λ are “arrows between arrows”, etc.
Following this line of thought, one gets the composition maps

(u, v) 7→ (v ∗` u) : (Fi , s
i
`)×Fi−`

(Fi , si
`)→ Fi ,

the composition of i-objects for 1 ≤ ` ≤ i, being defined when the
`-target of u is equal to the `-source of v, and then we have

si
1(v ∗` u) = si

1(v) ∗`−1 si
1(u)

ti
1(v ∗` u) = ti

1(v) ∗`−1 si
1(u)

«

`≥ 2 i.e. `− 1≥ 1

and for `= 1 [p. 2’]



§2 A short look into purgatory. 4

s1(v ∗1 u) = s1(u)
t1(v ∗1 u) = t1(v)

(NB the operation v ∗1 u is just the usual composition v ◦ u).
One may be tempted to think that the preceding data exhaust the

structure of ∞-groupoids, and that they will have to be supplemented
only by a handful of suitable axioms, one being associativity for the

operation
i
∗
`
, which can be expressed essentially by saying that that

composition operation turns Fi into the set of arrows of a category
having Fi−` as a set of objects (with the source and target maps si

`

and ti
`
, and with identity map ki−`

`
: Fi−` → Fi the composition of the

identity maps Fi−`→ Fi−`+1→ ·· · → Fi−1→ Fi), and another being the
Godement relation

(v′ ∗α v) ∗ν (u′ ∗α u) = (v′ ∗ν u′) ∗α (v ∗ν u)

(with the assumptions 1≤ α≤ ν, and u, u′, v, v′′inFi and
�

tα(u) = sα(u
′)

tα(v) = sα(v
′)

tν(u) = sν(v) = sν(v
′) = tν(u

′)

implying that both members are defined), plus the two relations con-
cerning the inversion of i-objects (i ≥ 1) u 7→ ǔ,

u ∗1 ǔ = idt1(u), ǔ ∗1 u = ids1(u), (v̌ ∗` ǔ) = ? (` ≥ 2)

It just occurs to me, by the way, that the previous description of basic
(or “primary”) data for an ∞-groupoid is already incomplete in some
rather obvious respect, namely that the symmetry-operation invi : u 7→ ǔ
on Fi must be complemented by i − 1 similar involutions on Fi , which
corresponds algebraically to the intuition that when we have an (i + 1)-
arrow λ say between two i-arrows u and v, then we must be able to
deduce from it another arrow from ǔ to v̌ (namely u 7→ ǔ has a “functorial
character” for variable u)? This seems a rather anodine modification of
the previous set-up, and is irrelevant for the main point I want to make
here, namely: that for the notion of ∞-groupoids we are after, all the
equalities just envisioned in this paragraph (and those I guess which
will ensure naturality by the necessary extension of the basic involution
on Fi) should be replaced by “homotopies”, namely by (i + 1)-arrows
between the two members. These arrows should be viewed, I believe,
as being part of the data, they appear here as a kind of “secondary”
structure. The difficulty which appears now is to work out the natural
coherence properties concerning this secondary structure. The first [p. 3]
thing I could think of is the “pentagon axiom” for the associativity data,

which occurs when looking at associativities for the compositum (for
i
∗
`

say) of four factors. Here again the first reflex would be to write down,
as usual, an equality for two compositions of associativity isomorphisms,
exhibited in the pentagon diagram. One suspects however that such
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equality should, again, be replaced by a “homotopy”-arrow, which now
appears as a kind of “ternary” structure – before even having exhausted
the list of coherence “relations” one could think of with the respect to the
secondary structure! Here one seems caught at first sight in an infinite
chain of ever “higher”, and presumably, messier structures, where one
is going to get hopelessly lost, unless one discovers some simple guiding
principle for shedding some clarity in the mess.

3 I thought of writing you mainly because I believe that, if anybody, you “Fundamental ∞-groupoids” as ob-
jects of a “model category”?should know if the kind of structure I am looking for has been worked

out – maybe even you did? In this respect, I vaguely remember that
you had a description of n-categories in terms of n-semisimplicial sets,
satisfying certain exactness conditions, in much the same way as an
ordinary category can be interpreted, via its “nerve”, as a particular type
of semisimplicial set. But I have no idea if your definition applied only
for describing n-categories with strict associativities, or not.

Still some contents in the spirit of your axiomatics of homotopical
algebra – in order to make the question I am proposing more seducing
maybe to you! One comment is that presumably, the category of ∞-
groupoids (which is still to be defined) is a “model category” for the
usual homotopy category; this would be at any rate one plausible way
to make explicit the intuition referred to before, that a homotopy type
is “essentially the same” as an ∞-groupoid up to ∞-equivalence. The
other comment: the construction of the fundamental ∞-groupoid of a
space, disregarding for the time being the question of working out in full
the pertinent structure on this messy object, can be paraphrased in any
model category in your sense, and yields a functor from this category to
the category of ∞-groupoids, and hence (by geometric realization, or
by localization) also to the usual homotopy category. Was this functor
obvious beforehand? It is of a non-trivial nature only when the model
category is not pointed – as a matter of fact the whole construction can
be carried out canonically, in terms of a “cylinder object” I for the final
object e of the model category, playing the role of the unit argument. [p. 3’]
It’s high time to stop this letter – please excuse me if it should come
ten or fifteen years too late, or maybe one year too early. If you are
not interested for the time being in such general nonsense, maybe you
know someone who is . . .

Very cordially yours

20.2. [p. 4]
I finally went on pondering about a definition of ∞-groupoids, and it

seems to me that, after all, the topological motivation does furnish the
“simple guiding principle” which yesterday seemed to me to be still to
be discovered, in order not to get lost in the messiness of ever higher
order structures. Let me try to put it down roughly.
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4 First I would like to correct somewhat the rather indiscriminate de- A bit of ordering in the mess of
“higher order structures”.scription I gave yesterday of what I thought of viewing as “primary”,

secondary, ternary etc. structures for an ∞-groupoid. More careful
reflection conduces to view as the most primitive, starting structure on
the set of sets Fi (i ∈ N), as a skeleton on which progressively organs
and flesh will be added, the mere data of the source and target maps

si , ti : Fi ⇒ Fi−1 (i ≥ 1),

which it will be convenient to supplement formally by corresponding

maps s0, t0 for i = 1, from F0 to F−1
def
= one-element set. In a moment

we will pass to a universal situation, when the Fi are replaced by the
corresponding “universal” objects F i in a suitable category stable under
finite products, where F−1 will be the final element. For several reasons,
it is not proper to view the inversion maps invi : Fi → Fi , and still less the
other i− 1 involutions on Fi which I at first overlooked, as being part of
the primitive or “skeletal” structure. One main reason is that already for
the most usual 2-groupoids, such as the 2-groupoid whose 0-objects are
ordinary (1-)groupoids, the 1-objects being equivalences between these
(namely functors which are fully faithful and essentially surjective), and
the 2-objects morphisms (or “natural transformations”) between such,
there is not, for an i-object f : C → C ′, a natural choice of an “inverse”
namely of a quasi-inverse in the usual sense. And even assuming that
such quasi-inverse is chosen for every f , it is by no means clear that
such choice can be made involutive, namely such that ( f ˇ)ˇ = f for
every f (and not merely ( f ˇ)ˇ isomorphic to f ). The maps invi will
appear rather, quite naturally, as “primary structure”, and they will
not be involutions, but “pseudo-involutions” (namely involutions “up
to homotopy”). It turns out that among the various functors that we
will construct, from the category of topological spaces to the category
of ∞-groupoids (the construction depending on arbitrary choices and
yielding a large bunch of mutually non-isomorphic functors, which
however are “equivalent” in a sense which will have to be made precise)
– there are choices neater than others, and some of these will yield
in the primary structure maps invi which are actual involutions and
similarly for the other pseudo-involutions, appearing in succession as
higher order structure. The possibility of such neat and fairly natural
choices had somewhat misled me yesterday. [p. 4’]

What may look less convincing though at first sight, is my choice
to view as non-primitive even the “degeneration maps” ki

1 : Fi → Fi+1,
associating to every i-objects the i + 1-object acting as an identity on
the former. In all cases I have met so far, these maps are either given
beforehand with the structure (of a 1-category or 2-category say), or
they can be uniquely deduced from the axioms. In the present set-up
however, they seem to me to appear more naturally as “primary” (not as
primitive) structure, much in the same way as the invi . Different choices
for associating an ∞-groupoid to a topological space, while yielding the
same base-sets Fi , will however (according to this point of view) give
rise to different maps ki

1. The main motivation for this point of view
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comes from the fact that the mechanism for a uniform construction of
the chain of ever higher order structures makes a basic use of the source
and target maps only and of the “transposes” (see below), and (it seems
to me) not at all of the degeneration maps, which in this respect rather
are confusing the real picture, if viewed as “primitive”. The degeneration
maps rather appear as typical cases of primary structure, probably of
special significance in the practical handling of ∞-groupoids, but not at
all in the conceptual machinery leading up to the construction of the
structure species of “∞-groupoids”.

Much in the same way, the composition operations
i
∗
`

are viewed as

primary, not as primitive or skeletal structure. Their description for the
fundamental ∞-groupoid of a space – for instance the description of
composition of paths – depends on arbitrary choices, such as the choice
of an isomorphism (say) between (I , 1)qe (I , 0) and I , where I is the
unit interval, much in the same way as the notion of an inverse of a path
depends on the choice of an isomorphism of I with itself, exchanging the

two end-points 0 and 1. The operations
i
∗
2

of Godement take sense only

once the composition operations ∗1 are defined – they are “secondary
structure”, and successively the operations ∗3, . . . ,∗i appear as ternary
etc. structure. This is correctly suggested by the notations which I chose
yesterday, where however I hastily threw all the operations into a same
pot baptized “primary structure”!

5 It is about time though to come to a tentative precise definition of Jumping over the abyss!
description of the process of stepwise introduction of an increasing
chain of higher order structure. This will be done by introducing a
canonical sequence of categories and functors

C0→ C1→ C2→ ·· · → Cn→ Cn+1→ ·· · ,

where Cn denotes the category harbouring the “universal” partial struc- [p. 5]
ture of a would-be ∞-groupoid, endowed only with its “structure of
order ≤ n”. The idea is to give a direct inductive construction of this
sequence, by describing C0, and the passage from Cn to Cn+1 (n ≥ 0),
namely from an n-ary to (n + 1)-ary structure. As for the meaning
of “universal structure”, once a given structure species is at hand, it
depends on the type of categories (described by the exactness prop-
erties one is assuming for these) one wants to take as carriers for the
considered structure, and the type of exactness properties one assumes
for the functor one allows between these. The choice depends partly
on the particular species; if it is an algebraic structure which can be
described say by a handful of composition laws between a bunch of base
sets (or base-objects, when looking at “realizations” of the structure not
only in the category (Sets)), one natural choice is to take categories
with finite products, and functors which commute to these. For more
sophisticated algebraic structures (including the structure of category,
groupoid or the like), which requires for the description of data or ax-
ioms not only finite products, but also some fiber products, one other
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familiar choice is to take categories with finite inverse limits, and left
exact functors. Still more sophisticated structures, when the description
of the structure in terms of base objects requires not only some kind of
inverse limits, but also more or less arbitrary direct limits (such as the
structure of a comodule over an algebra, which requires consideration
of tensor products over a ring object), still more stringent conditions or torsors under a group. . .
will have to be imposed upon categories and functors between these,
for the structure to make a sense in these categories, and the functors
to transform a structure of this type in one category into one of same
type in another. In most examples I have looked up, everything is OK
taking categories which are topoi, and functors between these which
are inverse image functors for morphisms of topoi, namely which are
left exact and commute with arbitrary direct limits. There is a general
theorem for the existence of universal structures, covering all these cases
– for instance there is a “classifying topos” for most algebro-geometric
structures, whose cohomology say should be viewed as the “classifying
cohomology” of the structure species considered. In the case we are
interested in here, it is convenient however to work with the smallest
categories Cn feasible – which amounts to being as generous as possible
for the categories one is allowing as carriers for the structure of an∞-groupoid, and for the functors between these which are expected to
carry an ∞-groupoid into an ∞-groupoid. What we will do is define
ultimately a structure of an ∞-groupoid in a category C , as a sequence
of objects Fi (i ∈ N), endowed with some structure to be defined, as- [p. 5’]
suming merely that in C finite products of the Fi exist, plus certain
finite inverse limits built up with the Fi ’s and the maps si

`
, ti
`

between
them (the iterated source and target maps). It should be noted that
the type of lim←− we allow, which will have to be made precise below,
is fixed beforehand in terms of the “skeletal” or “primitive” structure
alone, embodied by the family of couples (si , ti)i∈N. This implies that the
categories Ci can be viewed as having the same set of objects, namely the
objects F i (written in bold now to indicate their universal nature, and

[was: underlined]including as was said before F−1 = final object), plus the finite products
and iterated fiber products of so-called “standard” type. While I am
writing, it appears to me even that the finite products here are of no
use (so we just drop them both in the condition on categories which are
accepted for harbouring ∞-groupoids, and in the set of objects of the
categories Ci). Finally, the common set of objects of the categories Ci
is the set of “standard” iterated fiber products of the F i , built up using
only the primitive structure embodied by the maps si and ti (which I
renounce to underline!). This at the same time gives, in principle, a
precise definition of C0, at least up to equivalence – it should not be hard
anyhow to give a wholly explicit description of C0 as a small category,
having a countable set of objects, once the basic notion of the standard
iterated fiber-products has been explained.

Once C0 is constructed, we will get the higher order categories C1
(primary), C2 etc. by an inductive process of successively adding arrows.
The category C∞ will then be defined as the direct limit of the categories
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Cn, having the same objects therefore as C0, with

Hom∞(X , Y ) = lim−→
n

Homn(X , Y )

for any two objects. This being done, giving a structure of ∞-groupoid
in any category C , will amount to giving a functor

C∞→ C

commuting with the standard iterated fiber-products. This can be reex-
pressed, as amounting to the same as to give a sequence of objects (Fi)
in C , and maps si

`
, t i
`

between these, satisfying the two relations I wrote
down yesterday (page 2) (and which of course have to be taken into
account when defining C0 to start with, I forgot to say before), and such
that “standard” fiber-products defined in terms of these data should I’ll drop the qualification “iterated”

henceforth!exist in C , plus a bunch of maps between these fiber-products (in fact,
it will suffice to give such maps with target among the Fi ’s), satisfying
certain relations embodied in the structure of the category C∞. I am
convinced that this bunch of maps (namely the maps stemming from
arrows in C∞) not only is infinite, but cannot either be generated in
the obvious sense by a finite number, nor even by a finite number of [p. 6]

infinite series of maps such as ki
`
, invi ,

i
∗
`
, the compatibility arrows in the

pentagon, and the like. More precisely still, I am convinced that none of
the functors Cn→ Cn+1 is an equivalence, which amounts to saying that
the structures of increasing order form a strictly increasing sequence
– at every step, there is actual extra structure added. This is perhaps
evident beforehand to topologists in the know, but I confess that for
the time being it isn’t to me, in terms uniquely of the somewhat formal
description I will make of the passage of Cn to Cn+1. This theoretically
is all that remains to be done, in order to achieve an explicit construc-
tion of the structure species of an ∞-category (besides the definition
of standard fiber-products) – without having to get involved, still less
lost, in the technical intricacies of ever messier diagrams to write down,
with increasing order of the structures to be added. . .

6 In the outline of a method of construction for the structure species, there The topological model: hemispheres
building up the (tentative) “univer-
sal ∞-(co)groupoid”.

has not been any explicit mention so far of the topological motivation
behind the whole approach, which could wrongly give the impression of
being a purely algebraic one. However, topological considerations alone
are giving me the clue both for the description of the so-called standard
fiber products, and of the inductive step allowing to wind up from Cn to
Cn+1? The heuristics indeed of the present approach is simple enough,
and suggested by the starting task, to define pertinent structure on the
system of sets Fi(X ) of “homotopies” of arbitrary order, associated to an
arbitrary topological space. In effect, the functors

X 7→ Fi(X )

are representable by spaces Di , which are easily seen to be i-disks. The
source and target maps si

`
, t i
`

: Fi(X )⇒ Fi−1(X ) are transposed to maps,
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which I may denote by the same letters,

si
`, t i

`
: Di−1⇒ Di .

Handling around a little, one easily convinces oneself that all the main
structural items on F∗(X ) which one is figuring out in succession, such
as the degeneracy maps ki

`
, the inversion maps invi , the composition

v · u = v ∗i u for i-objects, etc., are all transposed of similar maps
which are defined between the cells Di , or which go from such cells
to certain spaces, deduced from these by gluing them together – the
most evident example in this respect being the composition of paths,
which is transposed of a map from the unit segment I into (I , 1)qe (I , 0),
having preassigned values on the endpoints of I (which correspond in
fact to the images of the two maps s1

1, t1
1 : D0 = one point⇒ D1 = I). [p. 6’]

In a more suggestive way, we could say from this experiment that the
family of discs (Di)i∈N, together with the maps s, t and a lot of extra
structure which enters into the picture step by step, is what we would
like to call a co-∞-groupoid in the category (Top) of topological spaces
(namely an ∞-groupoid in the dual category (Top)op), and that the
structure of ∞-category on F∗(X ) we want to describe is the transform
of this co-structure into an ∞-groupoid, by the contravariant functor
from (Top) to (Sets) defined by X . The (iterated) amalgamated sums
in (Top) which allow to glue together the various Di ’s using the s and
t maps between them, namely the corresponding fibered products in
(Top)op, are indeed transformed by the functor hX into fibered products
of (Sets). The suggestion is, moreover, that if we view our co-structure in
(Top) as a co-structure in the subcategory of Top, say B∞, whose objects
are the cells Di and the amalgamated sums built up with these which
step-wise enter into play, and whose arrows are all those arrows which
are introduced step-wise to define the co-structure, and all compositions
of these – that this should be the universal structure in the sense dual
to the one we have been contemplating before; or what amount to
the same, that the corresponding ∞-groupoid structure in the dual
category Bop∞ is “universal” – which means essentially that it is none
other than the universal structure in the category C∞ we are after.
Whether or not this expectation will turn out to be correct (I believe it
is), we should be aware that, while the successive introduction of maps 25.2. But no longer now and I do not really

care! Cf. p. 10.between the cells Di and their “standard” amalgamated sums (which
we will define precisely below) depends at every stage on arbitrary
choices, the categories Cn and their limit C∞ do not depend on any of
these choices; assuming the expectation is correct, this means that up to
(unique) isomorphism, the category B∞ (and each of the categories Bn of
which it appears as the direct limit) is independent of those choices – the
isomorphism between two such categories transforming any one choice
made for the first, into the corresponding choice made for the second.
Also, while this expectation was of course the crucial motivation leading
to the explicit description of C0 and of the inductive step from Cn to
Cn+1, this description seems to me a reasonable one and in any case it
makes a formal sense, quite independently of whether the expectation
proves valid or not.
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7 Before pursuing, it is time to give a more complete description of the Gluing hemispheres: the “standard
amalgamations”.primitive structure on (Di), as embodied by the maps s, t, which I will

now denote by
NB it is more natural to consider ϕ+ as
“target” and ϕ− as “source”.

ϕ+i ,ϕ−i : Di ⇒ Di+1.

It appears that these maps are injective, that their images make up
[p. 7]the boundary Si = Ḋi+1 of Di+1, more specifically these images are just

two “complementary” hemispheres in Si , which I will denote by S+i and
S−i . The kernel of the pair (ϕ+i ,ϕ−i ) is just Si−1 = Ḋi , and the common
restriction of the maps ϕ+i ,ϕ−i to Si−1 is an isomorphism

Si−1 ' S+i ∩ S−i .

This Si−1 in turn decomposes into the two hemispheres S+i−1, S−i−1, images
of Di−1. Replacing Di+1 by Di , we see that the i-cell Di is decomposed
into a union of 2i + 1 closed cells, one being Di itself, the others being
canonically isomorphic to the cells S+j , S−j (0≤ j ≤ i), images of Dj → Dn
by the iterated morphisms

ϕ+n, j ,ϕ
−
n, j : Dj ⇒ Dn.

This is a cellular decomposition, corresponding to a partition of Dn into
2n+ 1 open cells Dn, S+j = ϕ

+
n, j(Dj), S−j = ϕ

−
n, j(Dj). For any cell in this

decomposition, the incident cells are exactly those of strictly smaller
dimension.

When introducing the operation
n
∗
`

with `= n− j, it is seen that this

corresponds to choosing a map

Dn→ (Dn, S+j )qDj
(Dn, S−j ),

satisfying a certain condition *, expressing the formulas I wrote down
yesterday for s1 and t1 of u∗` v – the formulas translate into demanding
that the restriction of the looked-for map of Dn to its boundary Sn−1
should be a given map (given at any rate, for ` ≥ 2, in terms of the
operation ∗`−1, which explains the point I made that the ∗`-structure is
of order just above the ∗`−1-structure, namely (inductively) is of order
` . . . ). That the extension of this map of Sn−1 to Dn does indeed exist,
comes from the fact that the amalgamated sum on the right hand side
is contractible for obvious reasons.

This gives a clue of what we should call “standard” amalgamated
sums of the cells Di . The first idea that comes to mind is that we
should insist that the space considered should be contractible, excluding
amalgamated sums therefore such as

•

• •
or • •

which are circles. This formulation however has the inconvenience
of not being directly expressed in combinatorial terms. The following
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formulation, which has the advantage of being of combinatorial nature,
is presumably equivalent to the former, and gives (I expect) a large
enough notion of “standardness” to yield for the corresponding notion
of ∞-category enough structure for whatever one will ever need. In any
case, it is understood that the “amalgamated sum” (rather, finite lim−→) [p. 7’]
we are considering are of the most common type, when X is the finite
union of closed subsets X i , with given isomorphisms

X ' Dn(i),

the intersection of any two of these X i ∩ X j being a union of closed cells
both in Dn(i) and in Dn( j). (This implies in fact that it is either a closed cell
in both, or the union of two closed cells of same dimension m and hence
isomorphic to Sm, a case which will be ruled out anyhow by the triviality
condition which follows.†) The triviality or “standardness” condition †False, [picture of disk divided in three]
is now expressed by demanding that the set of indices I can be totally
ordered, i.e., numbered in such a way that we get X by successively
“attaching” cells Dn(i) to the space already constructed, X (i−1), by a map

from a sub-cell of Dn(i), Sξj → X (i − 1) (ξ ∈ {±1}), this map of course
inducing an isomorphism, more precisely the standard isomorphism,
ϕ
ξ

n(i)
: Sξj ' Dj with Sξj one of the two corresponding cells S+j , S−j in some

X i′ ' Dn(i′). The dual translation of this, in terms of fiber products in
a category C endowed with objects Fi (i ∈ N) and maps si

1, t i
1 between

these, is clear: for a given set of indices I and map i 7→ n(i) : I → N, we
consider a subobject of

∏

i∈I Dn(i), which can be described by equality
relations between iterated sources and targets of various components
of u = (ui)i∈I in P, the structure of the set of relations being such that I
can be numbers, from 1 to N say, in such a way that we get in succession
N − 1 relations on the N components ui respectively (2≤ i ≤ N), every
relation being of the type f (ui) = g(u′i), with f and g being iterated
source of target maps, and i′ < i. (Whether source or target depending
in obvious way on the two signs ξ,ξ′.)

21.2. [p. 8]

8 Returning to the amalgamated sum X =
⋃

i X i , the cellular decomposi- Description of the universal primi-
tive structure.tions of the components X i ' Dn(i) define a cellular decomposition of X ,

whose set of cells with incidence relation forms a finite ordered set K ,
finite union of a family of subsets (Ki)i∈I , with given isomorphisms

fi : Ki ' Jn(i) (i ∈ I),

where for every index n ∈ N, Jn denotes the ordered set of the 2n+1 cells
Sξj (0≤ j ≤ n−1, ξ ∈ {±1}), Dn of the pertinent cellular decomposition
of Dn. We may without loss of generality assume there is no inclusion
relation between the Ki , moreover the standardness condition described
above readily translates into a condition on this structure K, (Ki)i∈I ,
( fi)i∈I , and implies that for i, i′ ∈ I , Ki → Ki′ , is a “closed” subset in
the two ordered sets Ki , Ki′ (namely contains with any element x the
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elements smaller than x), and moreover isomorphic (for the induced
order) to some Jn. Thus the category B0 can be viewed as the category of
such “standard ordered sets” (with the extra structure on these just said),
and the category C0 can be defined most simply as the dual category
Bop

0 . (NB the definition of morphisms in B0 is clear I guess . . . ) I believe
the category B0 is stable under amalgamated sums X qZ Y , provided
however we insist that the empty structure K is not allowed – otherwise
we have to restrict to amalgamated sums with Z 6= ;. It seems finally
more convenient to exclude the empty structure in B0, i.e. to exclude
the final element from C0, for the benefit of being able to state that C0
(and all categories Cn) are stable under amalgamated sums, and that this is obviously false, see P.S. p.12.

the functors Cn→ C (and ultimately C∞→ C) we are interested in are
just those commuting to arbitrary binary amalgamated sums (without
awkward reference to the objects F i and the iterated source and target
maps between them. . . ).

9 The category C0 being fairly well understood, it remains to complete The main inductive step: just add co-
herence arrows! The abridged story
of an (inescapable and irrelevant)
ambiguity

the construction by the inductive step, passing from Cn to Cn+1. The
main properties I have in mind therefore, for the sequence of categories
Cn and their limit C∞, are the following two.

(A) For any K ∈ Ob(C∞) (= Ob(C0)), and any two arrows in C∞
f , g : K ⇒ Fi ,

with i ∈ N, and such that either i = 0, or the equalities

(1) si
1 f = si

1 g, t i
1 f = t i

1 g

hold (case i ≥ 1), there exists h : K → Fi+1 such that

(2) si+1
1 h= f , t i+1

1 h= g.

(B) For any n ∈ N, the category Cn+1 is deduced from Cn by keeping
the same objects, and just adding new arrows h as in (A), with
f , g arrows in Cn.

The expression “deduces from” in (B) means that we are adding arrows [p. 8’]
h : K → Fi (each with preassigned source and target in Cn), with as
“new axioms” on the bunch of these uniquely the two relations (2) of
(A), the category Cn+1 being deduced from Cn in an obvious way, as
the solution of a universal problem within the category of all categories
where binary amalgamated products exist, and “maps” between these
being functors which commute to those fibered products. In practical
terms, the arrows of Cn+1 are those deduced from the arrows in Cn
and the “new” arrows h, by combining formal operations of composing
arrows by v ◦ u, and taking (binary) amalgamated products of arrows. This has to be corrected – amalgamated

sums exist in C, only – and those should be
respected.

NB Of course the condition (1) in (A) is necessary for the existence of
an h satisfying (2). That it is sufficient too can be viewed as an extremely
strong, “universal” version of coherence conditions, concerning the vari-
ous structures introduced on an ∞-groupoid. Intuitively, it means that
whenever we have two ways of associating to a finite family (ui)i∈I
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of objects of an ∞-groupoid, ui ∈ Fn(i), subjected to a standard set of
relations on the ui ’s, an element of some Fn, in terms of the ∞-groupoid
structure only, then we have automatically a “homotopy” between these
built in in the very structure of the ∞-groupoid, provided it makes at all
sense to ask for one (namely provided condition (1) holds if n≥ 1). I
have the feeling moreover that conditions (A) and (B) (plus the relation
C∞ = lim−→Cn) is all what will be ever needed, when using the definition
of the structure species, – plus of course the description of C0, and the
implicit fact that the categories Cn are stable under binary fiber products
and the inclusion functors commute to these.† Of course, the category †Inaccurate; see above

which really interests us is C∞, the description of the intermediate Cn’s
is merely technical – the main point is that there should exist an in-
creasing sequence (Cn) of subcategories of C∞, having the same objects
(and the “same” fiber-products), such that C∞ should be the limit (i.e.,
every arrow in C∞ should belong to some Cn), and such that the pas-
sage from Cn to Cn+1 should satisfy (B). It is fairly obvious that these
conditions alone do by no means characterize C∞ up to equivalence,
and still less the sequence of its subcategories Cn. The point I wish to
make though, before pursuing with a proposal of an explicit description,
is that this ambiguity is in the nature of things. Roughly saying, two
different mathematicians, working independently on the conceptual
problem I had in mind, assming they both wind up with some explicit
definition, will almost certainly get non-equivalent definitions – namely
with non-equivalent categories of (set-valued, say) ∞-groupoids! And,
secondly and as importantly, that this ambiguity however is an irrele- [p. 9]
vant one. To make this point a little clearer, I could say that a third
mathematician, informed of the work of both, will readily think out a
functor or rather a pair of functors, associating to any structure of Mr.
X one of Mr. Y and conversely, in such a way that by composition of
the two, we will associate to an X -structure (T say) another T ′, which
will not be isomorphic to T of course, but endowed with a canonical∞-equivalence (in the sense of Mr. X) T '∞ T ′, and the same on the Mr.

Y side. Most probably, a fourth mathematician, faced with the same
situation as the third, will get his own pair of functors to reconcile Mr. X
and Mr. Y, which very probably won’t be equivalent (I mean isomorphic)
to the previous one. Here however, a fifth mathematician, informed
about this new perplexity, will probably show that the two Y -structures
U and U ′, associated by his two colleagues to an X -structure T , while
not isomorphic alas, admit however a canonical ∞-equivalence between
U , and U ′ (in the sense of the Y -theory). I could go on with a sixth
mathematician, confronted with the same perplexity as the previous one,
who winds up with another ∞-equivalence between U and U ′ (without
being informed of the work of the fifth), and a seventh reconciling them
by discovering an ∞-equivalence between these equivalences. The story
of course is infinite, I better stop with seven mathematicians, a fair num-
ber nowadays to allow themselves getting involved with foundational
matters . . . There should be a mathematical statement though resuming
in finite terms this infinite story, but in order to write it down I guess a
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minimum amount of conceptual work, in the context of a given notion of∞-groupoids satisfying the desiderata (A) and (B) should be done, and
I am by no means sure I will go through this, not in this letter anyhow.

10 Now in the long last the explicit description I promised of Cn+1 in Cutting down redundancies – or:
“l’embarras du choix”.terms of Cn. As a matter of fact, I have a handful to propose! One

choice, about the widest I would think of, is: for every pair ( f , g) in
Cn satisfying condition (1) of (A), add one new arrow h. To avoid
set-theoretic difficulties though, we better first modify the definition of
C0 so that the set of its objects should be in the universe we are working
in, preferably even it be countable. Or else, and more reasonably, we
will pick one h for every isomorphism class of situations ( f , g) in Cn.
Another restriction to avoid too much redundancy – this was the first
definition actually that flipped to my mind the day before yesterday – is
to add a new h only when there is no “old” one, namely inCn, serving the
same purpose. Then it came to my mind that there is a lot of redundancy
still, thus there would be already infinitely many operations standing [p. 9’]

for the single operation v
i
◦ u say, which could be viewed in effect in

terms of an arbitrary n-sequence (n ≥ 2) of “composable” i-objects
u1 = u, u2 = v, u3, . . . , un. The natural way to meet this “objection”
would be to restrict to pairs ( f , g) which cannot be factored non-trivially
through another objects K ′ as

K K ′ Fi

f ′

g ′
.

But even with such restrictions, there remain a lot of redundancies –
and this again seems to me in the nature of things, namely that there
is no really natural, “most economic” way for achieving condition (A),
by a stepwise construction meeting condition (B). For instance, in C1

already we will have not merely the compositions v
i
◦ u, but at the same

time simultaneous compositions

(*) un ◦ un−1 ◦ · · · ◦ u1

for “composable” sequences of i-objects (i ≥ 1), without reducing this
(as is customary) to iteration of the binary composition v ◦ u. Of course
using the binary composition, and more generally iteration of n′ −
ar y compositions with n′ < n (when n ≥ 3), we get an impressive
bunch of operations in the n variables u1, . . . , un, serving the same
purpose as (*). All these will be tied up by homotopies in the next
step C2. We would like to think of this set of homotopies in C2 as a
kind of “transitive system of isomorphisms” (of associativity), now the
transitivity relations one is looking for will be replaced by homotopies
again between compositions of homotopies, which will enter in the
picture with C3, etc. Here the infinite story is exemplified by the more
familiar situation of the two ways in which one could define a “⊗-
composition with associativity” in a category, starting either in terms
of a binary operation, or with a bunch of n-ary operations – with, in
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both cases the associativity isomorphisms being an essential part of the
structure. Here again, while it is generally (and quite validly) felt that
the two points of view are equivalent; and both have their advantages
and their drawbacks, still it is not true, I believe, that the two categories
of algebraic structures “category with associative ⊗-operation”, using
one or the other definition, are equivalent. Here the story though of even not in the compoid??? context.

the relation between the two notions is a finite one, due to the fact
that it is related to the notion of 2-categories or 2-groupoids, instead of∞-groupoids as before. . .

Thus I don’t feel really like spending much energy in cutting down
redundancies, but prefer working with a notion of ∞-groupoid which
remains partly indeterminate, the main features being embodied in
the conditions (A) and (B) and in the description of C0, without other
specification. [p. 10]

11 One convenient way for constructing a category C∞ would be to define Returning to the topological model
(the canonical functor from spaces to
“∞-groupoids”).

for every K , L ∈ Ob(C0) = Ob(B0) the set Hom∞(K , L) as a subset of the
set Hom(|L|, |K |) of continuous maps between the geometric realizations
of L and K in terms of gluing together cells Di , the composition of arrows
in C∞ being just composition of maps. This amounts to defining C∞
as the dual of a category B∞ of topological descriptions. It will be
sufficient to define for every cell Dn and every subset Hom∞(Dn, |K |) of
Hom(Dn, |K |), satisfying the two conditions:

(a) stability by compositions Dn → |K | → |K ′|, where K → K ′ is
an “allowable” continuous map, namely subjected only to the
condition that its restriction to any standard subcell Dn′ ⊂ |K | is
again “allowable”, i.e., in Hom∞.

(b) Any “allowable” map Sn→ |K | (i.e., whose restrictions to S+n and
S−n are allowable) extends to an allowable map Dn+1→ |K |.

Condition (a) merely ensures stability of allowable maps under com-
position, and the fact that B∞ (endowed with the allowable maps as
morphisms) has the correct binary amalgamated sums, whereas (b)
expresses condition (a) on C∞. These conditions are satisfied when
we take as Hom∞ subsets defined by tameness conditions (such as
piecewise linear for suitable piecewise linear structure on the Dn’s, or
differentiable, etc.). The condition (b) however is of a subtler nature
in the topological interpretation and surely not met by such sweeping
tameness requirements only! Finally, the question as to whether we can
actually in this way describe an “acceptable” category C∞, by defining
sets Hom∞, namely describing C∞ in terms of B∞, seems rather sub-
sidiary after all. We may think of course of constructing stepwise B∞
via subcategories Bn, by adding stepwise new arrows in order to meet
condition (b), thus paraphrasing condition (B) for passage from Cn to
Cn+1 – but it is by no means clear that when passing to the category
Bn+1 by composing maps of Bn and “new” ones, and using amalgamated
sums too, there might not be some undesirable extra relations in Bn+1,
coming from the topological interpretation of the arrows in Cn+1 as
maps. To say it differently, universal algebra furnishes us readily with
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an acceptable sequence of categories Cn and hence C∞, and by the
universal properties of the Cn in terms of Cn+1, we readily get (using
arbitrary choices) a contravariant functor K 7→ |K | from C∞ to the cate-
gory of topological spaces (i.e., a co-∞-groupoid in (Top)), but it is by
no means clear that this functor is faithful – and it doesn’t really matter
after all! [p. 10’]

12 I think I really better stop now, except for one last comment. The About replacing spaces by objects of
a “model category”.construction of a co-∞-groupoid in (Top), giving rise to the fundamental

functor
(Top) −→ (∞-groupoids),

generalizes, as I already alluded to earlier, to the case when (Top)
is replaced by an arbitrary “model category” M in your sense. Here
however the choices occur not only stepwise for the primary, secondary,
ternary etc. structures, but already for the primitive structures, namely
by choice of objects Di (i ∈ N) in M , and source and target maps
Di ⇒ Di+1. These choices can be made inductively, by choosing first for
D0 the final object, or more generally any object which is fibrant and
trivial (over the final objects), D−1 being the initial object, and defining
further S0 = D0qD−1

D0 = D0qD0 with obvious maps ψ+0 ,ψ−0 : D0→ S0,
and then, if everything is constructed up to Dn and Sn = (Dn,ϕ+n−1)qDn−1

(Dn,ϕ−n−1), defining Dn+1 as any fibrant and trivial object together with
a cofibrant map

Sn→ Dn+1,

and ϕ+n ,ϕ−n as the compositions of the latter with ψ+n ,ψ−n : Dn ⇒ Sn.
Using this and amalgamated sums in M , we get our functor

B0 = C
op
0 → M , K 7→ |K |M ,

commuting with amalgamated sums, which we can extend stepwise
through the Cop

n ’s to a functor B∞ = Cop∞ → M , provided we know that
the objects |K |M of M (K ∈ ObC0) obtained by “standard” gluing of the
Dn’s in M , are again fibrant and trivial – and I hope indeed that your
axioms imply that, via, say, that if Z → X and Z → Y are cofibrant and
X , Y, Z are fibrant and trivial, then X qZ Y is fibrant and trivial. . .

Among the things to be checked is of course that when we localize the
category of ∞-groupoids with respect to morphisms which are “weak
equivalences” in a rather obvious sense (NB the definition of the Πi ’s of
an ∞-groupoid is practically trivial!), we get a category equivalent to
the usual homotopy category (Hot). Thus we get a composed functor

M → (∞-groupoids)→ (Hot),

as announced. I have some intuitive feeling of what this functor stands
for, at least when M is say the category of semisimplicial sheaves, or
(more or less equivalently) of n-gerbes or ∞-gerbes on a given topos:
namely it should correspond to the operation of “integration” or “sec-
tions” for n-gerbes (more generally for n-stacks) over a topos – which is
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indeed the basic operation (embodying non-commutative cohomology
objects of the topos) in “non-commutative homological algebra”.

I guess that’s about it for today. It’s getting late and time to go to bed!
Good night.

22.2.1983 [p. 11]

13 It seems I can’t help pursuing further the reflection I started with this An urgent reflection on proper
names: “Stacks” and “coherators”.letter! First I would like to come back upon terminology. Maybe to

give the name of n-groupoids and ∞-groupoids to the objects I was
after is not proper, for two reasons: a) it conflicts with a standing
terminology, applying to structure species which are frequently met and
deserve names of their own, even if they turn out to be too restrictive
kind of objects for the use I am having in mind – so why not keep the
terminology already in use, especially for two-groupoids, which is pretty
well suited after all; b) the structure species I have in mind is not really
a very well determined one, it depends as we saw on choices, without
any one choice looking convincingly better than the others – so it would
be a mess to give an unqualified name to such structure, depending on
the choice of a certain category C∞ = C. I have been thinking of the
terminology n-stack and ∞-stack (stack = “champ” in French), a name
introduced in Giraud’s book (he was restricting to champs = 1-champs),
which over a topos reduced to a one-point space reduces in his case to
the usual notion of a category, i.e., 1-category. Here of course we are
thinking of “stacks of groupoids” rather than arbitrary stacks, which
I would like to call (for arbitrary order n ∈ N or n = ∞) n-Gr-stack
– suggesting evident ties with the notion of Gr-categories, we should
say Gr-1-categories, of Mme Hoang Xuan Sinh. One advantage of the
name “stack” is that the use it had so far spontaneously suggests the
extension of these notions to the corresponding notions over an arbitrary
topos, which of course is what I am after ultimately. Of course, when an
ambiguity is possible, we should speak of n-C-stacks – the reference to
C should make superfluous the “Gr” specification. Thus n-C-stacks are
essentially the same as n-C-stacks over the final topos, i.e., over a one
point space. When both C and “Gr” are understood in a given context,
we will use the terminology n-stack simply, or even “stack” when n is
fixed throughout. Thus it will occur that in certain contexts “stack” will
just mean a usual groupoid, in others it will mean just a category, but
when n= 2 it will not mean a usual 2-groupoid, but something more
general, defined in terms of C.

The categories C= C∞ described before merit a name too – I would
like to call them “coherators” (“cohéreurs” in French). This name is
meant to suggest that C embodies a hierarchy of coherence relations,
more accurately of coherence “homotopies”. When dealing with stacks,
the term i-homotopies (rather than i-objects or i-arrows) for the elements
of the ith component Fi of a stack seems to me the most suggestive – they
will of course be denoted graphically by arrows, such as h : f → g in [p. 11’]
the formulation of (A) yesterday. More specifically, I will call coherator
any category equivalent to a category C∞ as constructed before. Thus
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a coherator is stable under binary fiber products, moreover the Fi are false, see PS

recovered up to isomorphism as the indecomposable elements of C with
respect to amalgamation. However, in a categoryC∞, the objects F i have
non-trivial automorphisms – namely the “duality involutions” and their
compositions (the group of automorphisms of F i should turn out to be
canonically isomorphic to (±1)i),† in other words by the mere category †false, see below

structure of a coherator we will not be able to recover the objects F i in
C up to unique isomorphism. Therefore, in the structure of a coherator
should be included, too, the choice of the basic indecomposable objects
F i (one in each isomorphism class), and moreover the arrows si

1, ti
1 :

F i ⇒ F i−1 for i ≥ 1 (a priori, only the pair (si
1, ti

1) can be described
intrinsically in terms of the category structure of C, once F i and F i−1 are
chosen. . . ). But it now occurs to me that we don’t have to put in this extra
structure after all – while the F i ’s separately do have automorphisms,
the system of objects (F i)i∈N and of the maps (si

1)i≥1 and (ti
1)i≥1 has

only the trivial automorphism (all this of course is heuristics, I didn’t
really prove anything – but the structure of the full subcategory of a
C∞ formed by the objects F i seems pretty obvious. . . ). To finish getting
convinced that the mere category structure of a coherator includes
already all other relevant structure, we should still describe a suitable
intrinsic filtration by subcategories Cn. We define the Cn inductively,
C0 being the “primitive structure” (the arrows are those deducible from
the source and target arrows by composition and fiber products), and
Cn+1 being defined in terms of Cn as follows: add to FlCn all arrows
of C of the type h : K → F i (i ≥ 1) such that si

1 h and ti
1 h are in Cn,

and the arrows deduced from the bunch obtained by composition and
fibered products.‡ In view of these constructions, it would be an easy ‡This may give however too large a category

Cn+1.exercise to give an intrinsic characterization of a coherator, as a category
satisfying certain internal properties.

I was a little rash right now when making assertions about the struc-
ture of the group of automorphisms of F i – I forgot that two days ago I
pointed out to myself that even the basic operation invi upon F i need
not even be involutions!§ However, I just checked that if in the inductive §Nor even automorphisms

construction of coherators C∞ given yesterday, we insist on the most
trivial irredundancy condition (namely that we don’t add a “new” homo-
topy h : f → g when there is already an old one), then any morphism
h : F i → F i such that s f = s and t f = t, is the identity – and that [p. 12]
implies inductively that an automorphism of the system of F i ’s related
by the source and target maps si

1, ti
1 is the identity. Thus it is correct

after all, it seems, that the category structure of a coherator implies all
other structure relevant to us.¶ ¶Maybe false; it is safer to give moreover the

subcategory C0.I do believe that the description given so far of what I mean by a
coherator, namely something acting like a kind of pattern in order to
define a corresponding notion of “stacks” (which in turn should be the
basic coefficient objects in non-commutative homological algebra, as
well as a convenient description of homotopy types) embodies some
of the essential features of the theory still in embryo that wants to
be developed. It is quite possible of course that some features are
lacking still, for instance that some extra conditions have to be imposed
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upon C, possibly of a very different nature from mere irredundancy
conditions (which, I feel, are kind of irrelevant in this set-up). Only
by pushing ahead and working out at least in outline the main aspects
of the formalism of stacks, will it become clear whether or not extra
conditions on C are needed. I would like at least to make a commented
list of these main aspects, and possibly do some heuristic pondering on
some of these in the stride, or afterwards. For today it seems a little late
though – I have been pretty busy with non-mathematical work most
part of the day, and the next two days I’ll be busy at the university.
Thus I guess I’ll send off this letter tomorrow, and send you later an
elaboration (presumably much in the style of this unending letter) if
you are interested. In any case I would appreciate any comments you
make – that’s why I have been writing you after all! I will probably send
copies to Ronnie Brown, Luc Illusie and Jean Giraud, in case they should
be interested (I guess at least Ronnie Brown is). Maybe the theory is
going to take off after all, in the long last!

Very cordially yours

PS (25.2.) I noticed a rather silly mistake in the notes of two days ago,
when stating that the categories Cn admit fiber products: what is true is
that the categoryC0 has fiber products (by construction, practically), and
that these are fiber products also in the categories Cn (by construction
equally), i.e., that the inclusion functors C0 → Cn commute to fiber
products. Stacks in a category C correspond to functors C∞ → C
whose restriction to C0 commutes with fiber products. I carried the
mistake along in the yesterday notes – it doesn’t really change anything
substantially. I will have to come back anyhow upon the basic notion of
a coherator. . .



Part II

Test categories and test functors

Reflections on homotopical algebra [p. 1]

27.2.83.
The following notes are the continuation of the reflection started in

my letter to Daniel Quillen written previous week (19.2 – 23.2), which
I will cite by (L) (“letter”). I begin with some corrections and comments
to this letter.

14 Homotopical algebra can be viewed as being concerned mainly with the The unnoticed failure (of the present
foundations of topology for express-
ing topological intuition).

study of spaces of continuous maps between spaces and the algebraic
analogons of these, with a special emphasis on homotopies between
such homotopies between homotopies etc. The kind of restrictive prop-
erties imposed on the maps under consideration is exemplified by the
typical example when demanding that the maps should be extensions,
or liftings, of a given map. Homotopical algebra is not directly suited
for the study of spaces of homeomorphisms, spaces of immersions, of
embeddings, of fibrations, etc. – and it seems that the study of such
spaces has not really yet taken off the ground. Maybe the main obstacle
here lies in the wildness phenomena, which however, one feels, makes
a wholly artificial difficulty, stemming from the particular way by which
topological intuition has been mathematically formalized, in terms of the
basic notion of topological spaces and continuous maps between them.
This transcription, while adequate for the homotopical point of view, and
partly adequate too for the use of analysts, is rather coarsely inadequate,
it seems to me, in most other geometrico-topological contexts, and
particularly so when it comes to studying spaces of homeomorphisms,
immersions, etc. (in all those questions when “isotopy” is replacing the
rather coarse homotopy relation), as well as for a study of stratified
structures, when it becomes indispensable to give intrinsic and precise
meaning to such notions as tubular neighborhoods, etc. For a structure
theory of stratifications, it turns out (somewhat surprisingly maybe)
that even the somewhat cumbersome context of topoi and pretopoi is
better suited than topological spaces, and moreover directly applicable
to unconventional contexts such as étale topology of schemes, where

21
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the conventional transcription of topological intuition in terms of topo-
logical spaces is quite evidently breaking down. To emphasize one point
I was making in (L, p. 1), it seems to me that this breakdown is almost
as evident in isotopy questions or for the needs of a structure theory of
stratified “spaces” (whatever we mean by “spaces” . . . ). It is a matter
of amazement to me that this breakdown has not been clearly noticed,
and still less overcome by working out a more suitable transcription of
topological objects and topological intuition, by the people primarily [p. 2]
concerned, namely the topologists. The need of eliminating wildness
phenomena has of course been felt repeatedly, and (by lack of anything
better maybe, or rather by lack of any attempt of a systematic reflection
on what was needed) it was supposed to be met by the notion of piece-
wise linear structures. This however was falling from one extreme into
another – from a structure species with vastly too many maps between
“spaces”, like a coat vastly too wide and floating around in a million
wild wrinkles, to one with so few (not even a quadratic map from R
to R is allowed!) that it feels like too narrow a coat, bursting apart on
all edges and ends. The main defect here, technically speaking, seems
to me the fact that numerical piece-wise linear functions are not stable
under multiplication, and as a geometric consequence of this, that when
contracting a compact p.l. subspace of a (compact, say) piecewise linear
space into one point, we do not get on the quotient space a natural p.l.
structure. This alone should have sufficed, one might think, to eliminate
the piecewise linear structure species as a reasonable candidate for
“doing topology” without wildness impediments – but strangely enough,
it seems to be hanging around till this very day!

15 But my aim here is not to give an outline of foundations on “tame Overall review of standard descrip-
tions of homotopy types.topology”, but rather to fill some foundational gaps in homotopy the-

ory, more specifically in homotopical algebra. The relative success in
the homotopical approach to topology is probably closely tied to the
well known fact (Brouwer’s starting point as a matter of fact, when
he introduced the systematics of triangulations) that every continuous
map between triangulated spaces can be approximated by simplicial
maps. This gave rise, rather naturally, to the hope expressed in the
“Hauptvermutung” – that two homeomorphic triangulated spaces admit
isomorphic subdivisions, a hope that finally proved a delusion. With
a distance of two or three generations, I would comment on this by
saying that this negative result was the one to be expected, once it
has become clear that neither of the two structure species one was
comparing, namely topological spaces and triangulated spaces, was
adequate for expressing what one is really after – namely an accurate
mathematical transcription, in terms of “spaces” of some kind or other,
of some vast and deep and misty and ever transforming mass of intu-
itions in our psyche, which we are referring to as “topological” intuition.
There is something positive though, definitely, which can be viewed as
an extremely weakened version of the Hauptvermutung, namely the
fact that topological spaces on the one hand, and semi-simplicial sets
on the other, give rise, by a suitable “localization” process (formally [p. 3]
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analogous to the passage from categories of chain complexes to the
corresponding derived categories), to eventually[?] “the same” (up
to equivalence) “homotopy category”. One way of describing it is via
topological spaces which are not “too wild” as objects (the CW-spaces),
morphisms being homotopy classes of continuous maps. The other is via
semi-simplicial sets, taking for instance Kan complexes as objects, and
again homotopy classes of “maps” as morphisms. The first description
is the one most adapted to direct topological intuition, as long as least
as no more adequate notion than “topological spaces” is at hand. The
second has the advantage of being a purely algebraic description, with
rather amazing conceptual simplicity moreover. In terms of the two
basic sets of algebraic invariants of a space which has turned up so far,
namely cohomology (or homology) on the one hand, and homotopy
groups on the other, it can be said that the description via topological
spaces is adequate for direct description of neither cohomology nor
homotopy groups, whereas the description via semi-simplicial sets is
fairly adequate for description of cohomology groups (taking simply the
abelianization of the semi-simplicial set, which turns out to be a chain
complex, and taking its homology and cohomology groups). The same
can be said for the alternative algebraic description of homotopy types,
using cubical complexes instead of semi-simplicial ones, which were
introduced by Serre as they were better suited, it seems, for the study
of fibrations and of the homology and cohomology spectral sequences
relative to these. One somewhat surprising common feature of those
two standard algebraic descriptions of homotopy types, is that neither
is any better adapted for a direct description of homotopy groups than
the objects we started with, namely topological spaces. This is all the
more remarkable as it is the homotopy groups really, rather than the
cohomology groups, which are commonly viewed as the basic invariants
in the homotopy point of view, sufficient, e.g., for test whether a given
map is a “weak equivalence”, namely gives rise to an isomorphism in the
homotopy category. It is here of course that the point of view of “stacks”
(“champs” in French) of (L) (previously called “∞-groupoids” in the
beginning of the reflections of (L)) sets in. These presumably give rise
to a “category of models” and [?] there, to the usual homotopy category,
in much the same way as topological spaces or simplicial (or cubical)
complexes, thus yielding a third [?] description of homotopy types,
and corresponding wealth of algebraico-geometric intuitions. Moreover,
stacks are ideally suited for expressing the homotopy groups, in an
even more direct way than simplicial complexes allow description of [p. 4]
homology and cohomology groups. As a matter of fact, the description
is formally analogous, and nearly identical, to the description of the
homology groups of a chain complex – and it would seem therefore
that that stacks (more specifically, Gr-stacks) are in a sense the closest
possible non-commutative generalization of chain complexes, the ho-
mology groups of the chain complex becoming the homotopy groups of
the “non-commutative chain complex” or stack.

It is well understood, since Dold-Puppe, that chain complexes form
a category equivalent to the category of abelian group objects in the
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category of semi-simplicial sets, or equivalently, to the category of semi-
simplicial abelian groups. By this equivalence, the homology groups
of the chain complex are identified with the homotopy groups of the
corresponding homotopy type. As for the homology and cohomology
groups of this homotopy type, their description in terms of the chain
complex we started with is kind of delicate (I forgot all about it I am
afraid!). A fortiori, when a homotopy type is described in terms of a stack,
i.e., a “non-commutative chain complex”, there is no immediate way for
describing its homology or cohomology groups in terms of this structure. 3.5. This is an error – it appeared to me

after that the cohomology can be expressed
much in the same way as for simplicial or
“cubical complexes, using a [?] the “source”
and “target” structure of the stack (i.e., part
of the primitive structure).

What probably should be done, is to define first a nerve functor from
stacks to semi-simplicial sets (generalizing the familiar nerve functor
defined on the category of categories), and define homology invariants
of a stack via those of the associated semi-simplicial set (directly suited
for calculating these).

16 These reflections on the proper place of the notion of a stack which in Stacks over topoi as unifying concept
for homotopical and cohomological
algebra.

standard homotopy algebra are largely a posteriori – the clues they give
are surely not so strong as to give an imperative feeling for the need of
developing this new approach to the homotopy category. Rather, the im-
perative feeling comes from the intuitions tied up with non-commutative
cohomological algebra over topological spaces, and more generally over
topoi, in the spirit of Giraud’s thesis, where a suitable formalism for

[Giraud 1971]non-commutative K i ’s for i = 0, 1 or 2 is developed. He develops in
extenso the notion of stacks, we should rather say now 1-stacks, over a
topos, constantly alluding (and for very understandable reasons!) to
the notion of a 2-stack, appearing closely on the heels of the 1-stacks.
Keeping in mind that 0-stacks are just ordinary sheaves of sets, on the
space or the topos considered, the hierarchy of increasingly higher and
more sophisticated notions of 0-stacks, 1-stacks, 2-stacks, etc., which
will have to be developed over an arbitrary topos, just parallels the
hierarchy of corresponding notions over the one-point space, namely [p. 5]
sets (= 0-stacks), categories (or 1-stacks), 2-categories, etc. Among
these structures, those generalizing groupoids among categories, namely
Gr-stacks of various orders n, play a significant role, especially for the
description of homotopy types, but equally for a non-commutative “geo-
metric” interpretation of the cohomology groups Hi(X , F) of arbitrary
dimension (or “order”), of a topos X with coefficients in an abelian
sheaf F . The reflections in (L) therefore were directly aimed at getting
a grasp on a definition of such Gr-stacks, and whereas it seems to me to
have come to a concrete starting point for such a definition, a similar
reflection for defining just stacks rather than Gr-stacks is still lacking.
This is one among the manifold things I have in mind while sitting down
on the present reflections.

Thus n-stacks, relativized over a topos to “n-stacks over X ”, are viewed
primarily as the natural “coefficients” in order to do (co)homological
algebra of dimension ≤ n over X . The “integration” of such coefficients,
in much the same spirit as taking objects RΓ∗ (with RΓ the derived
functor of the sections functor Γ ) for complexes of abelian sheaves F j
on X , is here merely the trivial operation of taking sections, namely the
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“value” of the n-stack on the final object of X (or of a representative site
of X , if X is described in terms of a site). The result of integration is
again an n-stack, whose homotopy groups (with a dimension shift of
n) should be viewed as the cohomology invariants Hi(X , F∗), where F∗
now stands for the n-stack rather than for a complex of abelian sheaves.
In my letters (two or three) to Larry Breen in 1975, I develop some

[Grothendieck (1975)]heuristics along this point of view, with constant reference to various
geometric situations (mainly from algebraic geometry), providing the
motivations. The one motivation maybe which was the strongest, was
the realization that the classical Lefschetz theorem about comparison
of homology and homotopy invariants of a projective variety, and a
hyperplane section – once it was reformulated suitably so as to get rid
of non-singularity assumptions, replaced by suitable assumptions on
cohomological “depth” – could be viewed as comparison statements of
“cohomology” with coefficients in more or less arbitrary stacks. This is
carries through completely, within the then existing conceptual frame-
work restricted to 1-stacks, in the thesis of Mme Raynaud, a beautiful

[Raynaud (1975)]piece of work. There seems to me to be overwhelming evidence that
her results (maybe her method of proof too?) should generalize in the
context of non-commutative cohomological algebra of arbitrary dimen-
sion, with a suitable property of ind-finiteness as the unique restriction [p. 6]
on the coefficient stacks under consideration.

Technically speaking, ∞-stacks are the common denominator of n-
stacks for arbitrary n, in much the same way as n-stacks appear both
as the next-step generalization of (n− 1)-stacks (the former forming a
category which admits the category of (n− 1)-stacks as a full subcate-
gory), and as the most natural “higher order structure” appearing on
the category of all (n− 1)-stacks (and on various analogous categories
whose objects are (n−1)-stacks subject to some restrictions or endowed
with some extra structure). I’ll have to make this explicit in due course.
For the time being, when speaking of “stacks” or “Gr-stacks”, it will be
understood (unless otherwise specified) that we are dealing with the
infinite order notions, which encompass the finite ones.

Working out a theory of stacks over topoi, as the natural foundation of
non-commutative cohomological algebra, would amount among others
to write Giraud’s book within this considerably wider framework. Of
course, this mere prospect wouldn’t be particularly exciting by itself, if it
did not appear as something more than grinding through an unending
exercise of rephrasing and reproving known things, replacing every-
where n= 0, 1 or 2 by arbitrary n. I am convinced however that there
is a lot more to it – namely the fascination of gradually discovering and
naming and getting acquainted with presently still unknown, unnamed,
mysterious structures. As is the case so often when making a big step
backwards for gaining new perspective, there is not merely a quantita-
tive change (from n≤ 2 to arbitrary n say), but a qualitative change in
scope and depth of vision. One such step was already taken I feel by
Daniel Quillen and others, when realizing that homotopy constructions
make sense not only in the usual homotopy category, or in one or the
other categories of models which give rise to it, but in more or less
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arbitrary categories, by working with semi-simplicial objects in these.
The step I am proposing is of a somewhat different type. The notion of a
stack here appears as the unifying concept for a synthesis of homotopical
algebra and non-commutative cohomological algebra. This (rather than
merely furnishing us with still another description of homotopy types,
more convenient for expression of the homotopy groups) seems to me
the real “raison d’être” of the notion of a stack, and the main motivation
for pushing ahead a theory of stacks. [p. 7]

16bis One last comment before diving into more technical matters. Without Categories as models for homotopy
types. First glimpse upon an “impres-
sive bunch” (of modelizers).

even climbing up the ladder of increasing sophistication, leading up to
[stacks?], there is on the very first step, namely with just usual cate-
gories, the possibility of describing [?]. Namely, there are two natural,
well-known ways to associate to a category C (I mean here a “small”
category, belonging to the given universe we are working in) some kind
of topological object, and hence a homotopy type. One is by associating
to C the topos Cˆ or [?], namely arbitrary contravariant functors from
C to (Sets). The other is through the [nerve?] functor, associating to C a
semi-simplicial set – and hence, if this suits us better, a topological space,
by taking the geometrical realization. By a construction of Verdier, any
topos and therefore Top(C) gives rise canonically to a [pro-object?] in
the category of semi-simplicial sets, and hence by “localization” to a
pro-object in the homotopy category (namely a “pro-homotopy type”
in the terminology of Artin-Mazur). In the same way, the nerve N(C)
gives rise to a homotopy type – and of course [?] and may be called the
homotopy type of C . When C is a groupoid, we get merely a 1-truncated
homotopy type, namely with homotopy groups πn which vanish for
n≥ 2, or equivalently, with connected components (corresponding of
course to connected components of C) K(π, 1) spaces. This had led
me at one moment in the late sixties to hastily surmise that even for
arbitrary C , we got merely such sums of K(π, 1) spaces (namely, that the
homotopy type of C does not change when replacing C by the universal
enveloping groupoid, deduced from C by making formally invertible all
its arrows). As Quillen pointed out to me, this is definitely not so – in-
deed, using categories, we get (up to isomorphism) arbitrary homotopy
types. This is achieved, I guess, using the left adjoint functor N′ from
the inclusion functor

(Cat) (Ss sets)N

which is fully faithful (the adjoint functor being therefore a localization
functor), and showing that for a semisimplicial set K , the natural map

K → N N′(K)

is a weak equivalence; or what amounts to the same, that the set of
arrows in (Ss sets) by which we localize in order to get (Cat) (namely
those transformed into invertible arrows by N′) is made up with weak
equivalences only. This would imply that we may reconstruct the usual 5.3. This is false, see §24 below (p. 21–23).

homotopy category, up to equivalence, in terms of (Cat), by just localiz-
[p. 8]
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ing (Cat) with respect to weak isomorphism, namely functors C → C ′

inducing an isomorphism between the corresponding homotopy types.
Pushing a little further in this direction, one may conjecture that (Cat)
is a “closed model category”, whose weak equivalences are the func-
tors just specified, and whose cofibrations are just functors which are
injective on objects and injective on arrows.

The fact that [?] and one moreover it seems which has not found
its way still into the minds of topologists or homotopists, with only
few exceptions I guess. These objects are extremely simply and famil-
iar to most mathematicians; what is somewhat more sophisticated is
the process of localization towards homotopy types, or equivalently,
the explicit description of weak equivalences, within the framework of
usual category theory. This would amount more or less to the same as
describing the homotopy groups of a category, which does not seem
any simpler than the same task for its nerve. As for the cohomology
invariants, which can be interpreted as the left derived functors of the
lim←−C

functor, or rather its values on particular presheaves (for instance
constant presheaves), they are of course known to be significant, inde-
pendently of any particular topological interpretation, but they are not
expressible in direct terms. (The most common computation for these
is again via the nerve of C .)

This situation suggests that for any natural integer n≥ 1, the category
of n-stacks can be used as a category of models for the usual homotopy
category, in particular any n-stack gives rise to a homotopy type, and
up to equivalence we should get any homotopy type in this way (for in-
stance, through the n-category canonically associated to any 1-category
giving rise to this homotopy type). The homotopy types coming from
n-Gr-stacks, however, should be merely the n-truncated ones, namely
those whose homotopy groups in dimension > n are zero. Moreover,
n-Gr-stacks appear as the most adequate algebraic structures for ex-
pressing n-truncated homotopy types, the latter being deduced from
the former, presumably, by the same process of localization by weak
equivalences. Moreover, in the context of n-Gr-stacks, the notions of ho-
motopy groups and of weak equivalences are described in a particularly
obvious way. Thus, passing to the limit case n =∞, it is [∞-Gr-stacks?]
rather than general ∞-stacks which appear as the neatest [model for
homotopy types?].

These reflections suggest that there should be a rather impressive [p. 9]
bunch of algebraic structures, each giving rise to a model category for
the usual homotopy category, or in any case yielding this category by
localization with respect to a suitable notion of “weak equivalences”.
The “bunch” is all the more impressive, if we remember that the notion of
stack (dropping now the qualification n, namely assuming n =∞) is not
really a uniquely defined one, but depends on the choice of a “coherator”,
namely (mainly) a category C satisfying certain requirements, which
can be met in a vast variety of ways, presumably. The construction
of coherators is achieved in terms of universal algebra, which seems
here the indispensable Ariadne’s thread not to get lost in overwhelming
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messiness. The natural question which arises here (and which do not
feel though like pursuing) is to give in terms of universal algebra some
kind of characterization, among all algebraic structures, of those which
give rise in some specified way (including the known cases) to a category
of models say for usual homotopy theory.

17 When referring (p. 5) to the notion of a stack as a unifying concept The Artin-Mazur cohomological cri-
terion for weak equivalence.for homotopical algebra and non-commutative cohomological algebra,

I forgot to mention one significant observation of Artin-Mazur along
those lines (messy unification), namely that (for ordinary homotopy
types) weak equivalences (namely maps inducing isomorphisms for all
homotopy groups) can be characterized as being those which induce
isomorphisms on cohomology groups of the spaces considered not only
for constant coefficients, but also for arbitrary twisted coefficients on
the target space, including also the non-commutative H0 and H1 for
twisted (non-commutative) group coefficients. This is indeed the basic
technical result enabling them, from known results on étale cohomology
of schemes (including non-commutative H1’s) to deduce corresponding
information on homotopy types. Maybe however that the observation
has acted rather as a dissuasion for developing higher non-commutative
cohomological algebra, as it seemingly says that the non-commutative
H1, plus the commutative Hi ’s, was all that was needed to recover
stringent information about homotopy types. In other words, there
wasn’t too little in Giraud’s book, but rather, too much!

28.2. [p. 10]

18 I still have to correct a number of “étourderies” of (L). The most persis- Corrections and contents to letter.
Bénabou’s lonely approach.tent one, ever since page 8 of that letter, is about fiber products in the

coherator C∞, or, equivalently, amalgamated sum in the dual category
B∞. The “correction” I added in the last PS (p. 12) is still incorrect,
namely it is not true even in the subcategory B0 of B that arbitrary amal-
gamated sums exist. I was mislead by the interpretation of elements
of B0 in terms of (contractible) spaces, obtained inductively by gluing
together discs Dn (n ∈ N) via subdiscs, corresponding to the cellular
subdivisions of the discs Dn considered p. 7. I was implicitly thinking of
amalgamated sums of the type

K qL M ,

where L → K and M → K are monomorphisms, corresponding to the
geometric vision of embeddings – in which case the usual amalgamated
sum in the category of topological spaces is indeed contractible, which
was enough to make me happy. But I overlooked the existence of
morphisms inB0 which are visibly no monomorphisms, such as KqL K →
K the codiagonal map, when L→ K is a strict inclusion of discs. In any
case, I will have to come back upon the description of the categories
B0 and its dual C0 and upon the definition of coherators, after the
heuristic introduction (L). It will be time then too to correct the mistaken
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description of Cn+1 in terms of Cn, which I propose on p. 11’, yielding
probably much too big a subcategory of C∞ – the correct definition
should make explicit use of the total set A of “new” arrows, by which
C∞ is described in terms of universal algebra via C0. Another étourdie
the day before, p. 7’, is the statement that in a standard amalgamated
sum, any intersection of two maximal subcells is a subcell – which is
seen to be false in the standard example. Drawing of two hemispheres intersecting in

a sphere.Of lesser import is the misstatement on p. 2’, stating that the associa-
tivity relation for the operation ∗` should by replaced by a homotopy
arrow (λ ∗ µ) ∗ ν→ λ ∗ (µ ∗ ν). This is OK for ` = 1 (primary compo-
sition), but already for ` = 2 does not make sense as stated, because
[highlighted, maybe: because the two sides do not have the same source
and target?]. Here the statement should be replaced by one making
sense, with a homotopy “making commutative” a certain square, and
accordingly for cubes, etc. for higher order compositions λ ∗` µ, to give
reasonable meaning to associativity. Anyhow, such painstaking explicita-
tions of particular coherence properties (rather, coherence homotopies)
is kind of ruled out by the sweeping axiomatic description of the kind
of structure species we want for a “stack”, at least, I guess, in a large [p. 11]
part of the development of the theory of Gr-stacks. A systematic study
of particular sets of homotopies is closely connected of course to an
investigation into irredundancy conditions which can be figured out for
a coherator C. This is indeed an interesting topic, but I decided not to
get involved in this, unless I am really forced to!

The basic notion which has been peeling out in the reflection (L) is of
course the notion of a coherator. Concerning terminology, it occurred to
me that the dual category B∞ to C∞ is more suggestive in some cases,
for instance because of the topological interpretation attached to its
objects, and (more technically) because of formal analogy of the role of
this category, for developing homotopical algebra, with the category of
the standard (ordered) simplices. Both mutually dual objects B∞, C∞
seem to me to merit a name, I suggest to call them respectively left and
right coherators, or simply coherators of course when for a while it is
understood on which side of the mirror we are playing the game.

One last comment still before taking off for a heuristic voyage of
discovery of stacks! I just had a glance at Bénabou’s exposé in 1967 of

[Bénabou (1967)]what he calls “bicategories” (Springer Lecture Notes no
¯ 47, p. 1–77).

These are none else, it appears, than non-associative 2-categories, namely
2-stacks in the terminology I am proposing (but not 2-Gr-stacks – namely
it is a particular case of a general notion of ∞-stack which has still to
be developed). The most interesting feature of this exposé, it seems to
me, is the systematic reference to topological intuition, notably of the
structure of various diagrams. His terminology, referring to elements of
F0, F1, F2 respectively as 0-cells, 1-cells and 2-cells, is quite suggestive
of an idea of topological realization of a 2-stack – it is not clear from
this exposé whether Bénabou has worked out this idea, nor whether he
has made a connection with Quillen’s ideas on axiomatics of homotopy
theory, which appeared the same year in the same series. In any case,
in the last section of his exposé, he deals with his bicategories formally
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as with topological spaces, much in the same spirit as the one I was
contemplating since around 1975, and which is now motivating the
present notes. While there is no mention of Bénabou’s ideas in my letters
to Larry Breen, it is quite possible that on the unconscious level, the little
I had heard of his approach on one or two casual occasions, had entered
into reaction with my own intuitions, coming mainly from geometry
and cohomological algebra, and finally resulted in the program outlined
in those letters.

19 I would like now to write down a provision itinerary of the voyage Beginning of a provisional itinerary
(through stacks).

[p. 12]

ahead – namely to make a list of those main features of a theory of
stacks which are in my mind these days. I will write them down in the
order in which they occur to me – which will be no obligation upon me
to follow this order, when coming back on those features separately to
elaborate somewhat on them. This I expect to do, mainly as a way to
check whether the main notions and intuitions introduced are sound
indeed, and otherwise, to see how to correct them.

1o
¯) Definition of the categories B0 and its dual C0, and formal defini-

tion of [?]. This definition will still be a provisional one, and will
presumably have to be adjusted somewhat to allow for the various
structures we are looking for in the corresponding category of
Gr-stacks.

2o
¯) Relation between the category of Gr-stacks and the category of

topological spaces, via two adjoint functors, the “topological re-
alization functor” F∗ 7→ |F∗|, and the “singular stack functor”
X 7→ F∗(X ). The situation should be formally analogous to the
corresponding situation for semi-simplicial sets versus topological
spaces, the role of the category S∗ of standard ordered simplices
being taken by the left coherator B we are working with. The
main technical difference here is that the category of Gr-stacks is
not just the category of presheaves on B, but the full subcategory
defined by the requirement that the presheaves considered should
transform “standard” amalgamated sums into fibered products.
As a matter of fact, the topological realization functor F∗ 7→ |F∗|
could be defined in a standard way on the whole of Bˆ, in terms
of any functor

(*) B 7→ (Spaces)

(by the requirement that the extension of this functor to Bˆ com-
mutes with arbitrary direct limits). A second difference with the
simplicial situation lies in the fact that the only really compelling
choice for the functor (*) is it’s restriction to B0, in terms of the
cells Dn and the standard “half-hemisphere maps” between these
(L, p. 6–7). The extension of this functor to B is always possible,
due to the inductive construction of B and to the interpretation of
elements of B0 as contractible spaces, via the functor (*)0; but it
depends on a bunch of arbitrary choices. To give precise meaning
to the intuition that these choices don’t really make a difference,
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and that the choice of coherator we are starting with doesn’t make
much of a difference either, will need some elaboration on the
notion of equivalences between Gr-stacks, which will have to be [p. 13]
developed at a later stage.

The idea just comes to my mind whether the exactness condition
implying standard amalgamated sums, defining the subcategory of stacks
within Bˆ, cannot be interpreted in terms of some more or less obvious
topology on B turning B into a site, as the subcategory of corresponding
sheaves. This would mean that the category (Gr-stacks) is in fact a topos,
with the host of categorical information and topological intuition that
goes with such a situation. In this connection, it is timely to recall that
the related categories (Cat) of “all” categories, and (Groupoids) of “all”
groupoids, are definitely not topoi (if my recollection is correct – it isn’t
immediately clear to me why they are not). This seems to suggest that,
granting that (Gr-stacks) is indeed a topos, that this would be a rather
special feature of the structure species of infinite order we are working
with (as one ward so to say, among a heap of others, for conceptual
sophistication!), in contrast to the categories (Gr-n-stacks) with finite
n, which presumably are not topoi. (For a definition of Gr-n-stacks in
terms of Gr-stacks, namely Gr-∞-stacks, see below.)

A related question is whether the category (Gr-stacks) is a model
category for the usual homotopy category, the pair of adjoint functors
considered before satisfying moreover the conditions of Quillen’s com-
parison theorem. The obvious idea that comes to mind here, in order to
define the model structure on (Gr-stacks), is to take as “weak equiva-
lences” the maps which are transformed into weak equivalences by the
topological realization functor (which should be readily expressible in
algebraic terms), for cofibrations the monomorphisms, and defining fi-
brations by the Serre-Quillen lifting property with respect to cofibrations
which are weak equivalences (with the expectation that we even get a
“closed model category” in the sense of Quillen). Here it doesn’t look too
unreasonable to expect the same constructions to work in each of the
categories (Gr-n-stacks), n≥ 1, as well as in the categories (n-stacks)
without Gr, which are still to be defined though.

Coming back upon the question of a suitable topology on B, the idea
that comes to mind immediately of course is to define covering families
of an object K of B, i.e., of B0, in terms of the components which occur
in the description of K as iterated amalgamated sum of cells Dn. A quick
glance (too quick a glance?) seems to show this is indeed a topology,
and that the sheaves for this topology are what we expect.
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5.3. [p. 14]

20 I had barely stopped writing last Tuesday, when it became clear that Are model categories sites?
the “quick glance” had been too quick indeed. As a matter of fact, the
“topology” I was contemplating on B in terms of covering families does
not satisfy the conditions for a “site” – that something was fishy first
occurred to me through the heuristic consequence, that the functors
“n-th component”

F∗ 7→ Fn

from stacks to sets are fiber functors, or equivalently, that direct limits
in the category of Gr-stacks can be computed componentwise – now
this is definitely false, for much the same reasons why it is false already
in the category (Cat) of categories. However, it occurred to me that
the latter category (Cat), although not a topos (for instance because,
according to Giraud’s paper on descent theory of 1965, the implications

[Giraud 1964]for epimorphisms

effective

effective universal just epi

universal

are strict), there is a very natural topology, turning it into a site, namely
the one where a family of morphisms namely functors

Ai → A

is covering if and only if the corresponding family in (Ss sets)

Nerve(Ai)→ Nerve(A)

is covering, i.e., iff every sequence of composable arrows in A

a0→ a1→ a2→ a3→ ·· · → an

can be lifted to one among the Ai ’s. As a matter of fact, this condition
(where it suffices to take n = 2, visibly) is equivalent (according to
Giraud) to the condition that the family be “universally effectively epi-
morphic”, i.e., covering with respect to the “canonical topology” of (Cat). 5.3. This is definitely false, see §24 below.

This suggests a third ward for associating to a category A a topology-like
structure, namely the topos of all sheaves over (Cat)/A, the site of all
categories over A, endowed with the topology induced by the canonical
topology of (Cat) (which is indeed the canonical topology of (Cat)/A). It
should be an easy exercise in terms of nerves to check that the homotopy
type (a priori, a pro-homotopy type) associated to this site is just “the”
homotopy type of A, defined either as the homotopy type of Nerve(A),
or as the (pro)homotopy type of the topos Aˆ of all presheaves over A.
This of course parallels the similar familiar fact in the category (Ss sets)
of all semisimplicial sets, namely that for such a ss set K , the homotopy
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type of K can be viewed also as the homotopy type of the induced topos
(Ss sets)/K of all ss sets over K . The difference in the two cases is that in
the second case the category (Ss sets) (and hence any induced category) [p. 15]
is already a topos, namely equivalent to the category of sheaves on the
same for the canonical topology, whereas on the category (Cat) this is
not so.

These reflections suggest that in most if not all categories of mod-
els encountered for describing usual homotopy types, there is a natu-
ral structure of a site on the model category M (presumably† the one †5.3. this assumption is false actually.

corresponding to the canonical topology), with the property that the
homotopy type of any object X in M is canonically isomorphic to the
(pro)homotopy type of the induced site M/X , or what amounts to the
same of the corresponding topos

(M/X )
∼ = M∼/X .

I would expect definitely this to be the case for each of the categories
(Gr-stacks), (n-Gr-stacks) (although this is not really a model category
in the sense of Quillen, as it gives rise only to n-truncated homotopy
types . . . ), (stacks) and (n-stacks), corresponding to an arbitrary choice
of coherator, defining the notion of a (Gr-stack), or of a stack (for the
latter and relations between the two, see below).

21 I would like to digress a little more, to emphasize still about the vast Further glimpse upon the “bunch” of
possible model categories and a re-
lation between n-complexes and n-
stacks.

variety of algebraic structures giving rise to model categories for the
usual homotopy category, or at any rate suitable for expressing more or
less arbitrary homotopy types. Apart from stacks, where everything is
still heuristics for the time being, we have noticed so far three examples
of such structures, namely [cubical? and semisimplicial complexes? and
topological spaces?]. There are a few familiar variants of the two former,
such as the “simplicial complexes” (in contract to semi-simplicial ones),
namely presheaves on the category of non-empty finite sets, which
can be interpreted as ss complexes enriched with symmetry operations
on each component – and there is the corresponding variant in the
cubical case. It would be rather surprising that there were not just as
good model categories, as the more habitual ones – all the more as the
singular complex (simplicial or cubical) is naturally endowed with this
extra structure, which one generally chooses to forget. More interesting
variants are the n-multicomplexes (simplicial or cubical, with or without
symmetries), defined by contravariant functors to sets in n arguments
rather than in just one, where n ≥ 1. These complexes are familiar
mainly, it seems, because of their connections with product spaces and
the Künneth-Eilenberg-Zilber type relations. It is generally understood
that to such a multicomplex is associated the corresponding “diagonal” [p. 16]
complex, which is just a usual complex and adequately describes the
“homotopy type” of the multicomplex. So why bother with relatively
messy kinds of models, when just usual complexes suffice! Here however
the point is not to get the handiest possible model categories (whatever
our criteria of “handyness”), but rather to get an idea of the variety of
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algebraic structures suitable for defining homotopy types, and perhaps
to come to a clue of what is common to all these. Moreover, I feel
the relation between ordinary complexes and n-multicomplexes, is of
much the same nature as the relation between just ordinary categories,
perfectly sufficient for describing homotopy types, and n-categories or n-
stacks. This reminds of course of Quillen’s idea of [?], in much the same
way as categories can be defined (via the Nerve functor) in terms of
usual ss complexes. I hit again upon multisimplices (without symmetry),
when trying to reduce to a minimum the category B0 of what should be
called “standard” amalgamated sums of the cells Dn, where my tendency
initially (L, p. 7) had rather been to be as generous as possible, in order
to be as stringent as imaginable for the completion condition (A) of
(L, p. 8). Now it turns out that the coherence relations which seem to
have been written down so far (and the like of which presumably will
suffice to imply full completeness of coherence relations, in the sense
of (A)) make use only of very restricted types of such amalgamated
sums, expressible precisely in terms of multisimplices. This I check for
instance on the full list of data and axioms for Bénabou’s “bicategories”
namely 2-stacks, in his 1967 Midwest Category Seminar exposé (already
referred to). I’ll have to come back upon this point with some care,
which gives also a pretty natural way for getting Quillen’s functor from
n-stacks to n-ss complexes.

22 These examples of possible models for homotopy types can be viewed Oriented sets as models for homotopy
types.as generalizations of usual complexes, or of usual categories; I would

like to give a few others which go in the opposite direction – they
may be viewed as particular cases of categories. One is the (pre)order
structure, which may be viewed as a category structure when the map
Fl → Ob ×Ob defined by the source and target maps is injective. Such
category is equivalent (and hence homotopic) to the category associated
with the corresponding ordered set (when x ≥ y and y ≥ x imply
x = y). Ordered sets are more familiar I guess as model objects for
describing combinatorially a topological space, in terms of a “cellular
subdivision” by compact subsets or “cells” (“strata” would be a more [p. 17]
appropriate term), which actually need not be topological cells in the
strict sense, but rather conical (and hence contractible) spaces, each
being homeomorphic to the cone over the union of all strictly smaller
strata (this union is compact). The ordered set associated to such a
(conically) stratified space X is just the set of strata, with the inclusion
relation, and it can be shown that there is a perfect dictionary between
the topological objects (at least in the case of finite or locally finite
stratifications), and the corresponding (finite or locally finite) ordered
sets, via a “topological realization functor”

X 7→ |X |

from ordered sets to (conically stratified) topological spaces. As a matter
of fact, when K is finite, K is endowed with a canonical triangulation (the
so-called barycentric subdivision), the combinatorial model of which
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(of “maquette”) is as follows: the vertices are in one-to-one correspon-
dence with the elements of K (they correspond to the vertices of the
corresponding cones), and the combinatorial simplices are the “flags”,
or subsets of K which are totally ordered for the induced order. This is
still OK when K is only locally finite (restricting of course to subsets of
K which are finite, when describing simplices), but in any case we can
define (via infinite direct limits in the category (Spaces)of all topological
spaces) the geometric realization of K , together with an interpretation
of K as the ordered set of strata of |K |. As a matter of fact, we get a
canonical isomorphism (nearly tautological)

|K | ' |Nerve(K)|

where in the second member, we have written shortly K for the category
defined by K. I did not reflect whether it was reasonable to expect
that the categories (Preord) and (Ord) of preordered and ordered sets
are model categories, or even closed model categories, in Quillen’s
precise sense – but it is clear though that using ordered sets we’ll get
practically any homotopy type, in any case any homotopy type which
can be described in terms of locally finite triangulations. However it
should be noted that the inclusion functors into (Cat) or (Ss sets)

(Preord) ,→ (Ord) ,→ (Cat) ,→ (Ss sets),

while giving the correct results on homotopy types, do not satisfy
Quillen’s general conditions on pairs of adjoint functors between model
categories – namely the adjoint functor say

(Cat)→ (Preord),

associating to a category A the set Ob A with the obvious relation, does
not commute to formation of homotopy types, as we see in the trivial
case when Ob A is reduced to one point . . .

There is another amusing interpretation of the homotopy type associ- [p. 18]
ated to any preordered set K , via the topological space whose underlying
set is K itself, and where the closed sets are the subsets J of K such that
x ∈ J , y ⊆ x implies y ∈ J . This is a highly non-separated topology
τ (except when the preorder relation is the discrete one), where an
arbitrary union of closed subsets is again closed. I doubt its singular
homotopy type to make much sense, however its homotopy type as
a topos does, and (possibly under mild local finiteness restrictions) it
should be the same as the homotopy type of K just envisioned. Thus,
a sheaf on the topological space K can be interpreted via its fibers as
being just a covariant functor

K → (Sets)

(NB the open sets of K are just the closed sets of Kop, namely for the op-
posite order relation, and thus every x ∈ K has a smallest neighborhood,
namely the set K≥x of all y ∈ K such that y ≥ x), or what amounts to
the same, a sheaf on the topos (Kop)ˆ defined by the opposite order.
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Hence the derived functors of the “sections” functor, when working with
abelian sheaves on (K ,τ), i.e., the cohomology of the topological space
(K ,τ), can be interpreted in terms of the topos associated to Kop. This
suggests that the definition I gave of the topology of K was awkward
and maybe it is indeed (although it is the more natural one in terms of
incidence relations between open strata of |K |), and that we should have
called “open” the sets I called “closed” and vice-versa, or equivalently,
replace K by Kop in the definition I gave of a topology on the set K . But
as far as homotopy types are concerned, it doesn’t make a difference,
namely the homotopy types associated to K and Kop are canonically
isomorphic. This can be seen most simply on the topological realizations,
via a homeomorphism (not only a homotopism)

|K | ' |Kop|,

coming from the fact that the maquettes (by which I mean the combina-
torial model for a triangulation, which Cartan time ago called “schéma
simplicial” . . . ) of the two spaces are canonically isomorphic, because
the “flags” of K are Kop are the same. A similar argument due to Quillen
using the nerves shows that for any category K (not necessarily ordered),
K and Kop are homotopic, although Kˆ and (Kop)ˆ are definitely not
equivalent, i.e., not “homeomorphic”.

To come back to the decreasing cascade of algebraic structure suitable
for describing homotopy types, we could go down one more step still, to
the category of “maquettes” (Maq), namely sets S together with a family
K of finite subsets (the simplices of the set of vertices S), such that one- [p. 19]
point subsets are simplices and a subset of a simplex is a simplex. This
category, via the functor (S, K) 7→ K , is equivalent to the full subcategory
of (Ord), whose objects are those ordered sets K, such that for every
x ∈ K, the set K≤x be isomorphic to the ordered set of non-empty
subsets of some finite set (or “simplex”). Here the question whether this
category is a model category in the technical sense doesn’t really arise,
because this category doesn’t even admit finite products – rien à faire! 5.3. indeed, the notion of a maquette is not

an algebraic structure species!

23 It may be about time to get back to stacks, still I can’t help going on
Getting a basic functor M → (Hot)
from a site structure M (altering be-
ginning of a systematic reflection).

pondering about algebraic structures as models for homotopy types. If
we have any algebraic structure species, giving rise to a category M of
set-theoretic realizations, the basic question here doesn’t seem so much
whether M is a model category for a suitable choice of the three sets of
arrows (fibrations, cofibrations, weak equivalences), but rather how to
define a natural functor

(*) M → (Hot),

where (Hot) is the category of usual homotopy types, and see whether
via this functor (Hot) can be interpreted as a category of fractions (or
“localization”) of M – namely, of course, by the operation of making
invertible those arrows in M which are transformed into isomorphisms
in (Hot). In any case, if we have such a natural functor, the natural
thing to do is to call those arrows “weak equivalences”. If we want M
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to be a category of models, various examples suggest that the natural
thing again is to take as cofibrations the monomorphisms, and then
(expecting that the model categories we are going to meet will be
closed model categories) to define fibrations by the Serre-Quillen lifting
property with respect to cofibrations (=monomorphisms) which are
weak equivalences. This being done, it becomes meaningful to ask if
indeed M is a category of models.

Now the reflections of the beginning of today’s notes (p. 14–15)
suggest a rather natural way for describing a functor (*), which makes
sense in fact, in principle, for any category M , namely: endow M with
its canonical topology (unless a still more natural one appears at hand –
I am not sure there is any better one in the present context), and assume 5.3. the canonical topology is not always

suitable, see §24 below.that for every X ∈ Ob M , the pro-homotopy type of the induced site
M/X is essentially constant, i.e., can be identified with an object in (Hot)
itself. We then get the functor (*) in an obvious way. It then becomes
meaningful to ask whether this functor is a localization functor.

When M is defined in terms of an algebraic structure species, it [p. 20]
admits both types of limits, without finiteness requirement – and we
certainly would expect indeed at least existence of finite and infinite
direct sums in M , if objects of M were to describe arbitrary homotopy
types. However, in view of the special exactness properties of (Hot),
which are by no means autodual, we will expect moreover direct sums
in M to be “universal and disjoint”, in Giraud’s sense. This condition,
which characterizes to a certain extent categories which at least mildly
resemble or parallel categories such as (Sets), (Spaces) and similar
categories, whose objects more or less express “shapes” – this condition
at once rules out the majority of the most common algebraic structures,
such as rings, groups, modules over a ring or anything which yields for M
an abelian category, etc. If we describe an algebraic structure species in
terms of its universal realization in a category stable under finite inverse
limits, then such a structure species can be viewed as being defined by
such a category C, and its realizations in any other such C as the left-
exact functors C→ C (the universal realization of the structure within
C corresponding to the identity functor C→ C). In terms of the dual
category B, associating to every element in ObB= ObC the covariant
functor C→ (Sets) it represents, we get a fully-faithful embedding

B ,→ M ,

by which B can be interpreted as the category of the (set-theoretic)
realizations of the given structure which are of “finite presentation” in a
suitable sense (in terms of a given family of generators of B namely co-
generators of C, considered as corresponding to the choice of “base-sets”
for the given structure species – such choice however being considered
as a convenient way merely to describe the species in concrete terms. . . ).
If I remember correctly, M can be deduced from B, up to equivalence, as
being merely the category of Ind-objects of B, i.e., the inclusion functor
above yields an equivalence of categories

Ind(B) ≈−→ M ,



§24 A bunch of topologies on (Cat). 38

which implies, I guess, that the exactness properties of M mainly reflect
those of B. Thus I would expect the condition we want on direct sums
in M to correspond to the same condition for finite direct sums in
B, not more not less. Thus the algebraic structure species satisfying
this condition should correspond exactly to small categories B, stable
under finite direct limits, and such that finite sums in B are disjoint and
universal. This condition is presumably necessary, if we want the functor
(*) from M to (Hot) to be defined and to be a localization functor – a
condition which it would be nice to understand directly in terms of B, [p. 21]
and (presumably) in terms of the canonical topology of B, which should
give rise to a localization functor

B→ (Hot)ft,

where the subscript ft means “finite type” – granting that the notion
of homotopy types of finite type (presumably the same as homotopy
types of finite triangulations, or of finite CW space) is a well-defined
notion. As usual, it is in B, not in C, that geometrical constructions take
place which make sense for topological intuition. More specifically, it
seems that in the cases met so far, there are indeed privileged base-sets
for the structure species considered (such as the “components” or a
semisimplicial or cubical complex, or of a stack, etc.), indexed by the
natural integers or n-tuples of such integers, and which “correspond”
to topological cells of various dimensions. Moreover, some of the basic
structural monomorphic maps between these objects of B define cellular
decompositions of the topological spheres building these topological
cells. These objects and “boundary maps” between them define a (non-
full, in general) subcategory of B, say B∞, which looks like the core of
the category B, from which the topological significance of B is springing.
It is in terms ofB∞ that the “correspondence” (vaguely referred to above)
with topological cells and spheres takes a precise meaning. Namely,
associating to any object of B∞ the ordered set of its subobjects (within
B∞ of course, not B), the (stratified) topological realization of this
ordered set is a cell, the family of subcells of smaller dimension (namely
different from the given one) is a cellular subdivision of the sphere
bounding this cell.

7.3.

24 Yesterday there occurred to me a big “étourderie” again of the day before, A bunch of topologies on (Cat).
in connection with a reflection on a suitable “natural” site structure
on the category (Cat) – namely when asserting that for a family of
morphisms, i.e., functors in (Cat)

(*) Ai → A,

in order for the corresponding family to be “covering” namely epimor-
phic in the category (a topos, as a matter of fact) (Ss sets), namely for
the corresponding families of mappings of sets

(**) Fln(Ai)→ Fln(A)
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to be epimorphic, it was sufficient that his condition be satisfied for
n = 2 (which, according to Giraud, just means that the family (*) is
covering for the canonical topology of (Cat)). This is obviously false –
morally, it would mean that an n-simplex is “covered” in a reasonable
sense by its sub-2-simplices, which is pretty absurd. To give specific [p. 22]
positive statements along these lines, let’s for any N ∈ N, denote by TN
the topology on (Cat) for which a family (*) is covering iff the families
(**) are for n≤ N – which means also that the corresponding family of
N -truncated nerves

Nerve(Ai)[N]→ Nerve(A)[N]

is epimorphic. For N = 1, this means that the family is “universally epi-
morphic”, for N = 2, that it is “universally effectively epimorphic”, i.e.,
covering for the canonical topology of (Cat) (Giraud, loc. cit. page 28). It
turns out that this decreasing sequence of topologies on (Cat) is strictly
decreasing – as a matter of fact, denoting by ∆[N] the category of
standard, ordered simplices of dimension ≤ N , and using the inclusions

∆[N] ,→ (Cat) ,→∆[N]ˆ

(for N ≥ 2 say), an immediate application of the “comparison lemma”
for sites shows that we have an equivalence

((Cat), TN )
∼ '∆[N]ˆ,

and hence, for any object A in (Cat), namely a category A, we get an
equivalence

((Cat), TN )
∼
/A ' (∆[N]/A)ˆ,

and hence the homotopy type of the first hand member is not described
by and equivalent to the homotopy type of the whole Nerve(A) object, but
rather by its N -skeleton, which has the same homotopy and cohomology
invariant in dimension≤ N , but by no means for higher dimensions. This
shows that among the topologies TN , none is suitable for recovering the
homotopy type of objects of (Cat) in the way contemplated two days ago
(page 15); the one topology which is suitable is the one which may be
denoted by T∞, and which is the one indeed which I first contemplated
(page 14), before the mistaken idea occurred to me that it was the same
as the canonical topology.

A very similar mistake occurred earlier, when I surmised that the
left adjoint functor N ′ to the inclusion or Nerve functor N from (Cat)
to (Ss sets) = ˆ had the property that for any object K in (Ss sets),
K and N ′(K) had the same homotopy type. Looking up yesterday the
description in Gabriel-Zisman of this functor, this recalled to my mind
that it factors (via the natural restriction functor) through the category
∆[2]ˆ, hence any morphism K → K ′ inducing an isomorphism on the 2-
skeletons (which by no means implies that it is a homotopy equivalence)
induces an isomorphism N ′(K) ∼−→ N ′(K ′), and a fortiori a homotopy
equivalence. This shows that, even if it should be true that (Cat) is [p. 23]
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a model category in Quillen’s sense, the situation with the inclusion
functor

N : (Cat)→ (Ss sets)

and the left adjoint functor N ′ is by no means the one of Quillen’s
comparison theorem, where the two functors play mutually dual roles
and both induce equivalences on the corresponding localized homotopi-
cal categories. Here only N , not N ′, induces such equivalence. This
is analogous to the situation, already noted before, of the inclusion
functors

(Preord) ,→ (Cat) or (Ord) ,→ (Cat),

which by localization induce equivalences on the associate homotopy
categories, but the left adjoint functors do not share this property.

The topology T∞ just considered on (Cat) as a “suitable” topology for
describing homotopy types of objects of (Cat), was of course directly in-
spired by the semi-simplicial approach to homotopy types, via simplicial
complexes, namely via the two associated inclusion functors

,→ (Cat) ,→ ˆ,

the second functor associating to every category A the “complex” of its
“simplicial diagrams” a0→ a1→ ·· · → an. If we had been working with
cubical complexes rather than ss ones for describing homotopy types,
this would give rise similarly to two functors

� ,→ (Cat) ,→ �ˆ,

where � is the category of “standard cubes” and face and degeneracy
maps between them, and where the second inclusion associates to
every category A the cubical complex of its “cubical diagrams”, namely
commutative diagrams in A modelled after the diagram types �n[1],
the 1-skeleton of the standard n-cubes �n, with suitable orientations
on its edges (indicative of the direction of corresponding arrows in A).
The natural idea would be to endow (Cat) with the topology, T ′∞ say,
induced by �ˆ, namely call a family (*) covering iff for every n ∈ N, the
corresponding family of maps of sets

Cubn(Ai)→ Cubn(A)

is epimorphic. This topology appears to be coarser than T∞ (i.e., there
are fewer covering families), and the comparison lemma gives now the
equivalence

((Cat), T ′∞)∼ ' �ˆ,

which shows that definitely the topology is strictly coarser than T∞, as
it gives rise to a non-equivalent topos, �ˆ instead of ˆ.

These reflections convince me 1) there are indeed topologies on
(Cat), suitable for describing the natural homotopy types of objects of
(Cat) namely of categories, and 2) that there is definitely no privileged [p. 24]
choice for such a topology. We just described two such, but using
multicomplexes (cubical or semisimplicial) rather than simple complexes
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should give us infinitely many others just as suitable, and I suspect now
that there must be a big lot more of them still!

25 A fortiori, coming back to the intriguing question of characterizing the A tentative equivalence relation for
topologists.algebraic structure species suitable for describing homotopy types in the

usual homotopy category (Hot), and for recovering (Hot) as a category
of fractions of the category M of all set-theoretic realizations of this
species, it becomes clear now that we cannot hope reasonably for a
“natural” topology on M , distinguished among all others, giving rise to
the wished-for functor

(*) M → (Hot)

in the way contemplated earlier (page 19 ff.). Here it occurs to me that
anyhow, if concerned mainly with defining the functor (*), we should
consider that two topologies T, T ′ on M such that T ≥ T ′ and hence
giving rise to a morphism of topoi

(**) M∼T → M∼T ′

(the direct image functor associated to this morphism being the natural
inclusion functor, when considering T -sheaves as particular cases of T ′-
sheaves) are “equivalent” – maybe we should rather say “Hot-equivalent”
– if for any object A in M , the induced morphism

(M∼T )/A→ (M
∼
T ′)/A

is a homotopy equivalence. This can be viewed as an intrinsic property
of the morphism of topoi (**), of a type rather familiar I guess to people
used to the dialectics of étale cohomology, where a very similar notion
was met and given the name of a “globally acyclic morphism”. The
suitable name here would be “globally aspheric morphism” which is a
reinforcement of the former, in the sense of being expressible in terms of
isomorphism relations in cohomology with arbitrary coefficient sheaves
on the base, including non-commutative coefficient sheaves. The relation For a proper map of paracompact spaces,

this condition just means that the fibers are
“aspheric”, namely “contractible” (in Čech’
sense)

just introduced between two topologies T, T ′ on a category M makes
sense for any M (irrespective of the particular way M was introduced
here), it is not yet an equivalence relation though – so why not introduce
the equivalence relation it generates, and call this “Hot-equivalence” –
unless we find a coarser, and cleverer notion of equivalence, deserving
this name. The point which, one feels now, should be developed, is that
this notion of equivalence should be the coarsest we can find out, and
which still implies that to any Hot-equivalence class of topologies on
M there should be canonically associated a functor (*), which should
essentially be “the” common value of all the similar functors, associated
to the topologies T within this class. Maybe even it could be shown that [p. 25]
this equivalence class can be recovered in terms of the corresponding
functor (*), in the same way as (according to Giraud) a “topology” on
M can be recovered from the associated subtopos of Mˆ, namely the
associated category of sheaves on M (in such a way that the set of
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“topologies” on M can be identified with the set of “closed subtopoi”
of Mˆ). The very best one could possibly hope for along these lines
would be a one-to-one correspondence between isomorphism classes
of functors (*) (satisfying certain properties?), and the so-called “Hot-
equivalence classes” of topologies on M .

Whether or not this tentative hope is excessive, when it comes to
the (still somewhat vague) question of understanding “which algebraic
structure species are suitable for expressing homotopy types”, it might
not be excessive though to expect that in all such cases, M should be
equipped with just one “natural” Hot-equivalence class of topologies
on M , which moreover (one hopes, or wonders) should be expressible
directly in terms of the intrinsic structure of M , or, what amounts to the
same, in terms of the full subcategoryB of objects of “finite presentation”,
giving rise to M via the equivalence

M ' Ind(B).

As we just saw in the case M = (Cat), the so-called “canonical topology”
on M need not be within the natural Hot-equivalence class – and I am
at a loss for the moment to give a plausible intrinsic characterization of
the latter, in terms of the category M = (Cat).

26 What comes to mind though is that the categories such as , and their The dawn of test categories and test
functors. . .analogons (corresponding to multicomplexes rather than monocom-

plexes, for instance) can be viewed as (generally not full) subcategories
of M (in fact, even of the smaller category (Ord) of all ordered sets).
The topologies we found on M were in fact associated in an evident way
to the choice of such subcategories. As was already felt by the end of
the reflection two days ago (p. 21), these subcategories (denoted there
by B∞) have rather special features – they are associated to simulta-
neous cellular decompositions of spheres of all dimensions – and it is
this feature, presumably, that makes the associated “trivial” algebraic
structure species, giving rise to the category of set-theoretic realizations
B∞̂, eligible for “describing homotopy types”. In the typical example
M = (Cat) though, contrarily to what was suggested on page 21 (when
thinking mainly of the rather special although important case when
M is expressible as a category Bˆ, for some category B such as , [p. 26]
etc.), there is no really privileged choice of such subcategory B∞ – we
found indeed a big bunch of such, the ones just as good as the others.
The point of course is that the corresponding topologies on M , namely
induced from the canonical topology on B∞̂ by the canonical functor

M → B∞̂,

are Hot-equivalent for some reason or other, which should be under-
stood. The plausible fact that emerges here, is that the “natural” Hot-
equivalence classes of topologies on M is associated, in the way just
described, to a class (presumably an equivalence class in a suitable set
for suitable equivalence relation. . . ) of subcategories B∞ in M . The
question of giving an intrinsic description of the former, is apparently
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reduced to the (possibly more concrete) one, of giving an intrinsic de-
scription of a bunch of subcategories B = B∞ of M . This description,
one feels, should both a) insist on intrinsic properties of B, independent
of M , namely of the structure species one is working with, and b) be
concerned with the particular way in which B is embedded in M , which
should by no means be an arbitrary one.

The properties a) should be, I guess, no more no less than those which
express that the “trivial” algebraic structure species defined by B, giving
a category of set-theoretic realizations MB = Bˆ, should be “suitable
for describing homotopy types”. The examples at hand so far suggest
that in this case, the canonical topology on the topos MB is within the
natural Hot-equivalence class, which gives a meaning to the functor

MB = Bˆ→ (Hot),

indeed it associates to any a ∈ Ob Bˆ the homotopy type of the induced
category B/a of all objects of B “over a”. Thus a first condition on B is that because B

/̂a ' (B/a)ˆ.

this functor should be a “localization functor”, identifying (Hot) with a
category of fractions of MB = Bˆ. This does look indeed as an extremely
stringent condition on B, and I wonder if the features we noticed in the
special cases dealt with so far, connected with cellular decompositions
of spheres, have any more compulsive significance than just giving some
handy sufficient conditions (which deserve to be made explicit sooner
or later!) for “eligibility” of B for recovering (Hot). Beyond this, one
would of course like to have a better understanding of what it really
means, in terms of the internal structure of B, that the functor above
from Bˆ to (Hot) is a localization functor.

Once this internal condition on B is understood, step b) then would [p. 27]
amount to describing, in terms of an arbitrary “eligible” algebraic struc-
ture species expressed by the category M , of what we should mean by
“eligible functors”† †we will rather say “test functors”, see

below. . .B→ M ,

giving rise in the usual way to a functor

M → Bˆ.

In any case, the latter functor defines upon M an induced topology, T
say, and the comparison lemma tells us that if either B→ M or M → Bˆ
is fully faithful, then the topos associated to M is canonically equivalent
to Bˆ (using this comparison lemma for the functor which happens to
be fully faithful). From this follows that the functor (*) M∼ → (Hot)
defined by T is nothing but the compositum

M∼ '−→ Bˆ→ (Hot),

and hence a localization functor. In other words, when B is a category
satisfying the condition seen above,‡ then any functor B → M satis- ‡a “test category”, as we will say

fying one of the two fullness conditions above yields a corresponding
description of (Hot) as a localization of M∼. What is still lacking though
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is a grasp on when two such functors B → M , B′ → M define essen-
tially “the same” functor M → (Hot), or (more or less equivalently)
two (Hot)-equivalent topologies T, T ′ on M ; is it enough, for instance,
that they give rise to the same notion of “weak equivalences” (namely
morphisms in M which are transformed into an isomorphism of (Hot))?
And moreover, granting that this equivalence relation between certain
full subcategories (say) B of M is understood, how to define, in terms
of M , a “natural” equivalence class of such full subcategories, giving
rise to a canonical functor M → (Hot)?§ §Same question arises for Hot-equivalence

on topologies on M . . .Recalling that the algebraic structure considered can be described
in terms of an arbitrary small category B where arbitrary finite direct
limits exist (namely B is the full subcategory of M of objects of finite
presentation), it seems reasonably to assume that indeed

B→ B (a full embedding),

and the question transforms into describing a natural equivalence class
of such full subcategories, in (more or less) any small category B where
finite direct limits exist, and where moreover there exist such full sub-
categories B. Also, we may have to throw in some extra conditions on
B, such as the condition that direct sums be “disjoint” and “universal”
already contemplated before.

Maybe I was a little overenthusiastic, when observing for any full [p. 28]
embedding of a category B in M (let’s call the categories B giving rise to
a localization functor Bˆ→ (Hot) homotopy-test categories, or simply
test categories) we get a localization functor

M∼ = (M , TB)
∼→ (Hot),

where TB is the topology on M corresponding to the full subcategory
B. After all, there is a long way in between M itself and the category of
sheaves M∼ – and what we want is to get (Hot) as a localization of M
itself, not of M∼. It is not even clear, without some extra assumptions,
that the natural functor from M to M∼ is fully faithful, namely that
M can be identified with a full subcategory of the category M∼ we’ve
got to localize to get (Hot). We definitely would like this to be true, or
what amounts to the same, that the functor M → Bˆ defined by B→ M
should be fully faithful – which means also that the full subcategory B
of M is “generating by strict epimorphisms” namely that for every K
in M , there exists a strictly epimorphic family of morphisms bi → K,
with sources bi in B. This interpretation of full faithfulness of M → Bˆ
is OK when B→ M is fully faithful, a condition which I gradually put
into the fore without really compelling reason, except that in those
examples I have in mind and which are not connected with the theory
of stacks of various kinds, this condition is satisfied indeed. Apparently,
with this endless digression on algebraic models for homotopy types,
stacks (which I am supposed to be after, after all) are kind of fading
into the background! Maybe we should after all forget about the fully
faithfulness condition on either B→ M or M → Bˆ, and just insist that
the compositum

M → M∼→ Bˆ→ (Hot)
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(which can be described directly in terms of the topology TB on M
associated to the functor B → M) should be a localization functor. I
guess that for a given M or B, the mere fact that there should exist a
test category B and a functor B→ M , or B→ B, having this property
is already a very strong condition on the structure species considered,
namely on the category B which embodies this structure. It possibly
means that the corresponding functor

B→ (Hot)

factors through a functor

B→ (Hot)f.t. (f.t. means “finite type”)

which is itself a localization functor. It is not wholly impossible, after all,
that this condition on a functor B→ B (B a test category) is so stringent,
that all such functors (for variable B) must be already “equivalent”, [p. 29]
namely define Hot-equivalent topologies on B (or M , equivalently), and
hence define “the same” functor M → (Hot) or B→ (Hot)f.t..

27 All this is pretty much “thin air conjecturing” for the time being – quite Digression on “geometric realization”
functors.possibly the notion of a “test category” itself has to be considerably

adjusted, namely strengthened, as well as the notion of a “test functor”
B→ B or B→ M – some important features may have entirely escaped
my attention. The one idea though which may prove perhaps a valid
one, it that a suitable localization functor

(*) M → (Hot)

may be defined, using either various topologies on M (related by a
suitable “Hot-equivalence” relation), or various functors B → M or
B→ B of suitable “test categories” B, and how the two are related. I do
not wish to pursue much longer along these lines though, but rather put
now into the picture a third way still for getting a functor (*), namely
through some more or less natural functor

(**) M → (Spaces), K 7→ |K |,

called a “geometric (or topological) realization functor”. There is a
pretty compelling choice for such a functor, in the case of (semisim-
plicial or cubical) complexes or multicomplexes of various kinds, and
accordingly for the subcategories (Cat), (Preord), (Ord) or (Ss sets),
using geometric realization of semisimplicial complexes. In the case of
the considerably more sophisticated structure of Gr-stacks though (or
the relator[?] structure of stacks, which will be dealt with in much the
same way below), although there is a pretty natural choice for geometric
realization on the subcategory B∞ of M embodying the “primitive struc-
ture” (namely the structure of an ∞-graph, see below also); it has been
seen that the extension of this to a functor on the whole of M (via its
extension to the left coherator defining the structure species, which we
denoted by B at the beginning of these notes, but which is not quite the
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B envisioned here) is by no means unique, that it depends on a pretty
big bunch of rather arbitrary choices. This indeterminacy now appears
as quite in keeping with the general aspect of a (still somewhat hypo-
thetical) theory of algebraic homotopy models, gradually emerging from
darkness. It parallels the corresponding indeterminacy in the choice of
an “eligible” topology on M (call these topologies the test topologies),
or of a test functor B→ M . What I would like now to do, before coming
back to stacks, is to reflect a little still about the relations between such
choice of a “geometric realization functor”, and test topologies or test
functors relative to M .

8.3. [p. 30]

28 While writing down the notes yesterday, and this morning still while The “inspiring assumption”. Mod-
elizers.pondering a little more, there has been the ever increasing feeling that

I “was burning”, namely turning around something very close, very
simple-minded too surely, without quite getting hold of it yet. In such
a situation, it is next to impossible just to leave it at that and come to
the “ordre du jour” (namely stacks) – and even the “little reflection” I
was about to write down last night (but it was really too late then to go
on) will have to wait I guess, about the “geometric realization functors”,
as I feel it is getting me off rather, maybe just a little, from where it is
“burning”!

There was one question flaring up yesterday (p. 27) which I nearly
dismissed as kind of silly, namely whether two localization functors

(*) M → (Hot)

obtained in such and such a way were isomorphic (maybe even canoni-
cally so??) provided they defined the same notion of “weak equivalence”,
namely arrows transformed into isomorphisms by the localization func-
tors. Now this maybe isn’t so silly after all, in view of the following
Assumption: The category of equivalences of (Hot) with itself, and of
natural isomorphisms (possibly even any morphisms) between such, is
equivalent to the one point category.

This means 1) any equivalence (Hot) '−→ (Hot) is isomorphic to the
identity functor, and 2) any automorphism of the identity functor (pos-
sibly even any endomorphism?) is the identity.

Maybe these are facts well-known to the experts, maybe not – it is not
my business here anyhow to set out to prove such kinds of things. It looks
pretty plausible, because if there was any non-trivial autoequivalence
of (Hot), or automorphism of its identity functor, I guess I would have
heard about it, or something of the sort would flip to my mind. It would
not be so if we abelianized (Hot) some way or other, as there would be
the loop and suspension functors, and homotheties by −1 of id(Hot).

This assumption now can be rephrased, by stating that a localization
functors (*) from any category M into (Hot) is well determined, up to a
unique isomorphism, when the corresponding class W ⊂ Fl(M) of weak
equivalences is known, in positive response to yesterday’s silly question!
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Such situation (*) seems to me to merit a name. As the work “model
category” has already been used in a somewhat different and more
sophisticated sense by Quillen, in the context of homotopy, I rather use
another one in the situation here. Let’s call a “modelizing category”, [p. 31]
or simply a “modelizer” (“modélisatrice” in French), any category M ,
endowed with a set W ⊂ Fl(M) (the weak equivalences), satisfying the
obvious condition:
(Mod) a) W is the set of arrows made invertible by the localization

functor M →W−1M , and

b) W−1M is equivalent to (Hot),
or equivalently, there exists a localization functor (*) (necessarily unique
up to unique isomorphism) such that W be the set of arrows made in-
vertible by this functor.

Let (M , W ), (M ′, W ′) be two modelizers, a functor F : M → M ′ is
called model-preserving, or a morphism between the modelizers, if it
satisfies either of the following equivalent conditions:

(i) F(W ) ⊂W ′, hence a functor FW,W ′ : W−1M →W ′−1M ′, and the
latter is an equivalence.

(ii) The diagram

M M ′

(Hot)

F

is commutative up to isomorphism (where the vertical arrows are
the “type functors” associated to M , M ′ respectively.

When dealing with a modelizer (M , W ), W will be generally understood
so that we write simply M . When M is defined in terms of an algebraic
structure species, the task arises to find out whether (if any) there exists
a unique W ⊂ Fl(M) turning M into a modelizer, and if not so, if we
can however pinpoint one which is a more natural one, and which we
would call “canonical”.

Here is a diagram including most of the modelizers and model-
preserving functors between these which we met so far (not included
however those connected with the theory of “higher” stacks and Gr-
stacks, which we will have to elaborate upon later on):

ˆ = (ss sets)

(Ord) (Preord) (Cat) (Cat)

�ˆ = (cub. sets)

ξα

β η

where the two last functors, with values in (Cat), are the two obvious
functors, obtained from

(**) iA : Aˆ→ (Cat), F 7→ A/F

by particularizing to A= or . As we noticed before, the four first
among these six functors admit left adjoints, but except for the first,
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these adjoints are not model preserving. The two last functors, and more [p. 32]
generally the functor (**), admit right adjoints, namely the functor

jA : (Cat)→ Aˆ,

where jA(B) = (a 7→ Hom(A/a, B)) (B ∈ Ob (Cat)). It should be noted
that the functors j , j are not the two functors α,β which appear in
the diagram above, the latter are associated to the familiar functors

(***) (Cat)

(factoring in fact through (Ord)), associating to every ordered simplex,
or to each multiordered cube, the corresponding 1-skeleton with suitable
orientations on the edges, turning the vertices of this graph into an
ordered set; while the two former are associated to the functors deduced
from (**) by restricting to A⊂ Aˆ, namely

n 7→ / n

in the case of , and accordingly for . The values of these functors,
contrarily to the two preceding ones, are infinite categories, and they
cannot be described by (i.e., “are” not) (pre)ordered sets. If however we
had defined the categories , in terms of iterated boundary operations
only, excluding the degeneracy operations (which, I feel, are not really
needed for turning ˆ and ˆ into modelators), we would get indeed
finite ordered sets, namely the full combinatorial simplices or cubes,
each one embodied by the ordered set of all its facets of all possible
dimensions.

Contrarily to what happens with the functors α,β , I feel that for the
two functors ξ,η in opposite direction, not only are they model preserv-
ing, but the right adjoint functors j , j must be model preserving too,
and we will have to come back upon this in a more general context.

We could amplify and unify somewhat the previous diagram of mod-
elizers, by introducing multicomplexes, which after all can be as well
“mixed” namely partly semisimplicial, partly cubical. Namely, we may
introduce the would-be “test categories”

p × q = Tp,q (p, q ∈ N, p+ q ≥ 1)

giving rise to the category Tp,qˆ of (p, q)-multicomplexes (p times sim-
plicial, q times cubical). We have a natural functor (generalizing the
functors (***))

Tp,q → (Ord)(,→ (Cat)),

associating to a system of p standard simplices and q standard cubes
(of variable dimensions), the product of the p + q associated ordered
sets. We get this way a functor

αp,q : (Cat)→ Tp,qˆ



§29 The basic modelizer (Cat). Provisional definition of test . . . 49

which presumably (as I readily felt yesterday, cf. first lines p. 24) is [p. 33]
not any less model-preserving than the functors α,β it generalizes. Of
course, taking A= Tp,q above, we equally get a natural functor

ip,q : Tp,qˆ→ (Cat)

admitting a right adjoint jp,q, and both functors I feel must be model
preserving.

29 It is time now to elaborate a little upon the notion of a test category, The basic modelizer (Cat). Provi-
sional definition of test categories
and elementary modelizers.

within the context of modelizers. Let A be a small category, and consider
the functor (**)

(**) iA : Aˆ→ (Cat), F 7→ A/F .

Whenever we have a functor i : M → M ′, when M ′ is equipped with
a W ′ turning it into a modelizer, there is (if any) just one W ⊂ Fl(M)
turning M into a modelizer and i into a morphism of such, namely
W = i−1

Fl (W
′). In any case, we may define W (“weak equivalences”) by

this formula, and get a functor

W−1M →W ′−1M ′,

which is an equivalence iff (M , W ) is indeed a modelizer and i model
preserving. We may say shortly that i : M → M ′ is model preserving,
even without any W given beforehand. Now coming back to the situation
(**), the understanding yesterday was to call A a test category, to express
that the canonical functor (**) is model preserving. (In any case, unless
otherwise specified by the context, we will refer to arrows in Aˆ which
are transformed into weak equivalences of (Cat) as “weak equivalences”.)
It may well turn out, by the way, that we will have to restrict somewhat
still the notion of a test category.

In any case, the basic modelizer, in this whole approach to homotopy
models, is by no means the category (Ss sets) (however handy) or the
category (Spaces) (however appealing to topological intuition), but the
category (Cat) of “all” (small) categories. In this setup, the category
(Hot) is most suitably defined as the category of fractions of (Cat) with
respect to “weak equivalences”. These in turn are most suitably defined
in cohomological terms, via the corresponding notion for topoi – namely
a morphism of topoi

f : X → X ′

is a “weak equivalence” or homotopy equivalence, iff for every locally
constant sheaf F ′ on X ′, the maps

Hi(X ′, F ′)→ Hi(X , f −1(F ′))

are isomorphisms whenever defined – namely for i = 0, for i = 1 if
moreover F ′ is endowed with a group structure, and for any i if F ′

is moreover commutative (criterion of Artin-Mazur). Accordingly, a
functor [p. 34]
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f : A→ A′

between small categories (or categories which are essentially small,
namely equivalent to small categories) is called a weak equivalence, iff
the corresponding morphism of topoi

f ˆ : Aˆ→ A′ˆ

is a weak equivalence.
Coming back to test categories A, which allow us to construct the

corresponding modelizers Aˆ, our point of view here is rather that the
test categories are each just as good as the others, and just as good
as or any of the Tp,q and not any better! Maybe it’s the one though
which turns out the most economical for computational use, the nerve
functor (Cat)→ ˆ being still the neatest known of all model preserving
embeddings of (Cat) into categories Aˆ defined by modelizers. Another
point, still more important it seems to me, is that the natural functor

(Topoi)→ Pro (Hot)

defined by the Čech-Cartier-Verdier process, and which allows for an-
other description of weak equivalences of topoi, namely as those made
invertible by this functor, are directly defined via semi-simplicial struc-
tures of simplicial structures (of the type “nerve of a covering”).

Modelizers of the type Aˆ, with A a test category, surely deserve a
name – let’s call them elementary modelizers, as they correspond to the
case of an “elementary” or “trivial” algebraic structure species, whose
set-theoretical realizations can be expressed as just any functors

Aop→ (Sets),

without any exactness condition of any kind; in other words they can
be viewed as just diagrams of sets of a specified type, with specified
commutativity relations. A somewhat more ambitious question maybe
is whether on such a category M = Aˆ, namely an elementary modelizer,
there cannot exist any other modelizing structure. In any case, the one
we got is intrinsically determined in terms of M , which is a topos, by the
prescription that an arrow f : a→ b within M is a weak equivalence if
and only if the corresponding morphism for the induced topoi M/a and
M/b is a weak equivalence (in terms of the Artin-Mazur criterion above,
see p. 33).

A more crucial question I feel is whether the right adjoint functor jA
to iA in (**) (cf. p. 33) is equally model preserving, whenever A is a test
category. This, as we have seen, is not automatic, whenever we have a
model preserving functor between modelizers, whenever this functor
admits an adjoint functor. In more general terms still, let

M M ′
i

j

be a pair of adjoint functors, with M , M ′ endowed with a “saturated” [p. 35]
set of arrows W, W ′. Then the following are equivalent:
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(a) i(W ) ⊂W ′, j(W ′) ⊂W , and the two corresponding functors

W−1M �W ′−1M ′

are quasi-inverse of each other, the adjunction morphisms be-
tween them being deduced from the corresponding adjunction
morphisms for the pair (i, j).

(b) W = i−1(W ′), and for every a′ ∈ M ′, the adjunction morphism

i j(a′)→ a′

is in W ′.

(b’) dual to (b), with roles of M and M ′ reversed.
In the situation we are interested in here, M = Aˆ and M ′ = (Cat), we
know already W = i−1(W ′) by definition, and hence all have to see is
whether for any category B, the functor

(T) iA jA(B)→ B

is a weak equivalence. This alone will imply that not only iW,W ′ , but
equally jW ′,W is an equivalence, and that the two are quasi-inverse of
each other. (NB even without assuming beforehand that W, W ′ are
saturated, (b) (say) implies (b) and (a), provided we assume on W ′ the
very mild saturation condition that for composable arrows u′, v′, if two
among u′, v′, v′u′ are in W ′, so is the third; if we suppose moreover that
M ′ is actually saturated namely made up with all arrows made invertible
by M ′→W ′−1M ′, then condition (b) implies that M is saturated too –
which ensures that if (M ′, W ′) is modelizing, so is (M , W ).)

It is not clear to me whether for every test category A, the stronger
condition (T) above is necessarily satisfied. This condition essentially
means that for any homotopy type, defined in terms of an arbitrary
element B in (Cat) namely a category B, we get a description of this
homotopy type by an object of the elementary modelizer Aˆ, by merely
taking jA(B). This condition seems sufficiently appealing to me, for
reinforcing accordingly the notion of a test-category A, and of an ele-
mentary modelizer Aˆ, in case it should turn out to be actually stronger.
Of course, any category equivalent to an elementary modelizer Aˆ will
be equally called by the same name. It should appear in due course
whether this is indeed the better suited notion. One point in its favor
already is that it appears a lot more concrete.

Another natural question, suggested by the use of simplicial or cubical
multicomplexes, is whether the product of two test categories is again a
test category – which might furnish us with a way to compare directly the
description of (Hot) by the associated elementary modelizers, without [p. 36]
having to make a detour by the “basic” modelizer (Cat) we started with.
But here it becomes about time to try and leave the thin air conjecturing,
and find some simple and concrete characterization of test categories,
or possibly some reinforcement still of that notion, which will imply
stability under the product operation.
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Here it is tempting to use semi-simplicial techniques though, by lack
of independent foundations of homotopy theory in terms of the mod-
elizer (Cat). Thus we may want to take the map of semi-simplicial sets
corresponding to (T) when passing to nerves, and express that a) this
is a fibration and b) the fibers of this fibration are “contractible” (or “as-
pheric”), which together will imply that we have a weak equivalence in
(Ss sets). Or we may follow the suggestion of Quillen’s set-up, working
heuristically in (Cat) as though we actually know it is a model category,
and expressing that the adjunction morphism in (T), which is a func-
tor between categories, is actually a “fibration”, and that its fibers are
“contractible” namely weakly equivalent to a one-point category. In any
case, a minimum amount of technique seems needed here, to give the
necessary clues for pursuing.

14.3.

30 Since last week when I stopped with my notes, I got involved a bit Starting the “asphericity game”.
with recalling to mind the “Lego-Teichmüller construction game” for
describing in a concrete, “visual” way the Teichmüller groups of all
possible types and the main relationships between them, which I had
first met with last year. This and other non-mathematical occupations
left little time only for my reflections on homotopy theory, which I
took up mainly last night and today. The focus of attention was the
“technical point” of getting a handy characterization of test categories.
The situation I feel is beginning to clarify somewhat. Last thing I did
before reading last weeks’ notes and getting back to the typewriter, was
to get rid of a delusion which I was dragging along more or less from
the beginning of these notes, namely that our basic modelizer (Cat),
which we were using as a giving the most natural definition of (Hot)
in our setting, was a “model category” in the sense of Quillen, more
specifically a “closed model category”, where the “weak equivalences”
are the homotopy equivalences of course, and where cofibrations are just
monomorphisms (namely functors injective on objects and on arrows)
– fibrations being defined in terms of these by the Serre-Quillen lifting
property. Without even being so demanding, it turns out still that there
is no reasonable structure of a model category on (Cat), having the
correct weak equivalences, and such that the standard “Kan inclusions”
of the following two ordered sets [p. 37]

b

a c
and

b

a c

into
2 = a→ b→ c

be cofibering. Namely, for a category bC , to say that it is “fibering” (over
the final category •) with respect to one or the other monomorphism,
means respectively that every arrow in C has a left respectively a right
inverse – the two together mean that C is a groupoid. But groupoids are
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definitely not sufficient for describing arbitrary homotopy types, they
give rise only to sums of K(π, 1) spaces – thus contradicting Quillen’s
statement that homotopy types can be described by “models” which are
both fibering and cofibering!

The feeling however remains that any elementary modelizer, namely
one defined (up to equivalence) by a test category, should be a closed
model category in Quillen’s sense – I find it hard to believe that this
should be a special feature just of semi-simplicial complexes!

While trying to understand test categories, the notion of asphericity
for a morphism of topoi

f : X → Y

came in naturally – this is a natural variant of the notion of n-acyclicity
(concerned with commutative cohomology) which has been developed
in the context of étale topology of schemes in SGA 4. It can be expressed
by “localizing upon Y ” the Artin-Mazur condition that f be a weak
equivalence, by demanding that the same remain true for the induced
morphism of topoi

X ×Y Y ′→ Y ′

for any “localization morphism” Y ′→ Y . In terms of the categories of
sheaves E, F on X , Y , Y ′ can be defined by an object (equally called Y ′)
of F , the category of sheaves on Y ′ being F/Y ′ , and the fiber-product X ′

can be defined likewise by an object of E, namely by X ′ = f ∗(Y ′), hence
the corresponding category of sheaves is E/ f ∗(Y ′). In case the functor
f ∗ associated to f admits a left adjoint f! (namely if it commutes to
arbitrary inverse limits, not only to finite ones), the category E/ f ∗(Y ′)
can be interpreted conveniently as E f!/Y ′ (or simply E/Y ′ if f! is implicit),
whose objects are pairs

(U ,ϕ), U ∈ Ob E, ϕ : f!(U)→ Y ′,

with obvious “maps” between such objects. For the time being I am
mainly interested in the case of a morphism of topoi defined by a functor
between categories, which I will denote by the same symbol f :

f : C ′→ C defines f or f ˆ : C ′ˆ→ Cˆ.

Using the fact that in the general definition of asphericity it is enough [p. 38]
to take Y ′ in a family of generators of the topos Y , and using here
the generating subcategory C of Cˆ, we get the following criterion for
asphericity of f ˆ: it is necessary and sufficient that for every a ∈ Ob C ,
the induced morphism of topoi

C ′/̂a u (C
′
/a)ˆ→ C/̂a ' (C/a)ˆ

be a weak equivalence, i.e., that the natural functor C ′
/a → C/a be

a weak equivalence. But it is immediate that C/a is “contractible”,
i.e., “aspheric”, namely the “map” from C/a to the final category is a
weak equivalence (this is true for any category having a final object).
Therefore we get the following
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Criterion of asphericity for a functor f : C ′→ C between categories:
namely it is n. and s. that for any a ∈ Ob C , C ′

/a be aspheric.
Let’s come back to a category A, for which we want to express that it

is a test-category, namely for any category B, the natural functor

(*) iA jA(B)→ B

is a weak equivalence. One immediately checks that for any b ∈ Ob B,
the category iA jA(B)/b over B/b is isomorphic to iA jA(B/b). Hence we get
the following
Proposition. For a category A, the following are equivalent:

(i) A is a test category, namely (*) is a weak equivalence for any
category B.

(ii) (*) is aspheric for any category B.

(iii) iA jA(B) is aspheric for any category B with final element.
This latter condition, which is the most “concrete” one so far, means

also that the element

F = jA(B) = (a 7→ Hom(A/a, B)) ∈ Aˆ

is an aspheric element of the topos Aˆ, namely the induced topos Aˆ/F
is aspheric (i.e., the category A/F is aspheric), whenever B has a final
element.

31 For the notion of a test category to make at all sense, we should make The end of the thin air conjecturing:
a criterion for test categories.sure in the long last that itself, the category of standard simplices, is

indeed a test category. So I finally set out to prove at least that much,
using the few reflexes I have in semi-simplicial homotopy theory. A
proof finally peeled out it seems, giving clues for handy conditions in
the general case, which should be sufficient at least to ensure that B is a
test category, but maybe not quite necessary. I’ll try now to get it down
explicitly.

Here are the conditions I got: [p. 39]
(T 1) A is aspheric.

(T 2) For a, b ∈ Ob A, A/a×b is aspheric (NB a × b need not exist in A
but it is in any case well defined as an element of Aˆ).

(T 3) There exists an aspheric element I of Aˆ, and two subobjects e0

and e1 of I which are final elements of Aˆ, such that e0 ∩ e1(
def
=

e0 ×I e1) =∅Aˆ , the initial or “empty” element of Aˆ.
In case when A= (as well as in the cubical analogon ), I took

I = 1 which is an element of A itself, and moreover A has a final
element (which is a final element of Aˆ therefore) e, thus e0 and e1
defined by well defined arrows in A itself, namely δ0 and δ1. But it
does not seem that these special features are really relevant. In any
case intuitively I stands for the unit interval, with endpoints e0, e1. If F is
any element in Aˆ, the standard way for trying to prove it is aspheric
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would be to prove that we can find a “constant map” F → F , namely
one which factors into

F → e
c
−→ F (e the final element of A)

for suitable c : e → F or “section” of F , which be “homotopic” to the
identity map F → F . When trying to make explicit the notion of a
“homotopy” h between two such maps, more generally between two
maps f0, f1 : F ⇒ G, we hit of course upon the arrow h in the following
diagram, which should make it commutative

(D)

F × I

F ' F × e0 F ' F × e1

G

h

f0 f1

.

This notion of a homotopy is defined in any category A where we’ve got
an element I and two subobjects e0, e1 which are final objects. Suppose
we got such h, and we know moreover (for given F, G, f0, f1, h) that the
two inclusions of F × e0 and F × e1 into F × I are weak equivalences,
and that f0 is a weak equivalence (for a given set of arrows called
“weak equivalences”, for instance defined in terms of a “topology” on
A, in the present case the canonical topology of the topos Aˆ), then
it follows (with the usual “mild saturation condition” on the notion of
weak equivalence) that h, and hence f1 are weak equivalences. Coming
back to the case F = G, f0 = idF , f1 = “constant map” defined by a
c : e→ F , we get that this constant map f1 is a weak equivalence. Does
this imply that F → e is equally a weak equivalence? This is not quite
formal for general (A, W ), but it is true though in the case A= Aˆ and
with the usual meaning of “weak equivalence”, in this case it is true [p. 40]
indeed that if we have a situation of inclusion with retraction E→ F and
F → E (E need not be a final element of A), such that the compositum
p : F → E → F (a projector in F) is a weak equivalence, then so are
E → F and F → E. To check this, we are reduced to checking the
corresponding statement in (Cat), in fact we can check it in the more
general situation with two topoi E and F , using the Artin-Mazur criterion.
(We get first that E→ F is a weak equivalence, and hence by saturation
that F → E is too.)

Thus the assumptions made on F ∈ Ob Aˆ imply that F → e is a weak
equivalence, i.e., A/F → A is a weak equivalence, and if we assume now
that A satisfies (T 1) namely A is aspheric, so is F .

We apply this to the case F = jA(B) = (a 7→ Hom(A/a, B)), where B is
a category with final element. We have to check (using (T 1) to (T 3)):

(a) The inclusions of F × e0, F × e1 into F × I are weak equivalences
(this will be true in fact for any F ∈ Ob Aˆ),

(b) there exists a “homotopy” h making commutative the previous
diagram (D), where G = F , f0 = idF , and where f1 : F → F is the
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“constant map” defined by the section c : e→ F of F , associating
to every a ∈ A the constant functor ea,B : A/a → B with value eB (a
fixed final element of B), thus ea,B ∈ F(a) = Hom(A/a, B) (and it
is clear that his is “functorial in a”).

Then (a) and (b) will imply that F is aspheric – hence A is a test-category
by the criterion (iii) of the proposition above.

To check (b) we do not make use of (T 1) nor (T 2), nor of the
asphericity of I . We have to define a “map”

h : F × I → F,

i.e., for every a ∈ Ob A, a map (functorial for variable a)

h(a) : Hom(A/a, B)×Hom(a, I)→ Hom(A/a, B)

(two of the Hom’s are in (Cat), the other is in Aˆ). Thus, let

f : A/a → B, u : a→ I ,

we must define
h(a)( f , u) : A/a → B

a functor from A/a to B, depending on the choice of f and u. Now let,
for any u ∈ Hom(a, I), u : a→ I , au be defined in Aˆ as

au = u−1(e0) = (a, u)×I e0,

viewed as a subobject of a, and hence Cu = A/au
can be viewed as a

subcategory of C = A/a, namely the full subcategory of those objects
x over a, i.e., arrows x → a ∈ A, which factor through au namely such
that the compositum x → a→ I factors through e0. This subcategory is
clearly a “crible” in A/a, namely for an arrow y → x in A/a, if the target [p. 41]
x is in the subcategory, so is the source y . This being so, we define the
functor

f ′ = h( f , u) : A/a = C → B

by the conditions that

f ′|(A/au
= Cu) = f |Cu

f ′|(C \ Cu) = constant functor with value eB.

(where C \Cu denotes the obvious full subcategory of C , complementary
to Cu). This defines f ′ uniquely, on the objects first, and on the arrows
too because the only arrows left in C where we got still to define f ′ are
arrows x → y with x in Cu and y ∈ C \ Cu (because Cu is a crible), but
then f ′(y) = eB and we have no choice for f ′(x)→ f ′(y)! It’s trivial
checking that this way we get indeed a functor f ′ : C → B, thus the
map h(a) is defined – and that this map is functorial with respect to a,
i.e., comes from a map h : F × I → F as we wanted. The commutativity
of (D) is easily checked: for the left triangle, i.e., that the compositum

F ' F × e0→ F × I
h
−→ F is the identity, it comes from the fact that if u
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factors through e0, then Cu = C hence f ′ = f ; for the right triangle, it
comes from the fact that if u factors through e1, then Cu =∅ (here we
use the assumption e0 ∩ e1 =∅Aˆ), and hence f ′ is the constant functor
C → B with value eB. This settles (b).

We have still to check (a), namely that for any F ∈ Ob Aˆ, the inclusion
of the objects F × ei into F × I are weak equivalences, or what amounts
to the same, that the projection

F × I → F

is a weak equivalence – this will be true in fact for any object I of
Aˆ which is aspheric. Indeed, we will prove the stronger result that
F × I → F is aspheric, i.e., that the functor

A/F×I → A/F

is aspheric, We use for this the criterion of p. 38, which here translates
into the condition that for any a in A (such that we got an a→ F , i.e.,
such that F(a) 6= ;, but never mind), the category A/a×I is aspheric, i.e.,
the lement a× I of Aˆ is aspheric. Again, as I is aspheric, we are reduced
to checking that a× I → I is aspheric, which by the same argument (with
F, I replaces by I , a) boils down to the condition that Ax×b is aspheric
for any b in A. Now this is just condition (T 2), we are through.

15.3. [p. 42]

32 I definitely have the feeling to be out of the thin air – the conditions Provisional program of work.
(T 1) to (T 3) look to me so elegant and convincing, that I have no
doubts left they are “the right ones”! A lot of things come to mind what
to do next, I’ll have to look at them one by one though. Let me make a
quick provisional planning.

1) Have a closer look at the conditions (T 1) to (T 3), to see how far
they are necessary for A to be a test category in the (admittedly
provisional) sense I gave to this notion last week and yesterday,
and to pin down the feeling of these being just the right ones.

2) Use these conditions for constructing lots of test categories, in-
cluding all the simplicial and cubical types which have been used
so far.

3) Check that these conditions are stable under taking the product
of two or more test categories, and possibly use this fact for com-
paring the homotopy theories defined by any two such categories.

4) Look up (using (T 1) to (T 3)) if an elementary modelizer Aˆ is
indeed a “closed model category” in Quillen’s sense, and maybe
too get a better feeling of how far apart (Cat) is from being a closed
model category. Visibly there are some natural constructions in
homotopy theory which do make sense in (Cat).

5) Using the understanding of test categories obtained, come back
to the question of which categories Aˆ associated to algebraic
structure species can be viewed as modelizers, and to the question
of unicity or canonicity of the modelizing structure W ⊂ Fl(M).
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That makes a lot of questions to look at, and the theory of stacks I
set out to sketch seems to be fading ever more into the background!
It is likely though that a better general understanding of the manifold
constructions of the category (Hot) of homotopy types will not be quite
useless, when getting back to the initial program, namely stacks. Quite
possibly too, on my way I will have to remind myself of and look up, in
the present setting, the main structural properties of (Hot), including
exactness properties and generators and cogenerators. This also reminds
me of an intriguing foundational question since the introduction of
derived categories and their non-commutative analogs, which I believe
has never been settled yet, namely the following:

6) In an attempt to grasp the main natural structures associated
to derived categories, and Quillen’s non-commutative analogons
including (Hot), try to develop a comprehensive notion of a “tri-
angulated category”, without the known drawbacks of Verdier’s
provisional notion. [p. 43]

33 For the time being, I’ll use the word “test category” with the meaning Necessity of conditions T1 to T3, and
transcription in terms of elementary
modelizers.

of last week, and refer to categories satisfying the conditions (T 1) to
(T 3) as strict test categories. (NB A is supposed to be essentially small
in any case.)

First of all, the conditions (T 1) and (T 3) are necessary for A to be
a test category. For (T 1) this is just the “concrete” criterion (iii) of
yesterday (page 38), when B is the final element of (Cat). For (T 3),
we get even a canonical choice for I , e0, e1, namely starting with the
“universal” choice in (Cat):

I = 1, e0 and e1 the two subobjects of 1
in (Cat) (or in (Ord)) corresponding
to the two unique sections of I over
the final element e of (Cat),

i.e., in terms of I as an ordered set {0} → {1}, e0 and e1 are just the two
subobjects defined by the two vertices {0} and {1} (viewed as defining
two one-point ordered subsets of I = 1). We now apply jA to get

I = jA(I) = jA( 1), ei = jA(ei) for i = 0, 1.

As I→ e is a weak equivalence so is I → eAˆ = jA(e), and hence (as eAˆ
is aspheric by (T 1)) I is aspheric. As e0 ∩ e1 =∅(Cat) and jA commutes
with inverse limits, and with sums (and in particular transforms the
initial element ∅ of (Cat) in the initial element ∅ of Aˆ), it follows that
e0 ∩ e1 =∅.

It’s worthwhile having a look at what this object just constructed is
like. For this end, let’s note first that for any category C , we have a
canonical bijection, functorial in C

Hom(C , 1)
∼−→ Crib(C)' set of all subobjects of eCˆ ,

by associating to any functor f : C → 1 the full subcategory f −1(e0)
of C , which clearly is a “crible” in C . Thus we get, for a ∈ Ob A

I(a)' Crib(A/a) (subobjects of a in Aˆ).
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More generally, we deduce from this, for any F ∈ Ob Aˆ:

Hom(F, I) = Γ (IF = I × F/F) = set of all subobjects of F ,

in other words, the object I is defined intrinsically in the topos Aˆ (up to
unique isomorphism) as the “Lawvere element” representing the functor
F 7→ set of subobjects of F , generalizing the functor F 7→ P(F) in the
category of sets (namely sheaves over the one-point topos), represented
by the two-point set {0, 1}. The condition e0 ∩ e1 =∅A is automatic in
any topos A, provided A is not the “empty topos”, namely corresponding
to a category of sheaves equivalent to a one-point category.

There is a strong temptation now to diverge from test categories, to [p. 44]
expand on intrinsic versions of conditions (T 1) to (T 3) for any topos,
and extract a notion of a (strictly) modelizing topos, generalizing the
“elementary modelizers” Aˆ defined by strict test categories A. But it
seems more to the point for the time being to look more closely to the
one condition, namely (T 2), which does not appear so far as necessary
for A being a test category – and I suspect it is not necessary indeed, as
no idea occurred to me how to deduce it. (I have no idea of how to
make a counterexample though, as I don’t see any other way to check a
category A is a test category, except precisely using yesterday’s criterion
via (T 1) to (T 3).) Still, I want to emphasize about the fact that (T 2)
is indeed a very natural condition. In this connection, it is timely to
remember that in the category (Hot), finite direct and inverse limits
exist (and even infinite ones, I guess, but I feel I’ll have to be a little
careful about these. . . ). The existence of such limits, in terms of the
description of (Hot)as a category of fractions of (Cat), doesn’t seem at
all a trivial fact, for the time being I’ll admit it as “well known” (from
the semisimplicial set-up, say), and probably come back upon this with
some care later. Now if (M , W ) is any modelizer, hence endowed with
a localization functor

M → (Hot),

it is surely not irrelevant to ask about which limits this functor commutes
with, and study the case with care. Thus in no practical example I
know of does this functor commute with binary amalgamated sums or
with fibered products without an extra condition on at least one of the
two arrows involved in M – a condition of the type that one of these
is a monomorphism or a cofibration (for co-products), or a fibration
(for products). However, in all cases known, it seems that the functor
commutes to (finite, say) sums and products. For sums, it really seems
hard to make a sense out of a localizing functor M → (Hot), namely
playing a “model” game, without the functor commuting at the very least
to these! In this respect, it is reassuring to notice that for any category
A, the associated functors iA, jA between Aˆ and (Cat) do indeed both
commute with (arbitrary) sums – which of course is trivial anyhow for iA
(commuting to arbitrary direct limits), and easily checked for jA (which
apparently does not commute to any other type of direct limits, but of
course commutes with arbitrary inverse limits). Now for products too,
it is current use to look at products of “models” for homotopy types, as
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models for the product type – so much so that this fact is surely tacitly
used everywhere, without any feeling of a need to comment. It seems
too that any category M which one has looked at so far for possible use
as a category of “models” in one sense or other for homotopy types, for [p. 45]
instance set-theoretic realizations of some specified algebraic structure
species, or topological spaces, and the like, do admit arbitrary direct
and inverse limits, and surely sums and products therefore, so that
the question of commutation of the localization functor to these arises
indeed and is felt to be important. Possibly so important even, that
the notion I introduced of a “modelizer” should take this into account,
and be strengthened to the effect that the canonical functor M → (Hot)
should commute at least to finite sums and products, and possibly even
to infinite ones (whether the latter will have to be looked up with care).
I’ll admit provisionally that in (Hot), finite sums and products can be
described in terms of the corresponding operations in (Cat), namely
that the canonical functor (going with our very definition of (Hot) as a
localization of (Cat))

(Cat)→ (Hot)

commutes with finite (presumably even infinite) sums and products.
This is indeed reasonably, in view of the fact that the Nerve functor

(Cat)→ ˆ = (Ss sets)

does commute to sums and products.
In the case of a test category A and the corresponding elementary

modelizer Aˆ, the corresponding localizing functor is the compositum

Aˆ
iA−→ (Cat)→ (Hot),

which therefore commutes with finite (presumably even infinite) sums
automatically, because iA does. Commutation with finite products though
does not look automatic. The property of commutation with final el-
ements is OK and is nothing but condition (T 1), which we saw is
necessary for A to be a test category. Thus remains the question of
commutation with binary products, which boils down to the following
condition, for any two elements F and G in Aˆ:

iA(F × G)→ iA(F)× iA(G) should be a weak equivalence,

i.e.,

(*) A/F×G → A/F × A/G a weak equivalence.

This now implies condition (T 2), as we see taking F = a, G = b,
in which case the condition (*) just means asphericity of a × b in Aˆ,
namely (T 2). To be happy, we have still to show that conversely, (T 2)
implies (*) for any F, G. As usual, it implies even the stronger condition
that the functor in question is aspheric, which by the standard criterion
(page 38) just means that the categories A/a×b (for a, b in A, and such
moreover that F(a) and G(b) non-empty, but never mind) are aspheric.

Everything turns out just perfect – it seems worthwhile to summarize
it in one theorem: [p. 46]
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Theorem. Let A be an essentially small category, and consider the com-
posed functor

mA : Aˆ
iA−→ (Cat)→ (Hot),

where iA(F) = A/F for any F ∈ Ob Aˆ, and where (Cat)→ (Hot) is the
canonical functor from (Cat) into the localized category with respect to
weak equivalences. The following conditions are equivalent:

(i) The functor mA commutes with finite products, and is a localization
functor, i.e., induces an equivalence W−1

A Aˆ ≈−→ (Hot), where WA is
the set of weak equivalences in Aˆ, namely arrows transformed into
weak equivalences by iA. 9.4. Presumably, we’ll have to add that

jA = i∗A is model preserving, cf. remark 3 on
p. 174.(ii) The functor iA and its right adjoint jA define functors between W−1

A Aˆ
and (Hot) =W−1(Cat) (thus jA should transform weak equivalences
of (Cat) into weak equivalences of Aˆ) which are quasi-inverse to
each other, the adjunction morphisms for this pair being deduced
from the adjunction morphisms for the pair iA, jA. Moreover, the
functor mA commutes with finite products.

(iii) The category A satisfies the conditions (T 1) to (T 3) (page 39).

I could go on with two or three more equivalent conditions, which
could be expressed intrinsically in terms of the topos Aˆ and make sense
(and are equivalent) for any topos, along the lines of the reflections of
p. 43 and of yesterday. But I’ll refrain for the time being!

In the proof of the theorem above, I did not make use of semi-simplicial
techniques nor of any known results about (Hot), with the only exception
of the assumption (a fact, I daresay, but not proved for the time being
in the present framework, without reference to semi-simplicial theory
say) that the canonical functor (Cat)→ (Hot) commutes with binary
products. We could have avoided this assumption, by slightly changing
the statement of the theorem, the condition that mA commute with
finite products in (i) and (ii) being replaced by the assumption that
iA commute with finite products “up to weak equivalence”, as made
explicit in (*) above for the case of binary products (which are enough
of course).

I suspect that the notion of a test category in the initial, wider sense
will be of no use any longer, and therefore I will reserve this name to [p. 47]
the strict case henceforth, namely to the case of categories satisfying
the equivalent conditions of the theorem above. Accordingly, I’ll call
“elementary modelizer” any categoryA equivalent to a category Aˆ, with A
a test category. Such a category will be always considered as a modelizer,
of course, with the usual notion of weak equivalence W ⊂ Fl(A), namely
of a “map” F → G in A such that the corresponding morphism for the
induced topoi is a weak equivalence. The category A is an elementary
modelizer, therefore, iff it satisfies the following conditions:

a) A is equivalent to a category Aˆ with A small, which amount
to saying that A is a topos, and has sufficiently many “essential
points”, namely “points” such that the corresponding fiber-functor
A→ (Sets) commutes with arbitrary products – i.e., there exists
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a conservative family of functors A→ (Sets) which commute to
arbitrary direct and inverse limits. (Cf. SGA 4 IV 7.5.)

b) The pair (A, W ) is modelizing (where W ⊂ Fl(A) is the set of weak
equivalences), i.e., the category W−1A is equivalent to (Hot).

c) The canonical functor A→ (Hot) (or, equivalently, A→W−1A)
commutes with finite products (or, equivalently, with binary prod-
ucts – that it commutes with final elements follows already from
a), b)).

As I felt insistently since yesterday, there is a very pretty notion of a
“modelizing topos” generalizing the notion of an elementary modelizer,
where A is a topos but not necessarily equivalent to one of the type
Aˆ – but where however the aspheric (= “contractible”) objects form
a generating family (which generalizes the condition A ' Aˆ, which
means that the 0-connected projective elements of A form a generating
family). I’ll come back upon this notion later I guess – it is not the most
urgent thing for the time being. . .

34 I will now exploit the handy criterion (T 1) to (T 3) for test categories, Examples of test categories.
for constructing lots of such. In all cases I have in mind at present, the
verification of (T 1) and (T 3) is obvious, they are consequences indeed
of the following stronger conditions:

(T 1’) A has a final element eA.

(T 3’) There exists an element I = IA in A, and two sections e0, e1 of I
over e = eA

δ0,δ1 : e→ I ,

such that the corresponding subobjects e0, e1 of I satisfy

e0 ∩ e1 =∅Aˆ ,

namely that for any a ∈ Ob A, if pa : a→ e is the projection, we
have

δ0pa 6= δ1pa.

Of course, the element I (playing the role of unit interval with end- [p. 48]
points e0, e1) is by no means unique, for instance it can be replaced
by any cartesian power In (n ≥ 1), provided it is in A – or in the case
of A = we can take for I any n (n ≥ 1) and for δ0,δ1 any two
distinct maps from e = 0 to n, instead of the usual choice 1 for I ,
and corresponding δ0 and δ1. This high degree of arbitrariness in the
choice of I should be no surprise, this was already one striking feature
in Quillen’s theory of model categories.

There remains the asphericity condition (T 2) for the categories A/a×b,
with a, b ∈ Ob A, which is somewhat subtler. There is one very evident
way though to ensure this, namely assuming

(T 2’) If a, b are in A, so is a× b, i.e., A is stable under binary products.
In other words, putting together (T 1’) and (T 2’), we may take

categories (essentially small) stable under finite products. When such
a category satisfies the mild extra condition (T 3’) above, it is a test
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category! This is already an impressive bunch of test categories. For
instance, take any category C with finite products and for which there
exist I , e0, e1 as in (T 3’) – never mind whether C is essentially small,
for instance any “non-empty” topos will do (taking for I the Lawvere
element for instance, if no simpler choice comes to mind). Take any
subcategory A (full or not) stable under finite products and containing I
and 0, 1 and where the C-products are also A-products – for instance
this is OK if A is full. Then A is a test category.

The simplest choice here, the smallest in any case, it to take the
subcategory made up with all cartesian powers In (n≥ 0). We may take
the full subcategory made up with these elements, but instead we may
take, still more economically, only the arrows

In→ Im

where m components In→ I are each, either a projection pri (1≤ i ≤ n)
or of the form δi(pIn) (i ∈ {0,1}). The category thus obtained, up to
unique isomorphism, does not depend on the choice of (C , I , e0, e1),
visibly – it is, in a sense, the smallest test category satisfying the stronger
conditions (T 1’) to (T 3’). Its elements can be visualized as “standard
cubes”: One convenient way to do so is to take C = (Ord) (category of
all ordered sets), I = 1 = ({0} → {1}), e0 and e1 as usual, thus A can
be interpreted as a subcategory of (Ord), but this embedding is not full
(there are maps of I2 to I in (Ord)which are not in A, i.e., do not “respect
the cubical structure”). We may also take C = (Spaces), I = unit interval
⊂ R, e0 and e1 defined by the endpoints 0 and 1, thus the elements of [p. 49]
A are interpreted as the standard cubes In in Rn; the allowable maps
between them In→ Im are those whose components In→ I are either
constant with value ∈ {0,1}, or one of the projections pri (1 ≤ i ≤ n).
We may denote this category of standard cubes by �, but recall that
the cubes here have symmetry operations, they give rise to the notion
of “(fully) cubical complexes” (Kn)n≥0, in contrast with what might be
called “semicubical complexes” without symmetry operations on the
Kn’s, in analogy with the case of simplicial complexes, where there are
likewise variants “full” and “semi”. To make the distinction, we better
call the corresponding test category (with symmetry operations, hence
with more arrows) e� rather than �, and accordingly for e , . On closer
inspection, it seems to me that even apart the symmetry operations,
the maps between standard cubes allowed here are rather plethoric –
thus we admit diagonal maps such as I → I × I , which is I guess highly
unusual in the cubical game. It is forced upon us though if we insist
on a test category stable under finite products, for easier checking of
condition (T 2).

A less plethoric looking choice really is

A= non-empty finite sets, with arbitrary maps

or, equivalently, the full subcategory e formed by the standard finite
sets N∩ [0, n], which we may call e n in contrast to the n’s (viewed as
being endowed with their natural total order, and with correspondingly
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more restricted maps). This gives rise to the category e of “(fully)
simplicial complexes (or sets)”. The elements of A, or of e , can be
interpreted in the well-known way as affine simplices, and simplicial
maps between these.

It is about time now to come to the categories and � and check
they are test categories, although they definitely do not satisfy (T 2’),
thus we are left with checking the somewhat delicate condition (T 2).
It is tempting to dismiss the question by saying that it is “well-known”
that the categories

/ n× m
(n, m ∈ N)

are aspheric – but this I feel would be kind of cheating. Maybe the very
intuitive homotopy argument already used yesterday (pages 39–40) will
do. In general terms, under the assumptions (T 1), (T 3), we found a
sufficient criterion of asphericity for an element F of Aˆ, which we may
want to apply to the case F = a× b, with a and b in A. [p. 50]

Now let’s say that eAˆ is a deformation retract of F (F any element
in Aˆ) if the identity map of F is homotopic (with respect to I) to a
“constant” map of F into itself. It is purely formal, using the diagonal
map I → I × I in Aˆ, that if (more generally) F0 is a deformation retract
of F , and G0 a deformation retract of G, then F0 × G0 is a deformation
retract of F × G. Thus, a sufficient condition for (T 2) to hold is the
following “homotopy-test axiom”:
Condition (T H):

(1)

For any a ∈ A, e = eAˆ is a deformation retract
of a with respect to (I , e0, e1), namely there exists
a section ca : e→ a (hence a constant map ua =
paca : a→ a) and a homotopy ha : a× I → a from
ida to ua, i.e., a map ha such that

ha(ida×δ0) = ida, ha(ida×δ1) = ua.

We have to be cautious though, it occurs to me now, not to make a
“vicious circle”, as the homotopy argument used yesterday for proving
asphericity of f makes use of the fact that F × I → F is a weak equiva-
lence. To check that F× I → F is a weak equivalence, and even aspheric,
we have seen though that it amounts to the same to prove a× I → a is a
weak equivalence for any a in A, i.e., a× I is aspheric for any a in A. This,
then, was seen to be a consequence of the assumption that all elements
a× b are aspheric (for a, b in A) – but this latter fact is now what we
want to prove! Thus it can’t be helped, we have to complement the
condition (T H) above (which I will call (T H 1), by the extra condition

(2) For any a in A, a× I is aspheric,

which, in case I itself is in A, appears as just a particular case of (T 2),
which now, it seems, we have to check directly some way or other.
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19.3.

35 I really feel I should not wait any longer with the digression on modeliz- The notion of a modelizing topos.
Need for revising the Čech-Verdier-
Artin-Mazur construction.

ing topoi that keeps creeping into my mind, and which I keep trying to
dismiss as not to the point or not urgent or what not! At least this will
fix some terminology, and put the notion of an elementary modelizer
into perspective, in terms of a wider class of topoi.

A topos X is called aspheric if the canonical “map” from X to the
“final topos” (corresponding to a one-point space, and whose category
of sheaves is the category (Sets)) is aspheric. It is equivalent to say
that X is 0-connected (namely non-empty, and not decomposable non-
trivially into a direct sum of two topoi), and that for any constant sheaf
of groups G on X , the cohomology group Hi(X , G) (i ≥ 1) is trivial [p. 51]
whenever defined, namely for i ≥ 1 if G commutative, and i = 1 if G
is not supposed commutative. The 0-connectivity is readily translated
into a corresponding property of the final element in the category of
sheaves Sh(X ) = A on X . An element U of A is called aspheric if the
induced topos X/U or A/U is aspheric. An arrow f : U ′ → U in A is
called a weak equivalence resp. aspheric, if the corresponding “map” or
morphism of the induced topoi

X/U ′→ X/U or A/U ′ → A/U

has the corresponding property. Of course, in the notations it is often
convenient simply to identify objects U of A with the induced topos, and
accordingly for arrows. Clearly, if f is aspheric, it is a weak equivalence,
more specifically, f is aspheric iff it is “universally a weak equivalence”,
namely iff for any base change V → U in A, the corresponding map
g : V ′ = V ×U U ′→ V is a weak equivalence. Moreover, it is sufficient
to check this property when V is a member of a given generating family
of A.

An interesting special case is the one when A admits a family of
aspheric generators, or equivalently a generating full subcategory A
whose objects are aspheric in A; we will say in this case that the topos
X (or A) is “locally aspheric”. This condition is satisfied for the most
common topological spaces (it suffices that each point admit a funda-
mental system of contractible neighborhoods), as well as for the topoi
Aˆ associated to (essentially small) categories A (for such a topos, A
itself is such a generating full category made up with aspheric elements
of A). In the case of a locally aspheric topos endowed with a generating
full subcategory A as above, a map f : U ′ → U is aspheric iff for any
a ∈ Ob A, and map a→ U , the object U ′ ×U a is aspheric (because for
a map g : V ′ → V with V aspheric, g is a weak equivalence iff V ′ is
aspheric, which is a particular case of the corresponding statement valid
for any map of topoi).

Using this criterion, we get readily the following

Proposition 1. Let A be a locally aspheric topos, A a generating full
subcategory made up with aspheric elements. The following conditions on
A are equivalent:
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a) Any aspheric element of A is aspheric over e (the final object).

b) The product of any two aspheric elements of A is again aspheric.

a’), b’) as a), b) but with elements restricted to be in Ob A.

These conditions, in case A = Aˆ are nothing but (T 2) for A. It
turns out they imply already (T 1). More generally, let’s call a topos [p. 52]
totally aspheric if is locally aspheric, and satisfies more the equivalent
conditions above. It then turns out:

Corollary. Any totally aspheric topos is aspheric.

This follows readily from the definition of asphericity, and the Čech
computation of cohomology of X in terms of a family (ai)i∈I covering e,
with the ai in A. As the mutual products and multiple products of the ai ’s
are all aspheric (a fortiori acyclic for any constant coefficients), the Čech
calculation is valid (including of course in the case of non-commutative
H1) and yields the desired result.

The condition for a topos to be totally aspheric, in contrast to local
asphericity, is an exceedingly strong one. If for instance the topos is
defined by a topological space, which I’ll denote by X , then it is seen
immediately that any two non-empty open subsets of X have a non-
empty intersection, in other words X is an irreducible space (i.e., not
empty and not the union of two closed subsets distinct from X ). It is
well known on the other hand that any irreducible space is aspheric,
and clearly any non-empty open subset of an irreducible space is again
irreducible. Therefore:

Corollary 2. A topological space is totally aspheric (i.e., the corresponding
topos is t.a.) iff it is irreducible. In case X is Hausdorff, means also that X
is a one-point space.

Let’s now translate (T 3) in the context of general topoi. We get:

Proposition 2. Let X be a topos. Then the following two conditions are
equivalent:

a) The “Lawvere element” LX of A= Sh(X ) is aspheric over the final
object eX = e.

b) There exists an object I in A which is aspheric over e, and two
sections δ0,δ1 of I (over e), such that Ker(δ0,δ1) = ∅, i.e., such
that e0 ∩ e1 = ∅, where e0, e1 are the subobjects of I defined by
δ0,δ1.

I recall that the Lawvere element is the one which represents the
functor

F 7→ set of all subobjects of F

on A, it is endowed with two sections over e, corresponding to the two
“trivial” subobjects ∅, e of e, and the kernel of this pair of sections is
clearly ∅, thus a)⇒ b). Conversely, by the homotopy argument already
used (p. 39–40), we readily get that b) implies that the projection L→ e [p. 53]
is a weak equivalence. As the assumption b) is stable by localization,
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this shows that for any U in A, LU → U is equally a weak equivalence,
and hence L is aspheric over e.

In proposition 2 we did not make any assumption of the topos X
being locally aspheric, let alone totally aspheric. The property of total
asphericity, and the one of prop. 2 about the existence of a handy
substitute for the unit interval, seem to be independent of each other.
The case of topological spaces is instructive in this respect. Namely:

Corollary 1. Assume X is a topological space, and X is 0-connected. Then
the Lawvere element LX in A = Sh(X ) is 0-connected, except exactly
when X is irreducible, in which case LX decomposes into two connected
components.

Indeed, L is disconnected iff there is a direct summand L′ of L con-
taining e0 and 6= L, or equivalently, if for any open U ⊂ X , and U → L,
namely an open subset U0 of U , we can associate a direct summand
U ′ = L′(U , U0) of U containing U0, functorially for variable U , and such
that

L′(U ,;) = ;.

The functoriality in U means that for V open in U and V0 = U0 ∩ V , we
get

(*) L′(V, V0) = V ∩ L′(U , U0).

This implies that L′(U , U0) is known when we know L′(X , U0), namely

L′(U , U0) = U ∩ L′(X , U0).

As L′(X , U0) is a direct summand of X containing U0, and X is connected,
we see that

L′(X , U0) = X if U0 6= ;, L′(X ,;) = ;;

and hence

(**) L′(U , U0) = U if U0 6= ;, L′(U , U0) = ; if U0 = ;,

thus the association (U , U0) 7→ L′(U , U0) is uniquely determined, and
it remains to see whether the association (**) is indeed functorial, i.e.,
satisfies (*) for any open V ⊂ U , with V0 = V ∩ U0. It is OK if V0 6= ;,
or if V0 = ; and U0 = ;. If V0 = ; and U0 6= ;, it is OK iff V is empty,
in other words, if both open subsets U0 and V of U are non-empty, so
must be their intersection V0. But this means that X is irreducible.

Corollary 2. A topological space X cannot be totally aspheric (i.e., irre-
ducible) and satisfy the condition of prop. 2.

Because for a connected topos, this latter condition implies that LX is
equally connected, which contradicts corollary 1.

Thus, surely local asphericity for a topos does not imply the condition [p. 54]
of prop. 2 – the simplest counterexample is the final topos, corresponding
to one-point spaces. But I don’t expect either that condition of prop. 2,
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even for a locally aspheric topos X , and even granting X is aspheric
moreover, implies that X is totally aspheric. The positive result in
cor. 1 gives a hint that the condition of prop. 2 may be satisfied for
locally aspheric topological spaces which are sufficiently far away from
those awful non-separated spaces (including the irreducible ones) of
the algebraic geometry freaks – possibly even provided only X is locally
Hausdorff.

Now the conjunction of the conditions of prop. 1 and 2, namely total
asphericity plus existence of a monomorphism of eq e into an aspheric
element, seems an extraordinarily strong assumption – so strong indeed
that no topological space whatever can satisfy it! I feel like calling
a topos satisfying these conditions a “modelizing topos”. For a topos
of the type Aˆ, this just means it is an “elementary modelizer”, i.e.,
A is a test category, which are notions which, I feel, are about to be
pretty well understood. I have not such feeling yet for the more general
situation though. For instance, there is another kind of property of a
topos, which from the very start of our model story, one would have
thought of pinpointing by the name of a “modelizing topos”. Namely,
when taking W ⊂ FlA to be weak equivalences in the sense defined
earlier, we demand that (A, W ) should be a modelizer in the general
sense (cf. p. 31), with some exactness reinforcement (cf. p. 45), namely
that w−1A should be equivalent to (Hot), and W saturated, namely
equal to the set of maps made invertible by the localization functor –
and moreover I guess that this functor should commute with (at least
finite) sums and products. Of course, we would even expect a little
more, namely that the “canonical functor”

A→ (Hot)

can be described, by associating to every F ∈ ObA the (pro-)homotopy
type associated to it by the Verdier-Artin-Mazur process. One feels there
is a pretty juicy bunch of intimately related properties for a topos, all
connected with the “homotopy model yoga”, and which one would like
to know about.

This calls to my mind too the question of understanding the Verdier-
Artin-Mazur construction in the present setting, where homotopy types
are thought of in terms of categories as preferential models, rather than
semi-simplicial sets. This will be connected with the question, which [p. 55]
has been intriguing me lately, of understanding the “structure” of an
arbitrary morphism of topoi

X → Top(B),

where Top(B) is the topos associated to an arbitrary (essentially small)
category B – a situation, it seems, which generalizes the situation of a
“fibered topos” over the indexing category B, in the sense of SGA 4 IV. The
construction of Verdier in SGA 4 V (appendix) corresponds apparently
to the case of categories B of the type /F with F ∈ Ob ˆ, as brought
near by the standard Čech procedure. When however the topos X is
already pretty near a topos of the type Top(B), for instance if it is such a
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topos, to describe its homotopy type in terms of a huge inverse system
of semi-simplicial objects of Bˆ, rather than just take B and keep it as it
is, seems technically somewhat prohibitive, at least in the present set-up
(and with a distance of twenty years!).

36 Now back to test categories, and more specifically to her majesty – Characterization of a particular type
of test functors with values in (Cat).we still have to check it is a test category indeed! The method suggested

last Tuesday (p. 50) does work indeed, without any reference to “well-
known” facts from the semi-simplicial theory. To check (T H 1), we take
of course I = 1 and e0, e1 as usual, we then have for every n ∈ N to
construct a homotopy

hn : n × 1→ n,

where the product and the arrow can be interpreted as one in (Cat) or
even in (Ord) of course (of which is a full subcategory), and there
is a unique such h if we take for ua the “constant” endomorphism of

n whose value is the last element of n. There remains only (T H 2)
– namely to prove that the objects n × 1 in are aspheric (n≥ 0).
For this we cover ′

n = n × 1 by maximal representable subobjects,
namely maximal flags of the ordered product set (these are I guess what
are called the “shuffles” in semi-simplicial algebra). It then turns out
that ′

n can be obtained by successive gluing of flags, the intersection
of each flag we add with the sup or union of the preceding ones being
just a subflag, hence representable and aspheric. Thus we only have to
make use of the Mayer-Vietoris type easy lemma:

Lemma. Let U , V be two subobjects of the final object of a topos, assume
U , V and U ∩ V aspheric, then so is e, i.e., so is the topos.

This finishes the proof of being a test category. Of course, one
cannot help thinking of the asphericity of all the products m × n
as just meaning asphericity of the product ordered set (namely of the
corresponding category), which follows for instance from the fact that
it has a final object. But we should beware the vicious circle, as we [p. 56]
implicitly make the assumption that for an object C of (Cat) (at least an
object C such as m× n, if C is aspheric, then so is the corresponding
element α(C) in ˆ:

α(C) : n 7→ Hom( n, C),

namely the nerve of C . We expect of course something stronger to hold,
namely that for any C , α(C) has the same homotopy type as C – in
fact that we have a canonical isomorphism between the images of both
in (Hot). This relationship has still to be established, as well as the
similar statement for β : (Cat) → �ˆ, and accordingly with e and
e�. For all four categories (where the simplicial cases are known to be
test categories already), we have, together with the category A (the
would-be test category), a functor

A→ (Cat), say a 7→ a
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(notation inspired by the case A= ), hence a functor

(Cat)
α
−→ Aˆ, α(C) = (a 7→ Hom(Cat)( a, C)),

and the question is to compare the homotopy types of C and α(C), the
latter being defined of course as the homotopy type of A/α(C) ' A/C ,
the category of all pairs (a, p) with a ∈ Ob A and p : a → C , arrows
between pairs corresponding to strictly commutative diagrams in (Cat)

a′ a

C

f

p′ p
.

Proposition. Let the data be as just said, assume moreover that the
categories a (a ∈ Ob A) have final elements, that A is aspheric and that
α( 1) is aspheric over the final element of Aˆ (which is automatic if A is
a test category, A→ (Cat) is fully faithful and 1 belongs to its essential
image). Then we can find for every C in (Cat) a "map" in (Cat) (i.e., a
functor)

(*) ϕ : A/C → C ,

functorial in C for variable C, and this map being aspheric, and a fortiori
a weak equivalence (hence induces an isomorphism between the homotopy
types).

This implies that the compositum C 7→ A/C :

(Cat)→ Aˆ
iA−→ (Cat)

transforms weak equivalences into weak equivalences, and that the func-
tor deduced from it by passage to the localized categories W−1(Cat) =
(Hot) is isomorphic to the identity functor of (Hot). [p. 57]

To define a functor (*), functorial in C for variable C , we only have
to choose a final element ea in each a. For an element (a, p) of A/C ,
we define

ϕ(a, p) = p(ea),

with evident extension to arrows of A/C (NB Here it is important that
the ea be final elements of the a, initial elements for a change wouldn’t
do at all!), thus we get a functor ϕ, and functoriality with respect to C
is clear. Using the standard criterion of asphericity of a functor ϕ we
have to check that the categories

(A/C)/x

for x ∈ Ob C are aspheric, but one checks at once that the category above
is canonically isomorphic to A/C ′ , where C ′ = C/x . Thus asphericity of
ϕ for arbitrary C is equivalent to asphericity of A/C when C has a final
element, or equivalently, to asphericity of the element α(C) in Aˆ for
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such C . Now let eC be the final element of C , and consider the unique
homotopy

h : 1 × C → C

between idC and the constant functor from C to C with value eC . Ap-
plying the functor α, we get a corresponding homotopy in Aˆ

I ×α(C)→ α(C), where I = α( 1),

between the identity map of F = α(C) and a “constant” map F → F .
As we assume that I is aspherical over the final element of Aˆ, hence
I × F → F is a weak equivalence, it follows that F → e is a weak
equivalence, hence F is aspheric as e is supposed to be aspheric, which
was to be proved.

If we apply this proposition to A= and n 7→ n, we are still reduced
to check just (T H 2) (which we did above looking at shuffles), whereas
(T H 1) appears superfluous now – we get asphericity of the elements

m × n in Aˆ as a consequence (but the homotopy argument used in
the prop. is essentially the same as the one used for proving (T H 1)).
This proposition applies equally to the case when A= e (category of
non-ordered simplices e n), here the natural functor

i : e → (Cat), a 7→P∗(a)

is obtained by associated to any finite set a the combinatorial simplex it
defines, embodied by the ordered set P∗(a) of its facets of all dimensions,
which can be identified with the ordered set of all non-empty subsets
of the finite set a. As we know already e is a test category, all that
remains to be done is to check in this case that I = α( 1) is aspheric
(hence aspheric over the final object of Aˆ). Now this follows again
from a homotopy argument involving the unit segment substitute in Aˆ. [p. 58]
We could formalize it as follows:

Corollary. In the proposition above, the condition that α( 1) be aspheric
over eAˆ is a consequence of the following assumptions:

a) The condition (T 3) is valid in A, with the stronger assumption that
I is aspheric over the final object e of Aˆ, and moreover:

b) for every a ∈ Ob A and u : a→ I , let au = u−1(e0) (subobject of a in
Aˆ), au

= lim−→b in A/au
b, and a,u = Im( au

→ a). We assume

that Ob a,u is a crible in a, say Cu.

Indeed, interpreting α( 1) as the functor a 7→ Crib a, we define a
homotopy

h : I × F → F (where F = α( 1))

from the identity idF to the constant map c : F → F associating to every
crible in some a the empty crible in the same, by taking for every a in
A the map

(u, C0) 7→ Cu ◦ C0.
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It follows that F → e is a weak equivalence, and the same argument in
any induced category A/a shows that this is universally so, i.e., F → e is
aspheric, O.K.

In the case above, A = e , we get indeed that for u : a → I , au is
empty in A and au

→ a is a full embedding, turning au
into a crible

in a, thus b) is satisfied (with the usual choice I = e

1 of course).

21.3.

37 By the end of the notes two days ago, there was the pretty strong The “asphericity story” told anew –
the “key result”.impression of repeating the same argument all over again, in very sim-

ilar situations. When I tried to pin down this feeling, the first thing
that occurred to me was that the homotopy equivalence I was after
A/C → C (in the proposition of p. 56), when concerned with a general
functor A→ (Cat), and the criterion obtained, was applicable to the
situation I was concerned with at the very start when defined test cate-
gories, namely when looking at the canonical functor A→ (Cat) given
by a 7→ A/a; and that this gave a criterion in this case for A to be a test
category in the wider sense, which I had overlooked when peeling out
the characterization of test categories (cf. theorem of p. 46).Finally it
becomes clear that it is about time to recast from scratch the asphericity
story, and (by one more repetition) tell it anew in a way stripped from
its repetitive features! [p. 59]

On a more technical level, I got aware too that the last corollary
stated was slightly incorrect, because it is by no means clear that the
crible Cu constructed there is functorial in u, i.e., corresponds to a map
I → α( 1), this in fact has still to be assumed (and turns out to be
satisfied in all cases which turned up naturally so far and which I looked
up). But let’s now “retell the story”!

One key notion visibly in the homotopy technique used, and which
needs a name in the long last, is the notion of a homotopy interval
(“segment homotopique” in French). To be really outspoken about the
very formal nature of this notion and the way it will be used, let’s develop
it in any category A endowed with a subset W ⊂ Fl(A) of the set of
arrows of A, and satisfying the usual conditions:

a) W contains all isomorphisms of A,

b) for two composable arrows u, v in A, if two among u, v, vu are in
W , so is the third, and

c) if i : F0 → F , and r : F → F0 is a left inverse (i.e., a retraction),
and if p = ir : F → F is in W , so is r (and hence i too).

The condition c) here is the ingredient slightly stronger than what we
used to call “mild saturation property” of W , meaning a) and b).

We’ll call homotopy interval in A (with respect to the notion of “weak
equivalence” W , which will generally be implicit and specified by con-
text) a triple (I , e0, e1), where I is an object ofA, e0 and e1 two subobjects,
such that the following conditions a) to c) hold:

a) e0 and e1 are final objects of A,
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which implies that A has a final object, unique up to unique isomorphism,
which we’ll denote by eA or simply e, so that the data e0, e1 in I are
equivalent to giving two sections

δ0,δ1 : e→ I

of I over e. Note that e0 ∩ e1 = Ker(δ0,δ1).
b) e0 ∩ e1 =∅A (a strict initial element of A),

c) I → e is “universally in W ” or, as we’ll say, is W-aspheric or simply
aspheric,

which just means here that I → e is “squarable” and that for any F in
ObA, F × I → F is in W , i.e., is a “weak equivalence”.

It is clear that if (I , e0, e1) is a homotopy interval in A, then for any
F ∈ ObA, the “induced interval” in A/F , namely (I × F, e0 × F, e1 × F) is
a homotopy interval in A/F . [p. 60]

We now get the (essentially trivial)

Homotopy lemma. Let h : F × I → F be a “homotopy” with respect to
(I , e0, e1) of idF with a constant map c = ir : F → F, where r : F → e and
i : e→ F is a section of F over e. Then F → e is W-aspheric.

In the proof of this lemma, we make use of a)b)c) for W , but only
a)c) for (I , e0, e1), namely we don’t even need e0 ∩ e1 =∅A. This is still
the case for the proof of the

Comparison lemma for homotopy intervals. Let L be an object of A,
squarable over e and endowed with a composition law x∧ y, let δL

i : e→ L
be two sections of L (i ∈ {0, 1}), which are respectively a left unit and zero
element for the multiplication, namely the corresponding elements ea

0 , ea
1

in any Hom(a, L) satisfy

ea
0 ∧ x = x , ea

1 ∧ x = ea
1

for any x in Hom(a, L). Assume moreover we got a homotopy interval
(I , e0, e1) and a “map of intervals”

ϕ : I → L

(in the sense: compatible with endpoints). Then idL is homotopic (with
respect to (I , e0, e1)) to the constant map cL : L→ L defined by δL

1 , and
hence by the previous homotopy lemma, L→ e is W-aspheric and therefore
L endowed with eL

0 , eL
1 defined by δL

0 ,δL
1 is itself a homotopy interval in A

(provided, at least, we know that eL
0 ∩ eL

1 =∅).

The homotopy h is simply given (for u : a→ I , x : a→ L) by

h(x , u) = ϕ(u)∧ x;

when u factors through e0, then ϕ(u) = ea
0 and hence h(x , u) = x; if it

factors through e1, then ϕ(u) = ea
1 and we get h(x , u) = ea

1 , qed.
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Corollary. Assume in A (endowed with W ) finite inverse limits exist (i.e.,
final object and fibered products exist), and moreover that the presheaf on
A

F 7→ set of all subobjects of F

is representable by an element L of A (the “Lawvere element”). Assume
moreover A has a strict initial element ∅A, i.e., an initial element and
that any map a→∅A is an isomorphism. Consider the two sections of L
over e, δL

0 and δL
1 , corresponding to the full and to the empty subobject

of e, so that we get visibly eL
0 ∩ eL

0 =∅. Then, for a homotopy interval to
exist in A, it is necessary and sufficient that L be W-aspheric over e, i.e.,
that (L, eL

0 , eL
1 ) be a homotopy interval.

By the comparison lemma, it is enough to show that for any homotopy
interval (I , e0, e1) in A, there exists a morphism of “intervals” from I into [p. 61]
L, using the fact of course that the intersection law on L is a composition
law admitting δL

0 ,δL
1 respectively as unit and as zero element (still using

the fact that the initial object is strict). But the subobject e0 of I , by
definition of L, can be viewed as the inverse image of eL

0 by a uniquely
defined map I → L. The induced map e1 → L corresponds to the
induced subobject e0 ∩ e1 of e1 which by assumption is ∅A, and hence
e1→ L factors through eL

1 , qed.
Of course, the case for the time being which mainly interests us is

the one when A is a topos (more specifically even, a topos equivalent
to a category Aˆ, with A a small category), in which case it is tacitly
understood that W is the set of weak equivalences in the usual sense.
We now come to the key result:

Theorem. Let A be a small category, and

i : A→ (Cat)

a functor, hence a functor

i∗ : (Cat)→ Aˆ, C 7→ (a 7→ Hom(i(a), C)).

Consider the canonical functor iA : Aˆ → (Cat), F 7→ A/F , and the com-
positum

(Cat)
i∗
−→ Aˆ

iA−→ (Cat), C 7→ A/i∗(C)
def
= A/C .

Assume that for any a ∈ Ob A, i(a) ∈ Ob (Cat) has a final element ea (but
we don’t demand that for u : a→ b, i(u) : i(a)→ i(b) transforms ea into
eb nor even into a final element of i(b)). Consider the canonical functor

(*) A/C → C , (a, p : i(a)→ C) 7→ p(ea),

which is functorial in C, and hence defines a map between functors from
(Cat) to (Cat):

(**) iAi∗→ id(Cat).

a) The following conditions are equivalent:
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(i) For any C in (Cat), (*) is aspheric.

(ii) For any C in (Cat), (*) is a weak equivalence, i.e., iAi∗ trans-
forms weak equivalences into weak equivalences, and (**)
induces an isomorphism of the corresponding functor (Hot)→
(Hot) with the identity functor.

(iii) The functor iAi∗ transforms weak equivalences into weak equiv-
alences, and the induced functor (Hot) → (Hot) transforms
every object into an isomorphic one, i.e., for any C in (Cat),
A/C is isomorphic to C in (Hot).

(iv) For any C with a final element, A/C is aspheric.

b) The following conditions are equivalent, and they imply the condi-
tions in a) provided A is aspheric: [p. 62]

(i) For any C in (Cat) the functor

(***) A/C → A× C deduced from (*) and A/C
can
−→ A

is aspheric.

(ii) For any C in (Cat) with final element and any a in A, a× i∗(C)
is an aspheric element in Aˆ, i.e., for any such C, i∗(C) is
aspheric over the final element e of Aˆ.

(iii) The element i∗( 1) of Aˆ is aspheric over the final object e.

Remark. Of course the conditions in a) imply that A is aspheric (take C
to be the final category), and hence by an easy lemma (of below, §40)
we get that A× C → C is a weak equivalence (and even aspheric), and
hence A/C → A× C is a weak equivalence (because its compositum with
the weak equivalence A× C → C is a weak equivalence by assumption).
It is unlikely however that a) implies the conditions of b), namely
asphericity (not merely weak equivalence) of (***) in b(i). But the
opposite implication, namely b(i) + asphericity of A implies a(i), is
trivial, because A× C → C is aspheric.

Proof of theorem. We stated a) and b) in a way to get a visibly decreasing
cascade of conditions; and moreover that the weakest in a) implies the
strongest, or that b(ii) implies b(i), is an immediate consequence of the
standard asphericity criterion for a functor between categories (p. 38).
The only point which is a little less formal is that b(iii) implies b(ii).
But using the final object in C , we get a (unique) homotopy in (Cat)
(relative to 1)

1 × C → C ,

between the identity map of C and the constant map with value eC
– hence by applying i∗, a homotopy relative to i∗( 1) (viewed as an
“interval” by taking as “endpoints” the arrows deduced from δ0,δ1 :
e(Cat) = 0 ⇒ 1 by applying i∗), between the identity map of i∗(C)
and a constant map of i∗(C), which by the homotopy lemma implies
that i∗(C) itself is aspheric over eAˆ , qed.
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Remark 2. The Condition b(iii) can be stated by saying that i∗( 1) is
a homotopy interval in Aˆ. All which needs to be checked for this, is
that condition b) for homotopy intervals (p. 59) namely e0 ∩ e1 = ∅
is satisfied in Aˆ, but this follows from the corresponding property for

1 in (Cat) (as the functor i∗ is left exact) and from the fact that i∗

transforms initial element ∅(Cat) into initial element ∅Aˆ . This last fact
is equivalent to i(a) 6=∅ for any a in A, which is true as i(a) has a final
element.

22.3. [p. 63]

38 Let’s get back to the “asphericity story retold” – I had to stop yesterday Asphericity story retold (cont’d):
generalized nerve functors.just in the middle, as it was getting prohibitively late.

I want to comment a little about the “key result” just stated and
proved. The main point of this result, forgetting the game of givings
heaps of equivalent formulations of two kinds of properties, is that the
extremely simple condition b(iii), namely that i∗( 1) is aspheric over
the unit element eAˆ of Aˆ, plus asphericity of the latter, ensure already
the conditions in a), which can be viewed (among others) as just stating
that the compositum

iAi∗ : (Cat)→ Aˆ→ (Cat)

from (Cat) to (Cat) induces an autoequivalence of the localized category
(Hot), or (what amounts still to the same) a functor (Hot) → (Hot)
isomorphic to the identity functor. (NB that two do indeed amount to
the same follows at once from the implication (iv)⇒ (ii) in a).) It is
interesting to note that both properties, the stronger one that i∗( 1)
is aspheric over eAˆ , and the weaker one in terms of properties of
the compositum iAi∗, make a sense without any reference to the extra
assumption that the categories i(a) have a final element each, nor to
the corresponding map (*) A/C → C (functorial in C).

This suggests that there should exist a more general statement than
in the theorem, without making the assumption about final objects in
the categories i(a), and without the possibility of a direct comparison
of A/C and C through a functor between them. Indeed I have an idea
of a statement in this respect, however for the time being it seems that
the theorem as stated is sufficiently general for handling the situations I
have in mind.

Applying the theorem to the canonical functor i

i0 : a 7→ A/a : A→ (Cat),

whose canonical extension to Aˆ (as a functor Aˆ→ (Cat) commuting
to direct limits) is the functor

iA : F 7→ A/F : Aˆ→ (Cat),

giving rise to the right adjoint

i∗0 = jA : (Cat)→ Aˆ,
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the condition (i) in a) is nothing but the familiar condition

iA jA(C)→ C a weak equivalence for any C in (Cat),

which we had used for our first (or rather, second already!) definition
of so-called “test categories”. Later on we considerably strengthened
this condition – we now call them “test categories in the wide sense”.
On the other hand, as we already noticed before, here i∗0( 1) = jA( 1)
is nothing but the Lawvere element LA of Aˆ. Thus the main content of
the theorem in the present special case can be formulated thus: [p. 64]

Corollary 1. Assume the Lawvere element LA in Aˆ is aspheric over the
final object eAˆ of Aˆ, and that moreover the latter be aspheric, i.e., A
aspheric. Then A is a test category in the wide sense, namely for any C in
(Cat), the canonical functor iA jA(C)→ C is a weak equivalence (and even
aspheric-- see prop. on p. 38, and also p. 35, for equivalent formulations).

Thus we did get after all a “handy criterion” sufficient to ensure
this basic test-property, which looks a lot less strong a priori than the
condition (T 2) of total asphericity of Aˆ. 25.3. or rather, than the set of conditions

(T 1) to (T 3)But let’s now come back to the more general situation of the theorem,
with a functor

i : A→ (Cat)

subjected only to the mild condition that the categories i(a) (for a in A)
have final objects. Assume condition b(iii) to be satisfied, namely that
i∗( 1) is aspheric over eAˆ , and therefore it is a homotopy interval in Aˆ.
Let again LA be the Lawvere element in Aˆ, we define (independently of
any assumption on i) a morphism of “intervals” in Aˆ, compatible even
with the natural composition laws (by intersection) on both members

ϕ : J = i∗( 1)→ LA.

For this we remember that for a in J , we get

J(a)' Crib i(a) ,→ set of all subobjects of i(a) in (Cat)

(this bijection and the inclusion being functorial in a), thus if C is in
J(a), i.e., a crible in i(a), we associate to this

ϕ(C) = subobject of a in Aˆ, corresponding to the
crible in A/a of all b/a such that i(b)→ i(a)
factors through the crible C ⊂ i(a);

it is immediate that the map ϕa : J(a)→ L(a) thus obtained is functorial
in a for variable a, hence a mapϕ : J → L, and it is immediately checked
too that this is “compatible with endpoints” – namely when C is full,
respectively empty, then so is ϕ(C) (for the “empty” case, this comes
from the fact that the categories i(a) are non-empty). Applying now the
comparison lemma for homotopy intervals (p. 60), we get the following
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Corollary 2. Under the general conditions of the theorem, and assuming
moreover that i∗( 1) is aspheric over eAˆ (condition b(iii)), it follows
that the Lawvere element LA of Aˆ is aspheric over eAˆ . Assume moreover
that eAˆ is aspheric, i.e., A aspheric. Then we get: [p. 65]

a) The category A is a test category in the wide sense (cf. cor. 1).

b) Both functors i∗ : (Cat)→ Aˆ and iA : Aˆ→ (Cat) are “modelizing”,
namely the set of weak equivalences in the source category is the in-
verse image of the corresponding set of arrows in the target category,
and the functor induced on the localizations with respect to weak
equivalences is an equivalence of categories.

c) Let W (resp. WA) be the set of weak equivalences in (Cat) (resp. in
Aˆ). Then the functor

(Hot)
def
= W−1(Cat)→W−1

A Aˆ

induced by i∗ is canonically isomorphic to the quasi-inverse of the
functor in opposite direction induced by iA, or equivalently, can.
isomorphic to the functor in the same direction induced by i∗0 = jA :
(Cat)→ Aˆ (cf. again cor. 1 above for the notations).

Of course a) follows from cor. 1, and implies that iA has the properties
stated in b). That the analogous properties hold for i∗ too, and the
rest of the statement, i.e., c), follows formally, using the fact that the
compositum iAi∗ is canonically isomorphic to the identity functor once
we pass to the localized category (Hot) (using the theorem, b(iii) ⇒
a)).

This corollary shows that, up to canonical isomorphism, the functor

(Hot)→W−1
A Aˆ induced by i∗ : (Cat)→ Aˆ

does not depend on the choice of the functor i : A → (Cat), provided
only this functor satisfies the two conditions that it takes its values in
the full subcategory of (Cat) of all categories with final objects, and
that moreover i∗( 1) be aspheric over the final object of Aˆ (plus of
course the condition of asphericity on A itself). There is of course always
the canonical choice of a functor i : A→ (Cat), namely iA : a 7→ A/a
which (because of its canonicity) looks as the best choice theoretically
– and it was the first one indeed we investigated into. But in practical
terms, the categories A/a are (in the concrete cases one might think of)
comparatively big (for instance, infinite) and the corresponding functor
jA = i∗A gives comparatively clumsy “models” in Aˆ for describing the
homotopy types of given “models” in (Cat), whereas we can get away
with considerably neater models in Aˆ, using a functor i giving rise to
categories i(a) which are a lot easier to compute with (for instance,
finite categories of very specific type). The most commonly used is of
course the nerve functor i∗, corresponding to the standard embedding
of A = into (Cat) – and in the general case of the theorem above,
complemented by cor. 2, the functor i∗ should be viewed as a generalized
nerve functor. [p. 66]
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To be completely happy, we still need a down-to-earth sufficient cri-
terion to ensure that i∗( 1) is aspheric over eAˆ , in the spirit of the
somewhat awkward corollary on p. 58. The following seems quite
adequate for all cases I have in mind at the present moment:

Corollary 3. Under the general conditions of the theorem on A and i :
A→ (Cat), assume moreover we got a homotopy interval (I ,δ0,δ1) in
Aˆ, that A has a final object e (which is therefore also a final object of
Aˆ so we may view δ0,δ1 as maps e⇒ I , i.e., elements in I(e)), and let
i! : Aˆ → (Cat) be the canonical extension of i to Aˆ (commuting with
direct limits). Assume moreover i(e) = 0 (the final object in (Cat)), and
that we can find a map in (Cat)

i!(I)→ 1

compatible with δ0,δ1, i.e., whose compositae with i!(δn) : 0→ 1 for
n ∈ {0,1} are the two standard maps δ0,δ1 from 0 to 1. Then the
condition b(iii) of the theorem holds, namely i∗( 1) is aspheric over e.

Indeed, to give a map i!(I)→ 1 in (Cat) amounts to the same as
giving a map I → i∗( 1) in Aˆ (namely i! and i∗ are adjoint), moreover
the extra condition involving δ0,δ1 just means that his map respects
endpoints. Using the composition law of intersection on i∗( 1) = (a 7→
Crib(i(a))), the comparison lemma for homotopy intervals (p. 60 implies
that i∗( 1) is aspheric over e, qed.

In the cases I have in mind, I is even an element of A, hence i!(I) = i(I),
moreover i(I) = 1 and the map i!(I)→ 1 above is the identity! The
choice of the functor i is in every case “the most natural one” (discarding
however the clumsy i0 = iA, and trying to get away with categories i(a)
which give the simplest imaginable description of objects and arrows
of the would-be test category A), and the choice of I itself is still more
evident – it is the object of A (or one among the objects, in cases such
as A= n, giving rise to simplicial multicomplexes. . . ) which suggests
most strongly the picture of an “interval”. Thus the one key verification
we are left with (all the rest being “formal” in terms of what precedes)
is the asphericity of I over e, i.e., that all the products I × a are aspheric.

39 Maybe it is time now to come back to the property of total asphericity Returning upon terminology: strict
test categories, and strict modelizers.of Aˆ, expressed by the condition (T 2) on A, namely that the product in

Aˆ of any two elements in A is aspheric. As we saw, this implies already
asphericity of A, i.e., of the topos Aˆ. In our present setting, total
asphericity is of special interest only when coupled with the property
(T 3), which amounts to saying that the Lawvere element LA in Aˆ
is aspheric over eAˆ , or (what now amounts to the same) that LA is [p. 67]
aspheric. However, when faced with the question to decide whether a
given A does indeed satisfy (T 2), it will be convenient to use a system
(I , e0, e1) in Aˆ of which we know beforehand it is a homotopy interval
(the delicate part of this notion being the asphericity of all products I×a
for a in A). As part of the “story retold”, I recall now the most natural
geometric assumption which will ensure (T 2), i.e., total asphericity of
Aˆ:
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Proposition. Let A be a small category, (I , e0, e1) a homotopy interval in
Aˆ. Assume that for any a in A, there exists a homotopy

ha : I × a→ a

between ida and a constant map ca : a→ a (defined by a section of a over
the final element of Aˆ, i.e., by a map e→ a). Then Aˆ is totally aspheric,
i.e., every a ∈ Ob A is aspheric over e (or, equivalently, the product in Aˆ
of any two elements a, b in A is aspheric).

This is a particular case of the “homotopy lemma” (p. 60). In fact we
don’t even use the condition e0 ∩ e1 =∅Aˆ on the “interval” (I , e0, e1),
but we easily see that this condition follows from the existence of the
homotopy and the sections of any a in A over e.

Before returning to the investigation of specific test categories, I
want to come back on some terminology. The condition on Aˆ that
the Lawvere element LA should be aspheric over e has taken lately
considerable geometric significance, and merits a name. I will say from
now on that A is a test category, and that Aˆ is an elementary modelizer, if
this condition is satisfied, and if moreover A is aspheric. This condition
(which amounts to our former (T 1) + (T 3)) is weaker than what we
had lately called a test category, as we had overlooked so far the fact
that (T 1) and (T 3) alone already imply the basic requirement about
iA jA(C) → C being a weak equivalence for any C , and hence W−1

A Aˆ
being canonically equivalent to (Hot). Thus it seemed for a while that the
only handy conditions we could get for ensuring this requirement were
(T 1)(T 2)(T 3), all together (in fact, it turned out later that (T 2) already
implies (T 1)). When all three conditions (T 1) to (T 3) are satisfied,
I’ll now say that A is a strict test category, and that Aˆ is an elementary [p. 68]
strict modelizer. Here the notion of a “strict modelizer” (not necessary
an elementary one) makes sense independently, it means a category M
endowed with a set W ⊂ Fl(M) satisfying conditions a)b)c) of p. 59,
such that W−1M is equivalent to (Hot), and such moreover that the
localization functor M →W−1M commutes with finite products (perhaps
we should also insist on commutation with finite sums, and possibly
include also infinite sums and products in the condition – whether this
is adequate is not quite clear yet). The mere condition that iA jA(C)→ C
should be a weak equivalence for any C in (Cat), or equivalently that
iA jA(C) should be aspheric when C has a final element, will be referred
to by saying that A is a test category in the wide sense. It means little
more than the fact that (Aˆ, WA) is a modelizer. Finally, if we merely
assume that Aˆ admits a homotopy interval, or equivalently, that LA is
aspheric over eAˆ , we will say that A is a local test category (because it
just means that the induced categories A/a for a in A are test categories),
and accordingly Aˆ will be called a local elementary modelizer. More
generally, we call a topos A such that the Lawvere element LA be
aspheric over the final element a locally modelizing topos, and we call it
a modelizing topos if it is moreover aspheric. When the topos is locally
aspheric, i.e., admits a generating family made up with aspheric objects
of A, then A is indeed a locally modelizing topos iff the final object
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can be covered by elements Ui such that the induced topoi A/Ui
be

modelizing topoi. This terminology for topoi more general than of the
type Aˆ is possibly somewhat hasty, as the relation with actual homotopy
models, namely with the question whether (A, WA) is a modelizer, has
not been investigated yet. Still I have the feeling the relation should be
a satisfactory one, much along the same lines as we got in the case of
topoi of the type Aˆ. We will not dwell upon this now any longer.

For completing conceptual clarification, we should still make sure
that a test category A need not be a strict test category, i.e., need not be
totally aspheric. As a candidate for a counterexample, one would think
about a category A endowed with a final element and an element I ,
together with δ0,δ1 : e→ I , satisfying Ker(δ0,δ1) =∅Aˆ in Aˆ, I being
squarable in A, namely the products I×a (a ∈ Ob A) are in A – this alone
will imply that I is aspheric over e in Aˆ, hence A is a test category, but it
is unlikely that this alone will imply equally total asphericity of Aˆ. We
would think, as the most “economical” example, one where A is made
up with elements of the type In (n ∈ N) namely cartesian powers of I , [p. 69]
plus products a0 × In (n ∈ N), where a0 is an extra element, and those
maps between these all those (and not more) which can be deduced
from δ0,δ1 and the assumption that the elements In and a × In are
cartesian products indeed. This is much in the spirit of the construction
of a variant of the category � of “standard cubes”, which naturally came
to mind a while ago (cf. p. 48–49). I very much doubt A satisfies (T 2),
and would rather bet that a0 × a0 in Aˆ is not aspheric.

Another type of example comes to my mind, starting with a perfectly
good (namely strict) test category A, and taking an induced category
A/a0

, with a0 in A. This is of course a test category (it would have been
enough that A be just a local test category), however it is unlikely that
it will satisfy (T 2), namely the induced topos be totally aspheric. This
would imply for instance that for any two non-empty subobjects of a0
in Aˆ (namely subobjects of the final element in Aˆ/a0

' (A/a0
)ˆ) have

a non-empty intersection. Now this is an exceedingly strong property
of a0, which is practically never satisfied, except for the final object
of A. Now here is a kind of “universal” counterexample. Take A any
test category and I a homotopy interval in Aˆ, thus I is aspheric and
hence A/I is again a test category (namely locally test and aspheric),
but it is never a strict test category, because the two standard subobjects
e0, e1 given with the structure of I are non-empty, and however their
intersection is empty!

These reflections bring very near how much stronger the strictness
requirement (T 2) is for test categories, than merely the conditions (T 1),
(T 3) without (T 2).

40 Yesterday I incidentally made use of the fact that if A is an aspheric Digression on cartesian products of
weak equivalences in (Cat); 4 weak
equivalences relative to a given base
object.

element in (Cat), then for any other object C , C × A→ C is aspheric
(and a fortiori a weak equivalence). The usual asphericity criterion for
a functor shows that it is enough to prove that for any C with final
element, C × A is aspheric. For this again, it is enough to prove that the
projection C × A→ A is aspheric, which by localization upon A means
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that the product categories C × (A/a) (with a in A) are aspheric. Finally
we reduced to checking that the product of two categories with final
element is aspheric, which is trivial because such a category has itself a
final element.

The result just proved can be viewed as a particular case of the fol-
lowing

Proposition. In (Cat), the cartesian product of two weak equivalences is
a weak equivalence.

(We get the previous result by taking the weak equivalences A→ e(Cat) [p. 70]
and idC : C → C .) To prove the proposition, we are immediately
reduced to the case when one of the two functors is an identity functor,
i.e., proving the

Corollary 1. If f : A′→ A is a weak equivalence in (Cat), then for any C
in (Cat), f × idC : A′ × C → A× C is a weak equivalence.

For proving this, we view the functor f × idC as a morphism of cat-
egories “over C”, which corresponds to a situation of a morphism of
topoi over a third one

X ′ X

Y

f

,

we will say that f is a weak equivalence relative to Y , if not only this is a
weak equivalence, but remains so by any base change by a localization
functor

Y/U → U

giving rise to
f/U : X ′/U → X/U .

As usual, standard arguments prove that it is enough to take U in a set
of generators of the topos Y . In case Y = Cˆ, we may take U in C . In
case moreover X , X ′ are defined by small categories P, P ′ and a functor
of categories over C

P ′ P

C

F

,

this condition amounts to demanding that for any c in C , the induced
functor

F/c : P ′/c → P/c

be a weak equivalence. In our case P = A× C , P ′ = A′ × C , F = f × idC ,
the induced functor can be identified with f × idC/c . This reduces us,
for proving the corollary, to the case when C has a final element. But
consider now the commutative diagram

A′ × C A× C

A′ A

f ×idC

f
,
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where the vertical arrows are the projections and hence, by what was
proved before, weak equivalences. As f is a weak equivalence, it follows
that f × idC is a weak equivalence too, qed.

The proposition above goes somewhat in the direction of looking at
“homotopy properties of (Cat)” and “how far (Cat) is from being a closed
model category in Quillen’s sense”. It is very suggestive for having a [p. 71]
closer look at functors f : B→ A in (Cat) which are “universally weak
equivalences”, i.e., W(Cat)-aspheric, namely such that for any map in
(Cat) A′→ A (not only a localization A/a → A), the induced functor B′ =
B ×A A′→ A′ is a weak equivalence. This property is a lot stronger than
just asphericity, and reminds of the “trivial fibrations” in Quillen’s theory.
The usual criterion of asphericity for B′→ A′ shows that f is W -aspheric
iff for any A′ with final element, and any functor A′→ A, the fiber product
B′ = B×AA′ is aspheric. The feeling here is (suggested partly by Quillen’s
terminology) that this property is tied up some way with the property
for f to be a fibering (or cofibering?) functor, in the sense of fibered
and cofibered categories, with aspheric fibers moreover. Presumably,
fibered or cofibered categories, with “base change functors” which are
weak equivalences, will play the part of Serre-Quillen’s fibrations – and
it is still to be guessed what kind of properties of a functor will play the
part of cofibrations. Apparently they will have to be a lot more stringent
than just monomorphisms in (Cat), cf. p. 37.

However, I feel it is not time yet to dive into the homotopy theory
properties of the all-encompassing basic modelizer (Cat), but rather
come back to the study of general (and less general) test categories.

41 One comment still, upon the role played in the theory I am developing Role of the “inspiring assumption”,
and of saturation conditions on
“weak equivalences”.

of the assumption (p. 30) that the category of autoequivalences of (Hot)
is equivalent to the final category. This assumption has been a crucial
guide for putting the emphasis where it really belongs, namely upon the
set W ⊂ Fl(M) of weak equivalences within a category M which one
would like to take in some sense as a category of models for homotopy
types – the functors M → (Hot) following along automatically. However,
in no statement whatever I proved so far, was this assumption ever
used. On the other hand, the notion of a modelizer introduced in the
wake of the “assumption” (cf. p. 31) was tacitly changed during the
reflection, by dropping altogether the condition a) of (strong) saturation
of W , namely that W is just the set of arrows made invertible by the
localization functor M →W−1M . Instead of this, it turned out that the
saturation condition we really had at hands and which was adequate
for working, was the conditions a) to c) I finally wrote down explicitly
yesterday (p. 59). As for the strong saturation condition, for the time
being (using nothing but what has actually been proved so far, without
reference to “well-known facts” from homotopy theory), it is not even
clear that the basic modelizer (Cat) is one in the initial sense, namely
that the set of weak equivalences in (Cat) is strongly saturated. However, [p. 72]
from the known relation between (Cat) and an elementary modelizer
Aˆ, it follows that W(Cat) is strongly saturated iff WA ⊂ Fl(Aˆ) is. This
implies that it is enough to prove strong saturation in one elementary
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modelizer Aˆ, to deduce it in all others, as well as in (Cat). However, in
the case at least when A= , it is indeed “well-known” that the weak
equivalences in Aˆ satisfy the strong saturation condition. In terms
of Quillen’s set-up, it follows from the fact that ˆ is a “closed model
category”, and prop. 1 in I 5.5 of Quillen’s exposé. The only thing which
is not quite understood, not by me at any rate, is why ˆ is indeed
a closed model category – Quillen’s proof it seems relies strongly on
typical simplicial techniques. I’ll have to look if the present set-up will
suggest a more conceptual proof, valid possibly for any test category
(or at least, any strict test category). I’ll have to come back upon this
later. For the time being, I feel a greater urge still to understand about
the relationship between different test categories – also, I did not really
finish with my review of what may be viewed as the “standard” test
categories such as , � and their variants.

25.3.

42 In the notes last time I made clear what finally has turned out for Terminology revised (model preserv-
ing functors). Submodelizers of the
basic modelizer (Cat).

me to correspond to the appelation of a “modelizer”, as prompted
by the internal logics of the situations I was looking at, in terms of
the information available to me. I should by then have added what a
model-preserving (or modelizing) functor between modelizers (M , W ) and
(M ′, W ′) has turned out to mean, which has undergone a corresponding
change with respect to what I first contemplated calling by that name
(p. 31). Namely, here it turned out that I should be more stringent for
this notion, replacing the condition f (W ) ⊂W ′ by the stronger one

W = f −1(W ′),

and moreover, of course, still demanding that the corresponding functor

W−1M →W ′−1M ′

should be an equivalence. It is by now established, with the exception of
just the two first that, all the functors occurring in the diagram on p. 31
are indeed model preserving, namely it is so for α, β , ξ, η – and also
the right adjoints to ξ, η, as expected by then. It should be more or less
trivial that the first of the functors in this diagram, namely the canonical
inclusion (Ord)→ (Preord), as well as the left adjoint from (Preord) to
(Ord), are model preserving – except for the fact that it has not been
yet established that these two categories are indeed modelizers (for the
natural notion of weak equivalences, induced from (Cat))), namely that [p. 73]
the localized categories with respect to weak equivalences are indeed
equivalent to (Hot). The only natural way one might think of this to be
proved, is by proving that the inclusion functor from either into (Cat)
induces an equivalence between the localizations, which would imply at
the same time that this inclusion functor is indeed model-preserving, and
hence that all the functors in the diagram of p. 31 are model preserving
functors between modelizers. I still do believe this should be so, and
want to give below a reflection which might lead to a proof of this.



§42 Terminology revised (model preserving functors). . . . 85

Before, there is still one noteworthy circumstance I want to emphasize.
Namely, it occurred in a number of instances that we got in a rather
natural way several modelizing functors between two modelizers (M , W )
and (M ′, W ′), in one direction or the other – for instance from (Cat)
to Aˆ using different functors i : A→ (Cat), or from Aˆ to (Cat) using
a 7→ A/a. It turned out that the corresponding functors between W−1M
and W ′−1M ′ were always canonically isomorphic when in the same
direction, and quasi-inverse of each other when in opposite directions.
This is indeed very much in the spirit of the “inspiring assumption” of
p. 30, that the category of autoequivalences of (Hot) is equivalent to
the unit category, which implies indeed that for two categories H, H ′

equivalent to (Hot), for two equivalences from H to H ′, there is a unique
isomorphism between them. Quite similarly, there have been a number
of situations (more or less summed up in the end in the “key theorem”
of p. 61) when by localization we got a natural functor f from some
W−1M to another W ′−1M ′, and another F which is known already to be
an equivalence, and it turns out that f is isomorphic to F (and in fact,
then, canonically so) iff for any object x in the source category, f (x)
and F(x) are isomorphic. This suggests that presumably, every functor
from (Hot) into itself, transforming every object into an isomorphic one, is
in fact isomorphic to the identity functor.

I want now to make a comment, implying that there are many full
subcategories M of (Cat), such that for the induced notion of weak equiv-
alence, M becomes a modelizer, and the inclusion functor a modelizing
functor – or, what amounts to the same, that the canonical functor

W−1
M M →W−1

(Cat)(Cat) = (Hot)

is an equivalence. To see this, let more generally (M , W ) be any category
endowed with a subset W ⊂ Fl(M), and let h : M → M be a functor such
that h(W ) ⊂W , and such that the induced functor W−1→W−1M is an
equivalence. Let now M ′ be any full subcategory of M such that h factors
through M ′, let h′ : M → M ′ be the corresponding induced functor, and
W ′ =W ∩ Fl(M ′). Then it is formal that the inclusion g : M ′→ M and [p. 74]
h′ : M → M ′ induce functors between W ′−1M ′ and W−1M , which are
quasi-inverse to each other – hence these two categories are equivalent.
In case (M , W ) is a modelizer, this implies that (M ′, W ′) is a modelizer
too and the inclusion functor g, as well as h′, are model preserving.

We can apply this remark to the modelizer (Cat), and to the functor

iAi∗ : (Cat)→ (Cat)

defined by any functor i : A→ (Cat) satisfying the conditions of the “key
theorem” (p. 61), for instance the functor iA� A : a 7→ A/a (where A is
any test category). We get the following

Proposition. Let M be any full subcategory of (Cat), assume there exists
a test-category A such that for any F in Aˆ, the category A/F belongs to M
(i.e., the functor iA : Aˆ→ (Cat), F 7→ A/F , factors through M). Let WM
be the set of weak equivalences in M. Then (M , WM ) is a modelizer and
the inclusion functor M → (Cat) is model preserving.
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The same of course will be true for any full subcategory of (Cat)
containing M – which makes an impressive bunch of modelizers indeed!
When the test category A is given, one natural choice for M is to take
all categories C which are “locally isomorphic to A”, namely such that
for any x in C , the induced category C/x be isomorphic to a category of
the type A/a, with a in A.

It would be tempting to apply this result to the full subcategory (Ord)
of (Cat) – but for this to be feasible, would mean exactly that there
exists a test-category A defined by an ordered set (or at least “locally
ordered”). To see whether there exists indeed such an ordered set looks
like a rather interesting question – maybe it would give rise to algebraic
models for homotopy types, simpler than those used so far, namely
simplicial and cubical complexes and multicomplexes. It is interesting
to note that if such a test category should exist, it will not be in any
case a strict test category. Indeed, the topos Aˆ associated to an ordered
set A can be viewed also, as we saw before (p. 18), as associated to a
suitable topological space (namely A endowed with a suitable topology,
the open sets being just the “cribles” in A). But we have seen that the
topos associated to a topological space cannot be strictly modelizing
(cor. 2 on page 53).

This remark confirms the feeling that it was worth while emphasizing
the notion of a test category (just (T 1) to (T 3)) by a simple and
striking name as I finally did, rather than bury it behind the notion I
now call a strict test category, which is considerably more stringent and,
moreover, more “rigid”. For instance, it is not stable under localization
A/a, whereas the notion of a test category is – indeed, for any aspheric
I in Aˆ, A/I is still a test category. [p. 75]

43 Now let’s come back for a little while again to the so-called “standard The category f of simplices without
degeneracies as a weak test category
– or “face complexes” as models for
homotopy types.

test categories”, and check how nicely the “story retold” applies to them.
Not speaking about multicomplexes, there are essentially two vari-

ants for “categories of simplices” as test categories. The smaller, more
commonly used one, is the category of “ordered simplices”, most con-
veniently described as the full subcategory of (Cat) defined by the family
of simplices n (n ∈ N). Here the most natural choice for i : → (Cat)
is of course the inclusion functor. As i is fully faithful and 1 is in the
image, it follows that i∗( 1) = 1, and we have only to check (for
A to be a test-category with “test-functor” i) that 1 is aspheric over
e = 0, namely that all products 1 × n are aspheric – which we did.
The extra condition of the “total asphericity criterion” (proposition on
p. 67), namely existence of a homotopy in ˆ from the identity map to
a constant map, for any n, is indeed satisfied: it is enough to define
such a homotopy in (Cat), which is trivial using the final element of n.
Thus is in fact a strict test category.

As for e , the most elegant choice theoretically is to take the category
of all non-empty finite sets, but his leads to set-theoretic difficulties, as
this category is not small - thus we take again the standard non-ordered
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simplices
e

n = N∩ [0, n] (n ∈ N),

so as to get a “reduced” category with a countable set of objects. This
time, as e is stable under finite products, and contains the “interval”
( e 1,δ0,δ1) (which is necessarily then a homotopy interval, as all ele-
ments of e are aspheric over e = e

0), the fact that e is a strict test
category is trivial. As for a test functor, the neatest choice is the one we
said before, namely associating to every finite set the ordered set of all
non-empty subsets. We thus get

ei : e ˆ→ (Cat) (factoring in fact through (Ord), as
does i : → (Cat) above)

To prove it is indeed a test functor, the corollary 3 to the “key theorem”
(p. 66) applies, taking of course I = e

1, hence

ei!(I) = i( e 1) =
{1}

{0, 1}
{0}

.

We map this into the object 1 of (Cat), by taking {0} into 0, {1} and [p. 76]
{0, 1} into 1, we do get indeed a morphism compatible with endpoints,
which implies that ei is a test functor.

If we denote still by i,ei the functors from , e to the category (Ord)
of ordered sets factoring the previous two test functors, we get a com-
mutative diagram of functors

e

(Ord) (Ord)

i ei

bar ,

where the first horizontal arrow is the inclusion functor (bijective on
objects, and injective but not bijective on arrows), and the second is the
“barycentric subdivision” functor, or “flag”-functor, associating to every
ordered set the set of all “flags”, namely non-empty subsets which are
totally ordered for the induced order (here, all subsets, as the simplices
are totally ordered).

For a while I thought there was an interesting third variant, namely
ordered simplices with strictly increasing maps between them – which
means ruling out degeneracy operators. This feeling was prompted
of course by the fact that the face operators in a complex are enough
for computing homology and cohomology groups, which are felt to be
among the most important invariants of a complex. Equally, the funda-
mental groupoid of a semi-simplicial set can be described, using only
the face operators. As a consequence, for a map between semisimplicial
complexes K∗ → K ′∗, to check whether this is a weak equivalence, in
terms of the Artin-Mazur cohomological criterion, depends only on the
underlying map between “simplicial face complexes” (namely, forgetting
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degeneracies). These are indeed striking facts, which will induce us
to put greater emphasis on the face operators than on degeneracies.
It seems, though that the degeneracies play a stronger role than I sus-
pected, even though it is a somewhat hidden one. In any case, as soon
as we try to check (“par acquit de conscience”) that the category f of
simplices with strictly increasing maps is a test category, it turns out
that it is very far from it! Thus, as there is no map from any n with
n> 1 into 1, it follows that in ( f)ˆ, we get

f
/ 0× n

= discrete category with n+ 1 elements,

thus these products are by no means aspheric, poor them! Even throwing
out 0 (a barbarous thing to do anyhow!) doesn’t rule out the trouble,
and restricting moreover to products 1 × n (to have at least a test
category, if not a strict one). In any case, 1 wouldn’t be of much use,
because it has got no “section” anymore (nor does any other element
of f) – because this would imply that any element of f maps into it –
but for given n, only the m’s with m≤ n map into it. [p. 77]

Maybe I am only being imprisoned still by the preconception of finding
a homotopy interval in f itself, rather than in ( f)ˆ. After all, just
applying the definition of a test-category A with test-functor i : A→
(Cat), all we have to care about is whether a) A is aspheric and b) i∗( 1)
is an aspheric element of Aˆ. We just got to apply this to the case of the
functor

if : f→ (Cat)

induced by i : → (Cat) above, taking into account of course the extra
trouble that if is no longer fully faithful.

I just stopped to look, with a big expectation that f is a test category
after all – but it turns out it definitely isn’t! Indeed, A/ 0×I (where
I = (if)∗( 1)) is again a discrete two-point category, not aspheric.
Taking the canonical functor a 7→ A/a from A= f to (Cat), which is the
ultimate choice for checking whether or not A is a test category, finally
gives the answer: it is not. Because with I now the Lawvere element,
we still have that A/ 0×I is a two-point discrete category. Thus the topos
Aˆ = ( f)ˆ isn’t locally modelizing, i.e., it hasn’t got any homotopy
interval, which at any rate is a very big drawback I would think. The
only hope which still remains, to account for the positive features of
face-complexes recalled above, is that f is at least a test category in
the wide sense, namely that for any category C with final element, the
category iA jA(C) = A/ jA(C) (= category of all pairs (n, u), with u a map
of the (ordered) category A/ e n

) is aspheric. The first case to check is for
C = final category 0, i.e., asphericity of A, next step would be C = 1,
i.e., asphericity of the Lawvere element LA (but of course not asphericity
over the final element eAˆ !).

The question certainly deserves to be settled. If the answer is affirma-
tive, i.e., f is a test category in the wide sense, then the proposition
stated earlier (p. 74), which clearly applies equally when A is a test
category in the wide sense, implies that if M is any full subcategory of
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(Cat) containing all those C which are “locally isomorphic” to f, (i.e.,
such that for every x ∈ C , C/x is isomorphic to the ordered category of
all subsimplices of some simplex), then for the induced notion WM of
weak equivalences, M is a modelizer and the inclusion functor from M
into (Cat) is modelizing. This does not yet apply to (Ord), however, it
reopens the question whether the full subcategory of (Ord) made up
by all ordered sets J which are locally isomorphic to f in the sense
above (namely for any x ∈ J , the ordered subset J≤x is isomorphic to [p. 78]
the ordered set of subsimplices of some simplex) is a modelizer. To
ensure this, it would be enough to find an ordered set J satisfying the
previous condition (for instance on stemming from a “simplicial ma-
quette”), such that the corresponding category is a test category, or at
least a test category in the wide sense. The first candidate that comes
to my mind, is to take any infinite set S of vertices, and take J to be
the ordered set of all finite non-empty subsets (called the simplices –
thus the elements of S can be interpreted in terms of J as the minimal
simplices). By the way, the category associated to J , in case S = N, can
be interpreted in terms of A= f as the category A/ ∞ , where ∞ is
defined as the filtering direct limit in Aˆ of the n’s, arranged into a
direct system in the obvious way:

∞ = lim−→
n

n in ( f)ˆ.

Asphericity of J looks intuitively evident, and should be easy by a direct
limit argument, as a matter of fact any filtering category (the next
best to having a final element) should be aspheric, at least if it has a
countable cofinal family of objects. The Lawvere element LA in Aˆ is
not aspheric though over the final object, because when inducing over
a zero simplex, we get the same contradiction as before. As a matter
of fact, I am getting aware I have been very silly and prejudiced not to
see one trivial common reason, applicable to f as to J , showing that
they are not test categories nor even local test categories: namely the
induced categories A/a should be test categories too, but among these
there are one-point categories (take a = 0, or a zero-simplex), and
such a category is not a test-category!

Still, J may be a test category in the wide sense – the basic test here, as
we know already asphericity of J itself, would be (absolute) asphericity
of LJ , or equivalently, of the category J/LJ

, an ordered set in fact (as is
the case for any category A/F for A defined by an ordered set and F in
Aˆ). This is now the ordered set of all pairs (K ⊂ T ) of finite subsets of
S, with T in J , namely T non-empty, with the rule

(K ′, T ′)≤ (K , T ) iff T ′ ⊂ T and K ′ = K ∩ T ′.
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26.3. [p. 79]

44 I finally convinced myself that f, the category of standard ordered Overall review of the basic notions.
simplices with face operations (and no degeneracies) is a “test category
in the wide sense” after all – although definitely not a test category, as
was seen yesterday (turning out to be a practically trivial observation).
This now does rehabilitate the notion of a test category in the wide
sense, which I expected to be of little or no interest – much the way
as previously, the notion I now call by the name “test category” was
rehabilitated or rather, discovered, after I expected that the only one
proper notion for getting modelizers of the form Aˆ was in terms of
conditions (T 1) to (T 3) on A (including the very strong condition (T 2)
of total asphericity). This notion I finally called by the name “strict test
category”, and I was fortunately cautious enough to reserve a name too
for the notion which appeared then as rather weak and unmanageable,
of test categories in the wide sense, or, as I will say now more shortly,
weak test categories (by which of course I do not mean to exclude the
possibility that it be even a test category), thus getting the trilogy of
notions with strict implications

weak test categories⇐ test categories⇐ strict test categories.

In order not to get confused, I will recall what exactly each of these
notions means.

a) Weak test categories. For a given small category A, we look at the
functor

(1) iA : Aˆ→ (Cat), F 7→ A/F ,

which commutes with direct limits, and at the right adjoint functor

(2) jA = i∗A : (Cat)→ Aˆ, C 7→ jA(C) = (a 7→ Hom(A/a, C)).

We get an adjunction morphism

(3) iA jA(C)→ C in (Cat),

and another

(4) F → jAiAF in Aˆ,

functorially in C resp. in F . Presumably, the following are equivalent
(I’ll see in a minute how much I can prove about these equivalences):

(i) The functors (1) and (2) are compatible with weak equivalences,
and the two induced functors between the localized categories

(5) W−1
A Aˆ�W−1(Cat)

def
= (Hot)

are equivalences.
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(ii) As in (ii), and moreover the two equivalences are quasi-inverse
of each other, with adjunction morphism in W−1(Cat) = (Hot)
deduced from (3) by localization.

(iii) As in (ii), but moreover the adjunction morphism in W−1
A Aˆ for the [p. 80]

pair of quasi-inverse equivalences in (5) being likewise deduced
from (4).

(iv) For any C in (Cat), (3) is a weak equivalences.

(v) Same as (iv), with C restricted to having a final element, i.e., for
any such C , jAiA(C) = A/ jA(C) is aspheric.

(vi) For any F in Aˆ, (4) is a weak equivalence, moreover

W(Cat) = j−1
A (WA),

i.e., a map f : C ′→ C in (Cat) is a weak equivalence iff jA( f ) is
a weak equivalence in Aˆ – which means, by definition (more or
less) that iA jA( f ) is a weak equivalence.

(vii) The functor

(6) iA jA : (Cat)→ (Cat), C 7→ A/ jA(C),

transforms weak equivalences into weak equivalences, i.e., gives
rise to a functor (Hot)→ (Hot), and moreover the latter respects
final object (i.e., A is aspheric).

(viii) Same as (vii), but restricting to weak equivalences of the type
C → e, where C has a final element and e is the final object in
(Cat) (the one-point category), plus asphericity of A.

The trivial implications between all these conditions can be summa-
rized in the diagram

(iii) (vi) (vii) (viii)

(ii) (iv) (v)

(i) ,

the only slightly less obvious implication here is (viii)⇒ (v), which is
seen by looking at the commutative square deduced from C → e (C in
(Cat) is in (v) namely with final element) by applying (3)

iA jA(C) C

A= iA jA(e) e ,

by assumption the vertical arrows are weak equivalences, and so is
A → e (because A is supposed to be aspheric), therefore the same
holds for the fourth arrow left. On the other hand, an easy asphericity
argument showed us that (v)⇒ (iii), hence all conditions (ii) to (viii)
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are equivalent, and they are equivalent to the stronger form of (iv), say
(iv’), saying that (3) is aspheric for any C in (Cat). The only equivalence
which is not quite clear yet is that (i) implies the other conditions.
But it is so if we grant the “inspiring assumption”, implying that any [p. 81]
autoequivalence of (Hot) is isomorphic to the identity functor – in this
case it is clear that even the weaker form (i’) of (i), demanding only that
iA jA induce an autoequivalence of (Hot) and nothing on either factor
iA, jA in (5), implies (v). Also, when we assume moreover A aspheric,
it is clear that (i) (and even (i’)) implies (vii), i.e., all other conditions.
Thus, instead of the assumption on (Hot), it would be enough to know
that the particular autoequivalence of (Hot) induced by iA jA transforms
the final element of (Hot) (represented by the element e of (Cat)) into
an isomorphic one, which looks like a very slight strengthening of (i) 27.3. But this is true for any equivalence of

categories – I’m really being very dull!indeed.
In any case, the conditions (ii) to (viii) are equivalent, and equivalent

to (i) (or (i’)) plus† asphericity of A. The formally strongest form is †The “plus” is unnecessary visibly, see note
above.(iii), the formally weakest one (with the exception of (i) or (i’)) is (v),

which is also the one which looks the most concrete, namely amenable
to practical verification. This was indeed what at the very beginning
was attractive in the condition, in comparison to the first one that
came to my mind when introducing the notion of a modelizer and of
model preserving functors – namely merely that iA should induce an
equivalence between the localized categories, or equivalently, that Aˆ
should be a “modelizer” and iA should be model-preserving. That we
should be more demanding and ask for jA to be equally model preserving
crept in first rather timidly – and I still don’t know (and didn’t really
stop to think) if the first one implies the other.‡ ‡If fact, it is the condition that jA = i∗A, not iA,

should be model preserving, which is “the
right” condition on A, equivalent to A being
a weak test category, if A is assumed
aspheric.

In any case, as far as checking a property goes, I would consider (v)
to be the handy definition of a weak test category, wheres (iii) is the
best, when it goes to making use of the fact that A is indeed a weak
test category. As for (i), it corresponds to the main intuitive content
of the notion, which means that homotopy types can be “modelled” by
elements of Aˆ, using iA for describing which homotopy type is described
by an element F of Aˆ, and using jA for getting a model in Aˆ for a given
homotopy type, described by an object C in (Cat).

b) Test categories and local test categories. Let A still be a small
category. Then the following conditions are equivalent:

(i) All induced categories A/a (with a in A) are weak test categories. [p. 82]

(ii) For any aspheric F in Aˆ, A/F is a weak test category.

(iii) There exists a “homotopy interval” in Aˆ, namely an element I in
Aˆ, aspheric over the final element eAˆ (i.e., such that all products
I × a (for a in A) are aspheric), endowed with two sections δ0, δ1
ever e = eAˆ , i.e., with two subobjects e0, e1 isomorphic to e, such
that Ker(δ0,δ1) =∅Aˆ , i.e., e0 ∩ e1 =∅Aˆ .

(iv) The Lawvere element LA or LAˆ in Aˆ (i.e., the presheaf a 7→
subobjects of a in Aˆ ' cribles of A/a) is aspheric over the final
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element e (in other words, it is a homotopy interval, when en-
dowed with the two sections δ0,δ1 corresponding to the full and
the empty crible in A).

(v) For any C in (Cat), the canonical map in (Cat)

(7) iA jA(C) = A/ jA(C)→ A× C

(with second component (3)) is (not only a weak equivalence,
which definitely isn’t enough, but even) aspheric.

By the usual criterion of asphericity for a map in (Cat), condition (v)
is equivalent with the condition (v’): For any a in A and any C in (Cat)
with final element, A/a× jA(C) is aspheric, i.e., a × jA(C) is an aspheric
element in Aˆ; now this is clearly equivalent to (i) (by the checking-
criterion (v) above for weak test categories, applied to the categories
A/a). Thus we get the purely formal implications

(ii) (i) (iv) (iii)

(v) ,

where (i)⇒ (iv) is obtained by applying the criterion (v’) just recalled to
the case of C = 1. As the condition (iii) is clearly stable by localizing to
a category A/F (using the equivalence (A/F )ˆ ' Aˆ/F ), we see that (iii)
implies (ii), we are reduced (replacing A by A/F ) to the case when F is
the final element in Aˆ, and thus to proving that if A has a final element,
then (iii) implies that A is a weak test category, i.e., that the categories
A/ jA(C), with C having a final element, are aspheric. This was done by a
simple homotopy argument in two steps. One step (“the comparison
lemma for homotopy intervals” on p. 60) shows that (iii)⇒ (iv), i.e.,
existence of a homotopy interval implies that the Lawvere interval is a
homotopy interval, the other step (presented in a more general set-up
in the “key result” on page 61) proving that (iv) implies asphericity of
the elements jA(C) (C with final object) over eA = eAˆ . [p. 83]

We express the conditions (i) to (v) by saying that A is a local test
category, or that Aˆ is a locally modelizing topos, or (if we want to recall
that this topos is of the type Aˆ) an elementary local modelizer. If A is
moreover aspheric (i.e., eAˆ aspheric), or what amounts to the same, if
A is moreover a weak test category, we say that A is a test category, or
that Aˆ is a modelizing topos, or (to recall it is an Aˆ and not just any
topos) an elementary modelizer. These are intrinsic properties on the
topos Aˆ, the first one of a local nature, the second not (as asphericity
of Aˆ is a global notion).

Here the question arises whether the condition for A to be a weak
test category can be likewise expressed intrinsically as a property of the
topos Aˆ – which we then would call a weakly modelizing topos, or a weak
elementary modelizer. This doesn’t look so clear, as all conditions stated
in a) make use of at least one among the two functors iA, jA, which do
not seem to make much sense in the more general case, except possibly
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when using a specified small generating subcategory A of the given
topos – and possibly checking that the condition obtained (if something
reasonable comes out, as I do expect) does not depend on the choice
of the generating site. This should be part of a systematic reflection on
modelizing topoi, to make sure for instance they are modelizing indeed
with respect to weak equivalences – but I’ll not enter into such reflection
for the time being.

c) Strict test categories. The following conditions on the small cate-
gory A are equivalent:

(i) A is a weak test category (cf. a) (iii) above), and thus induces a
localization functor

Aˆ→ (Hot) =W−1(Cat),

and this functor moreover commutes with binary products; or
equivalently, the canonical functor Aˆ→W−1

A Aˆ commutes with
binary products.

(ii) A is a test category (a local test category would be enough, even),
and moreover the topos Aˆ is totally aspheric, namely (apart hav-
ing a generating family of aspheric generators, which is clear
anyhow) the product of any two aspheric elements in Aˆ is as-
pheric, i.e., any aspheric element of Aˆ is aspheric over the final
object.

(iii) A satisfies the two conditions: [p. 84]

T 2) The product in Aˆ of any two elements in A is aspheric.

T 3) Aˆ admits a homotopy interval (which is equivalent to saying
that A is a local test category).

Of course, (ii) implies (iii). The condition (iii) can be expressed in
terms of the topos A= Aˆ by saying that this is a totally aspheric and
locally modelizing topos, which implies already (as we saw by the Čech
computation of cohomology) that the topos is aspheric, and therefore
modelizing, i.e., A a test category, which is just (ii). Thus (ii)⇔ (iii).
Total asphericity of A, and the property that A be a local modelizer, are
expressed respectively by the two neat conditions T 2) and T 3), neither
of which implies the other even for an Aˆ, with A a category with final
object.

For expressing in more explicit terms condition (i), and check equiv-
alence with the two equivalent conditions (ii), (iii), we need to admit
that the canonical functor from (Cat) to its localization (Hot) commutes
with binary products. This being so, the condition of commutation of
Aˆ→ (Hot) with binary products can be expressed by the more concrete
condition that for F, G in Aˆ, the canonical map in (Cat)

(8) iA(F × G)→ iA(F)× iA(G), i.e., A/F×G → A/F × A/G

is a weak equivalence. In fact, the apparently stronger condition that
the maps (8) are aspheric will follow, because the usual criterion of
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asphericity for a map in (Cat) shows that it is enough for this to check
that (8) is a weak equivalence when F and G are representable by
elements a and b in A, which also means that A/a×b is aspheric, namely
a× b in Aˆ aspheric – which is nothing but condition T 2) in (iii), i.e.,
total asphericity of Aˆ. On the other hand, the condition that A be a
weak test category means that the elements jA(C) in Aˆ, for C in (Cat)
admitting a final object, are aspheric, or (what amount to the same
when Aˆ is totally aspheric) that they are aspheric over the final object
eAˆ , i.e., that the products a× jA(C) are aspheric, which also means A is
a local test category. Thus (i) is equivalent to (ii).

The equivalent conditions (i) to (iii) are expressed by saying that A is
a strict test category, or that A = Aˆ is a strictly modelizing topos, or also
that it is an elementary strict modelizer (when emphasizing the topos A
should be of the type Aˆ indeed). This presumably will turn out to be
the more important among the three notions of a “test category” and
the weak and strict variant. The two less stringent notions, however,
seem interesting in their own right. The notion of a weak test category
mainly (at present) because it turns out that the category f of standard [p. 85]
ordered simplices with only “face-like” maps between them, namely
strictly increasing ones (that is, ruling out degeneracies) is a weak test
category, and not a test category. On the other hand, for any test category
A, we can construct lots of test categories which are not strict, namely
all categories A/F where F is any aspheric object in Aˆ which admits
two “non-empty” subobjects whose intersection is “empty” – take for
instance for F any homotopy interval. In the case of A= , we may
take for F any objects n (n≥ 1) in A, except just the final object 0.

d) Test functors. Let A be a weak test category, and let

(9) i : A→ (Cat)

be a functor, giving rise to a functor

(10) i∗ : (Cat)→ Aˆ, C 7→ i∗(C) = (a 7→ Hom(i(a), C)).

We’ll say that i is a weak test functor if i∗ is a morphism of modelizers,
i.e., model-preserving, namely

¨

W(Cat) = (i∗)−1(WAˆ) and

W−1
(Cat)(Cat) = (Hot)→W−1

Aˆ
Aˆ an equivalence.

As by assumption we know already that (1)

iA : Aˆ→ (Cat), F 7→ A/F

is model-preserving, this implies that i is a weak test functor iff the
compositum

(11) iAi∗ : (Cat)→ (Cat), C 7→ Ai∗(C)
def
= A/C
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is model-preserving, i.e., (essentially) induces an autoequivalence of
(Hot).

The basic example is to take i = iA, hence i∗ = jA (2), the fact that
A is a weak test category can be just translated (p. 80, (vii)) by saying
that this functor (11) = (6) transforms weak equivalences into weak
equivalences, and the localized functor (Hot)→ (Hot) is an equivalent
(or, which is enough, transforms final object into final object of (Hot)).
But as we say before, this weak test functor gives rise to categories i(A) =
A/a which are prohibitively large, and one generally prefers working
with weak test functors more appropriate for computations – including [p. 86]
the customary ones for categories of simplices or cubes, such as f, ,
e and the cubical analogons. If we admit the “inspiring assumption”
that any autoequivalence of (Hot) is uniquely isomorphic to the identity
functor, it will follow that the autoequivalence (Hot)→ (Hot) induced by
(11) (where again i is any weak test functor) is canonically isomorphic
to the identity. This we checked directly (as part of the “key result”
p. 61 and following) when we make on i the extra assumption that each
category i(a) has a final object. In practical terms, the role of a weak test
functor i is to furnish us with a quasi-inverse of

W−1
A Aˆ→W−1

(Cat)(Cat) = (Hot)

induced by iA, more handy than the one deduced from jA by localization,
namely taking i∗ instead of jA = i∗A. In other terms, for every homotopy
type, described by an object C in (Cat), we get a ready model in Aˆ, just
taking i∗(C) = (a 7→ Hom(i(a), C)).

In the theorem on p. 61 just referred to, one point was that we did
not assume beforehand that A was a weak test category, but we were
examining two sets (a) and (b) of mutually equivalent conditions, where
(a) just boils down to iAi∗ (11) inducing an autoequivalence of (Hot),
while (b) would be expressed (in the present terminology) by stating
that moreover A is a test category (if we assume beforehand in (b) that
A is aspheric, plus a little more still on i). It was not quite clear by
then, as it is now, that this is actually strictly stronger. The somewhat
bulky statement essentially reduces, with the present background, to
the following

Proposition. Let A be a small category, i : A→ (Cat) a functor, such that
for any a in A, i(a) has a final object. Consider the following conditions:

(i) A is a test category (NB not only a weak one), and i is a weak test
functor.

(ii) The element i∗( 1) in Aˆ (namely a 7→ Crib(i(a))) is aspheric over
eAˆ , i.e., all products i∗( 1)× a (a ∈ Ob A) are aspheric; moreover
eAˆ is aspheric, i.e., A itself is aspheric.

(iii) There exists a homotopy interval (I ,δ0,δ1) in Aˆ, and a map in
(Cat) compatible with δ0,δ1

(12) i!(I)→ 1,

where i! : Aˆ → (Cat) is the canonical extension of i : A→ (Cat);
moreover, A is aspheric.
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The conditions (ii) and (iii) are equivalent and imply (i).

That (ii) implies (iii) is trivial by taking I = i∗( 1); the converse, as
we saw, is a corollary of the comparison lemma for homotopy intervals
(p. 60), applied to I → i∗( 1) corresponding to (12), which is a mor- [p. 87]
phism of intervals, namely compatible with endpoints. (However, in
practical terms (12) is the more ready-to-use criterion, because in most
cases I will be in A and therefore i!(I) = i(I), and (12) will be more or
less trivial, for instance because I will be chosen so that i(I) is either

1 = {0} → {1} or its barycentric subdivision {0} {0,1}{1} .) The

same argument shows that (iii) implies that A is a test category, namely
the Lawvere element LA in Aˆ is a homotopy interval in Aˆ, namely is
aspheric over eAˆ . This being so, we only got to prove (under the as-
sumption (iii)) that iAi∗ (11) induces an autoequivalence of (Hot), and
more specifically a functor isomorphic to the identity functor. This we
achieved by comparing directly A/C to C by the functor (a, p) 7→ p(ea)

(13) A/C → C ,

where ea is the final element in i(a). It is enough to check this is a
weak equivalence for any C , a fortiori that it is aspheric, and the usual
asphericity criterion reduces us to showing it is a weak equivalence when
C has a final object, namely that in this case A/C = A/i∗(C) is aspheric,
i.e., i∗(C) is aspheric in Aˆ. This was achieved by an extremely simple
homotopy argument, using a homotopy in (Cat)

1 × C → C

between the identity functor in C and the constant functor with value
eC (cf. p. 62).

I feel like reserving the appellation of a test functor A→ (Cat) (in
contract to a weak test functor) to functors satisfying the equivalent
conditions (ii) and (iii), implying that A is a test category (not merely a
weak one!), and which seem stronger a priori than assuming moreover
that i is a weak test functor (condition (i)). I confess I did not make up
my mind if for a test category A, there may be weak test functors, with
all i(a) having final objects, which are not test functors in the present
sense, namely whether it may be true that for any C in (Cat) with final
object, i∗(C) is aspheric, and therefore i∗( 1) aspheric, without the
latter being aspheric over eAˆ , i.e., all products i∗( 1)× a (a ∈ Ob A)
being aspheric (which would be automatic though if A is even a strict
test category). The difficulty here is that it looks hard to check the
condition for arbitrary C with final object, except through the homotopy
argument using relative asphericity of i∗( 1). Of course, the distinction
between weak test functors and test functors is meaningful only as long
as it is expected that the two are actually distinct, when applied to
test categories. Besides this, the restriction to categories i(a) with final
objects looks theoretically a little awkward, and it shouldn’t be too hard
I believe to get rid of it, if need be. But for the time being the only
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would-be test functors or weak test functors which have turned up, do [p. 88]
satisfy this condition, and therefore it doesn’t seem urgent to clean up
the notion in this respect.

Remarks.

1. I regret I was slightly floppy when translating the condition thatϕ =
iAi∗ (11) be model-preserving, by the (a priori less precise) condition
that it induce an autoequivalence of the localized category (Hot) (which
is of course meant to imply that it transforms weak equivalences into
weak equivalences, and thus does induce a functor from (Hot) into
itself). It isn’t clear that if this functor is an equivalence, W = ϕ−1(W ),
except if we admit that W is strongly saturated, i.e., an arrow in (Cat)
which becomes an isomorphism in (Hot), is indeed a quasi-equivalence.
This, as we saw, follows from the fact that there are weak test categories
(such as , which is even a strict one), such that Aˆ be a “closed model
category” in Quillen’s sense – but I didn’t check yet in the present set-
up that ˆ does indeed satisfy Quillen’s condition. Which elementary
modelizers are “closed model categories” remains one of the intriguing
questions in this homotopy model story, which I’ll have to look into
pretty soon now.

2. It should be noted that if i : A→ (Cat) is a test functor, with a strict
test category A (such as , with the standard embedding i of into
(Cat) say), whereas i∗ : (Cat)→ Aˆ is model preserving by definition, it
is by no means always true that the left adjoint functor

i! : Aˆ→ (Cat)

(which can be equally defined as the canonical extension of i to Aˆ,
commuting with direct limits) is equally model preserving. This seems
to be in fact an extremely special property of just the “canonical” test
functor iA� A.

3. On the other hand, I do not know if for any small category A, such
that (A, WA =WAˆ) is a modelizer and iA : Aˆ→ (Cat) is model preserv-
ing, is a weak test category. Assume that jA = i∗A : (Cat)→ Aˆ is model
preserving, and moreover A aspheric, then A is a weak test category,
because jA transforms weak equivalences into weak equivalences and
we apply criterion (vii) (p. 80). More generally, if we have a functor
i : A→ (Cat) such that i∗ : (Cat)→ Aˆ is model preserving (assuming
already (Aˆ, WA) to be a “modelizer”), I wonder whether this implies
that A is already a weak test category, as it does when i is the canonical
functor iA and hence i∗ = jA. The answer isn’t clear to me even when iA,
or equivalently ϕ = iAi∗ model-preserving too.



Part III

Grinding my way towards
canonical modelizers

27.3. [p. 89]

45 The review yesterday of the various “test notions”, turning around test It’s burning again! Review of
some “recurring striking features” of
modelizers and standard modelizing
functors.

categories and test functors, turned out a lot longer than expected, so
much so to have me get a little weary by the end – it was clear though
that this “travail d’intendance” was necessary, not only not to get lost in
a morass of closely related and yet definitely distinct notions, but also to
gain perspective and a better feeling of the formal structure of the whole
set-up. As has been the case so often, during the very work of “grinding
through”, there has appeared this characteristic feeling of getting close
to something “burning” again, something very simple-minded surely
which has kept showing up gradually and more and more on all odds
and ends, and which still is escaping, still elusive. These is an impressive
bunch of things which are demanding pressingly more or less immediate
investigation – still I can’t help, I’ll have to try and pin down some way
or other this “burning spot”.

There seem to be recurring striking features of the modelizers met
with so far – namely essentially (Cat) and the elementary modelizers
Aˆ and possibly their “weak” variants. In all of them, these is a very
strong interplay between the following notions, which seem to be the
basic ones and more or less determine each other mutually: weak equiv-
alences (which define the modelizing structure of the given modelizer
M), aspheric objects (namely such that x → eM is a weak equivalence),
homotopy intervals (I ,δ0,δ1), and last not least, the notion of a test
functor A→ M , where A is a test category (or more generally weak test
functors of weak test categories into M). The latter so far have been
defined only when M = (Cat), and initially they were viewed as being
mainly more handy substitutes to jA, for getting a model-preserving
functor (Cat)→ Aˆ quasi-inverse to the all-important model-preserving
functor iA : Aˆ→ (Cat), F 7→ A/F . I suspect however that their role is a
considerably more basic one than just computational convenience – and
this reminds me of the analogous feeling I had, when first contemplating

99
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using such a thing as (by then still vaguely conceived) “test categories”,
for investigating ways of putting modelizing structures on categories
M such as categories of algebraic structures of some kind or other. (Cf.
notes of March 7, and more specifically par. 26 – this was the very day,
by the way, I first had this feeling of being “burning”. . . )

Test categories seem to play a similar role here as (the spectra of) [p. 90]
discrete valuation rings in algebraic geometry – they can be mapping
into anywhere, to “test” what is going on there – here it means, they
can be sent into any modelizer (M , W ) (at least among the ones which
we feel are the most interesting), by “test functors” i : A→ M giving
rise to a model-preserving functor i∗ : M → Aˆ, allowing comparison of
M with an elementary modelizer Aˆ. As for the all-encompassing basic
modelizer (Cat), it seems to play the opposite role in a sense, at least
with respect to elementary modelizers, Aˆ, which all admit modelizing
maps iA : Aˆ→ (Cat). As a matter of fact, for given test category A, i.e.,
a given elementary modelizer Aˆ, I see for the time being just one way
to get a modelizing functor from it to (Cat), namely just the canonical
iA. There is also a striking difference between the exactness properties
of the functors

(1) i∗ : M → Aˆ

one way, which commute to inverse limits, and the functors

(2) iA : Aˆ→ (Cat)

in the other direction, commuting to direct limits. Another difference is
that we should not expect that the left adjoint i! to i∗ be model preserving
too (with the exception of the very special case when M = (Cat) and
i : A→ M = (Cat) is the canonical functor iA�A, which appears as highly
non-typical in this respect), whereas the right adjoint jA = i∗A of iA is
model preserving, this iA is part of a pair (iA, jA) of model preserving
adjoint functors.

Of course, we may want to compare directly an arbitrary modelizer M
to (Cat) by sending it into (Cat) by a modelizing functor M → (Cat); we
get quite naturally such a functor (for any given choice of test-functor
i : A→ M)

(3) iAi∗ : M → (Cat),

but this functor is not likely any more to commute neither to direct
nor inverse limits, even finite ones – and it isn’t too clear that for a
modelizer M which isn’t elementary, we have much chance to get a
modelizing functor to (Cat) which is either left or right exact. However,
the functors (3) we’ve got, whenever modelizing and if M is a strict
modelizer (namely M → W−1

M M ' (Hot) commutes with finite prod-
ucts), will commute to finite products “up to weak equivalence”. Also
the functors i∗, although not right exact definitely, have a tendency to
commute to sums, and hence the same will hold (not only up to weak
equivalence) for (3).
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As for getting a modelizing functor (Cat)→ M , for a modelizer M [p. 91]
which isn’t elementary, in view of having a standard way for describing
a given homotopy type (defined by an object C in (Cat)) by a “model”
in M , depending functorially on C , there doesn’t seem to be any general
process for finding one, even without any demand on exactness prop-
erties, except of course when M is supposed to be elementary; in this
case M = Aˆ we get the functors

(4) i∗ : (Cat)→ Aˆ

associated to test functors A→ (Cat), which can be viewed as a particular
case of (1), applied to the case M = (Cat). Using such functors (4), we
see that the question of finding a modelizing functor

(*) ϕ : (Cat)→ M ,

for a more or less general M , is tied up with the question of finding such
a functor from an elementary modelizer Aˆ into M

(**) ψ : Aˆ→ M .

More specifically, if we got a ψ, we deduce a ϕ by composing with i∗ in
(4), and conversely, if we got a ϕ, we deduce aψ by composing with the
canonical functor iA in (2). Maybe it’s unrealistic to expect modelizing
functors (*) or (**) to exist for rather general M . (Which modelizers
will turn out to be really “the interesting ones” will appear in due course
presumably. . . ) There is one interesting case though when we got such
functors, namely when

M = (Spaces)

is the category of topological spaces, and taking for ψ one of the mani-
fold avatars of “geometric realization functor”, associated to a suitable
functor

(***) r : A→ (Spaces)

by taking the canonical extension r! to Aˆ, commuting with direct limits.
This is precisely the “highly non-typical” case, when we get a pair of
adjoint functors r!, r∗

(5) Aˆ (Spaces)
r!

r∗

which are both modelizing. The situation here mimics very closely the
situation of the pair (iA, jA = i∗A) canonically associated to the elemen-
tary modelizer Aˆ, with the “basic modelizer” (Cat) being replaced by
(Spaces), which therefore can be considered as another “basic modelizer”
of sorts. In this case the corresponding functor

(6) r!r
∗ : (Cat)→ (Spaces)

mimics the functor iAi∗ of (3) (where on the left hand side M is taken to
be just (Cat), and on the right (Cat) as the basic modelizer is replaced
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by its next best substitute (Spaces)). Here as in (3), the modelizing
functor we got is neither left nor right exact, it has a tendency though [p. 92]
to commute to sums, as usual.

I wouldn’t overemphasize the capacity of (Spaces) to serve the pur-
pose of a “basic modelizer” as does (Cat), despite the attractive feature
of more direct (or at any rate, more conventional) ties with so-called
“topological intuition”. One drawback of (Spaces) is the relative sophis-
tication of the structure species “topological spaces” it corresponds to,
which is by no means an “algebraic structure species”, and fits into
algebraic formalisms only at the price of detours. More seriously still,
or rather as a reflection of this latter feature, only for some rather spe-
cial elementary modelizers Aˆ, namely rather special test categories
A, do we get a geometric realization functor r! : Aˆ→ (Spaces) which
can be view as part of a pair of mutually adjoint modelizing functors,
mimicking the canonical pair (iA, jA); still less does there seem to be
anything like a really canonical choice (although some choices are pretty
natural indeed, dealing with the standard test categories such as and
its variants). At any rate, it is still to be seen whether there exists such a
pair (r!, r∗) for some rather general class of test categories – this is one
among the very many things that I keep pushing off, as more urgent
matters are calling for attention. . .

To sum up the outcome of these informal reflections about various
types of modelizing functors between modelizers, the two main types
which seem to overtower the whole picture, and are likely to be the
essential ones for a general understanding of homotopy models, are
the two types (1) and (2) above. The first one i∗ is defined in terms
of an arbitrary modelizer M . The second iA, with opposite exactness
properties to the previous one, is canonically attached to any test cat-
egory, and maps the corresponding elementary modelizer Aˆ into the
basic modelizer (Cat), without any reference to more general types
of modelizers M . The right adjoint of the latter, which is still model
preserving, is in fact of the type (1) again, for the canonical test functor
A→ (Cat) induced by iA, namely a 7→ A/a.

This whole reflection was of course on such an informal level, that
there was no sense at that stage to bother with distinctions between
weaker or stricter variants of the test-notion. Maybe it’s about time now
to start getting a little more specific. [p. 93]

46 First thing to do visibly is to define the notion of a test-functor Test functors with values in any mod-
elizer: an observation, with an in-
spiring “silly question”.i : A→ M ,

where M is any modelizer. Thus M is endowed with a subset WM ⊂
Fl(M), i.e., a notion of weak equivalence, satisfying the “mild saturation
conditions” of p. 59, and moreover we assume that W−1

M M is equivalent
to (Hot) – but the choice of an equivalence, or equivalently, of the
corresponding localization functor

M → (Hot),
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is not given with the structure. (If we admit the “inspiring assumption”,
there is no real choice, as a matter of fact – but we don’t want to use
this in a technical sense, but only as a guide and motivation.)

Let’s start with the weak variant – we assume A to be a weak test
category, and want to define what it means that i is a weak test functor.
In all this game, it is understood that in case M = (Cat), the notions
we want to define (of a weak test functor and of a test functor) should
reduce to the ones we have pinpointed in yesterday’s notes.

The very first idea that comes to mind, is to demand merely that the
corresponding i∗ (1)

i∗ : M → Aˆ

should be modelizing, which means (I recall)
a) WM = (i∗)−1(WA).

b) The induced functor W−1
M M →W−1

A Aˆ is an equivalence.
This, I just checked, does correspond to the definition we gave yester-

day (p. 85), when M = (Cat). There is a very interesting extra feature
though in this special case, which appears kind of “in between the lines”
in the “key result” on p. 61, and which I want now to state in the more
general set-up.

As usual in related situations, the notion of weak equivalence in
M gives rise to a corresponding notion of “aspheric” elements in M –
namely those for which the unique map

x → eM

is a weak equivalence. We assume now the existence of a final object
eM in M , and will assume too, if necessary, that it’s the image in the
localization W−1

M M = HM is equally a final object. Thus, if x in M
is aspheric, its image in HM is a final object, and the converse holds
provided as assume WM strongly saturated, namely any map in M which
becomes an isomorphism in HM is a weak equivalence. 29.3. This assumption will be verified if

there exists a weak test functor i : A→ M .I can now state the “interesting extra feature”.

[p. 94]Observation. For a functor i : A→ M of a weak test category A into
the modelizer M (with final object eM , giving rise to the final object in
HM = W−1

M M), and in the special case when M = (Cat), the following
conditions are equivalent:

(i) i∗ transforms weak equivalence into weak equivalences, i.e., induces
a functor HM → HAˆ .

(ii) i∗ transforms aspheric objects into aspheric objects.

(iii) i is a weak test functor, namely WM = (i∗)−1(WAˆ) (a stronger ver-
sion of (i)) and the induced functor HM → HAˆ is an equivalence.

Here the obvious implications are of course

(iii)⇒ (i)⇒ (ii),

the second implication coming from the fact that i∗ is compatible with
final objects, and that eAˆ is aspheric. Of course, (ii) means that for
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any aspheric x in M , A/i∗(x) is aspheric in (Cat). In case M = (Cat),
and when moreover the elements i(a) in (Cat) have final objects (a
condition I forgot to include in the statement of the observation above,
sorry), this condition was seen to imply (iii) (cf. “key result” on p. 61,
(a iv)⇒ (a ii) – indeed, it is even enough to check that for any C with
final element in (Cat), i∗(C) is aspheric. The proof moreover turns out
practically trivial, in terms of the usual asphericity criterion for a functor
between categories. So much so that the really amazing strength of
the statement, which appears clearly when looked at in a more general
setting, as I just did, was kind of blurred by the impression of merely
fastidiously grinding through routine equivalences. We got there at
any rate quite an interesting class of functors between modelizers (an
elementary and the basic one, for the time being), for which the mere
fact that the functor be compatible with weak equivalences, or only
even take aspheric objects into aspheric ones, implies that the functor in
modelizing, namely that the functor HM → HAˆ it induces (and the very
existence of this functor was all we demanded beforehand!) is actually
an equivalence of categories.

The question that immediately comes to mind now, is if this “extra
feature” is indeed an extremely special one, strongly dependent on the
assumption M = (Cat) and the categories i(a) having final objects – or
if it may not have a considerably wider significance. This suggests the
still more general questions, involving two modelizers M , M ′, neither
of which needs by elementary or by (Cat) itself: [p. 95]

Question. Let
f : M → M ′

be a functor between modelizers (M , W ) and (M ′, W ′), assume if needed
that f commute with inverse limits, or even has a left adjoint, and that
inverse limits (and direct ones too, as for that!) exist in M , M ′. Are there
some natural conditions we can devise for M and M ′ (which should be
satisfied for elementary modelizers and for the basic modelizer (Cat)),
plus possibly some mild extra conditions on f itself, which will ensure
that whenever f transforms weak equivalences into weak equivalences,
or even only aspheric objects into aspheric objects, f is model-preserving,
i.e., WM = f −1(WM ′) and the induced functor H f : HM → HM ′ on the
localizations is an equivalence of categories?

Maybe it’s a silly question, with pretty obvious negative answer – in
any case, I’ll have to find out! The very first thing to check is to see what
happens in case of a functor

i∗ : M → Aˆ,

where Aˆ is a weak elementary modelizer, and where M is either (Cat) or
another weak elementary modelizer Bˆ, i∗ in any case being associated
of course to a functor

i : A→ M ,

with a priori no special requirement whatever on i. In case M = (Cat),
this means looking up in the end the question we have postponed for
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quite a while now, namely of how to rescue the “key result” of p. 61,
when dropping the assumption that the categories i(a) (for a in A) have
final objects. We finally got a strong motivation for carrying through a
generalization, if this is indeed feasible.

30.3.

47 It had become clear that the most urgent thing to do now was to come An approach for handling (Cat)-
valued test functors, and promise of
a “key result” revised. The signifi-
cance of contractibility.

to a better understanding of test functors with values in (Cat), when
dropping the assumption that the categories i(a) have final objects, and
trying to replace this (if it should turn out that something is needed
indeed) by a kind of assumption which should make sense when (Cat)
is replaced by a more or less arbitrary modelizer M . I spent a few hours
pondering over the situation, and it seems to me that in the case at least
when A is a strict, namely when Aˆ is totally aspheric, there is now a
rather complete understanding of the situation, with a generalization
of the “key result” of p. 61 which seems to be wholly satisfactory.

The basic idea of how to handle the more general situation, namely [p. 96]
how to compare the categories A/i∗(C) = A/C and C , and show (under
suitable assumptions) that there is a canonical isomorphism between
their images in the localized category W−1

(Cat)(Cat) = (Hot), was around
since about the moment I worked out the “key result”. It can be ex-
pressed by a diagram of “maps” in (Cat)

(1)
A/C A�C

A× C C ,

where A�C is the fibered category over A, associated to the functor

Aop→ (Cat), a 7→ Hom(i(a), C).

Here one should be careful with the distinction between the set

Hom(i(a), C) = ObHom(i(a), C),

and the category Hom(i(a), C), both depending bi-functorially on a in
A and C in (Cat). The former (as a presheaf on A for fixed C) gives rise
to A/C , a fibered category over A with discrete fibers, whereas the latter
gives rise to A�C , which is fibered over A with fibers that need not be
discrete. Identifying a set with the discrete category it defines, we get a
canonical functor

Hom(i(a), C)→ Hom(i(a), C),

which is very far from being an equivalence nor even a weak equivalence;
being functorial for varying a, it gives rise to the first map in (1). The
second is deduced from the canonical functor

C → Hom(i(a), C),
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identifying C with the full subcategory of constant functors from i(a)
to C . This map is functorial in a, and gives rise again to a cartesian
functor between the corresponding fibered categories over A, the first
one (which corresponds to the constant functor Aop→ (Cat) with value
C) is just A× C fibered over A by pr1, hence the second arrow in (1).
The third arrow is just pr2.

It seems that, with the introduction of A�C , this is the first time
since the beginning of these reflections that we are making use of the
bicategory structure of (Cat), namely of the notion of a morphism or
map or “homotopy” (the tie with actual homotopies will be made clear
below), between two “maps” namely (here) functors C ′⇒ C . There is
of course a feeling that such a notion of homotopy should make sense in
a more or less arbitrary modelizer M , and that the approach displayed
by the diagram (1) may well generalize to mere general situations still, [p. 97]
with (Cat) replaced by such an M .

In the situation here, the work will consist in devising handy condi-
tions on i : A→ (Cat) and A that will ensure that all three maps in (1)
are weak equivalences, for any choice of C . This will imply that the
corresponding maps in (Hot) are isomorphisms, hence a canonical iso-
morphism between the images in (Hot) of A/C and C , which will imply
that a) the functor iAi∗ from (Cat) to (Cat) carries weak equivalences
into weak equivalences, and hence induces a functor

(Hot)→ (Hot),

and b) that this functor is isomorphic to the identity functor. If moreover
A is a weak test category, and therefore the functor

W−1
A Aˆ→ (Hot)

induced by iA is an equivalence, it will follow that the functor

(Hot)→W−1
A Aˆ

induced by i∗ is equally an equivalence, namely that i∗ is indeed a
test-functor.

For the map

(2) A× C → C

to be a weak equivalence for any C in (Cat), it is necessary and sufficient
that A be aspheric (cf. par. 40, page 69), a familiar condition on A indeed!
For handling the map

(3) A× C → A�C associated to C → Hom(i(a), C),

we’ll use the following easy result (which I’ll admit for the time being):

Proposition. Let F and G be two categories over a category A, and
u : F → G a functor compatible with projections. We assume
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a) For any a in A, the induced map on the fibers

ua : Fa → Ga

is a weak equivalence.

b) Either F and G are both cofibering over A and u is cocartesian, or F
and G are fibering and u is cartesian.

Then u is a weak equivalence.

This shows that a sufficient condition for (3) to be a weak equivalence,
is that the functors C → Hom(i(a), C) be a weak equivalence, for any
a in A and C in (Cat). We’ll see in the next section that this amounts 9.4. Actually, this is done only a lot later, on

page 121 and (for the converse) on page
143.

to demanding that the objects i(a) in (Cat) should be “contractible”, in
the most concrete sense of this expression, which is actually stronger
than just asphericity. (Earlier in these notes I was a little floppy with the
terminology, by using a few times the word “contractible” as synonymous [p. 98]
to “aspheric” as in the context of topological spaces, or CW spaces at
any rate, the two notions do indeed coincide, finally I came to use
rather the word “aspheric” systematically, as it fits nicely with the notion
of an aspheric morphism of topos. . . ) The most evident example of
contractible categories are the categories with final object. Thus I have
the strong feeling that the condition of contractibility of the objects
i(a) in (Cat) is “the right” generalization of the assumption made in the
“key result”, namely that the i(a) have final elements. Also, it seems
now likely that the numerous cases of statements, when to check some
property for arbitrary C , it turned out to be enough to check it for C
with a final object, may well generalize to more general cases, with
(Cat) replaced by some M and the reduction is from arbitrary C in M to
contractible ones.

The next thing to do is to develop a little the notion of contractibility
of objects and of homotopies between maps, and to get the criterion
just announced for (3) to be a weak equivalence for any C . After this,
handling the question of the first map in (1)

(4) A/C → A�C

being a weak equivalence for any C , in terms of the asphericity criterion
for a functor, will turn out pretty much formal, and we’ll finally be able
to state a new version of the “key result” about test functors i : A→
(Cat), with this time twice as many equivalent formulations of the same
property. On n’arrête pas le progrès!
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31.3.

48 It’s time now to develop some generalities about homotopy classes of A journey through abstract homo-
topy notions (in terms of a set W of
“weak equivalences”).

maps, the relation of homotopy between objects of a modelizer, and the
corresponding notion of contractibility. For the time being, it will be
enough to start with any category M , endowed with a set W ⊂ Fl(M)
of arrows (the “weak equivalences”), satisfying the mild saturation
assumptions a)b)c) of par. 37 (p. 59). On M we’ll assume for the time
being that there exists (at least one) homotopy interval I = (I ,δ0,δ1) in
M (loc. sit.) which implies also that M has a final object, which I denote
by eM or simply e, and equally an initial element ∅M . I’m not too sure
yet whether we’ll really need that the latter be strict initial element, as
required in the definition of a homotopy interval on page 59 (it was
used in the generalities of pages 59 and 60 only for the corollary on
the Lawvere element. . . ). Whether or not will appear soon enough! I’ll
assume it till I am forced to. To be safe, we’ll assume on the other hand
that M admits binary products.

Let X , Y be objects of M , and [p. 99]

f , g : X ⇒ Y

two maps in M from X to Y . One key notion constantly used lately (but
so far only when f is an identity map, and g a “constant” one – which is
equally the case needed for defining contractibility) is the notion of an

I-homotopy from f to g, namely a map X × I
h
−→ Y making commutative

the diagram
X × I

X X

Y

h

idX ×δ0

f

idX ×δ1

g
.

Let’s first restate the “homotopy lemma” of page 60 in a slightly more
complete form:

Homotopy lemma reformulated. Assume f and g are I-homotopic.
Then:

a) γ( f ) = γ(g), where

γ : M →W−1M = HM

is the canonical functor

b) If f is a weak equivalence, so is g (and conversely of course, by
symmetry of the roles of δ0 and δ1).

c) Assume f is an isomorphism, and g constant – then X → e and
Y → e are W-aspheric.

It is important to notice that the relation “ f is I-homotopic to g”
in Hom(X , Y ) is not necessarily symmetric nor transitive, and that it
depends on the choice of the homotopy interval I = (I ,δ0,δ1). Thus
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the symmetric relation from I-homotopy is Ǐ-homotopy, where Ǐ is the
homotopy interval “opposite” to I (namely with δ0,δ1 reversed). The
example we are immediately interested in is M = (Cat), with W =W(Cat)
the usual notion of weak equivalence. A homotopy interval is just an
aspheric small category I , endowed with two distinct objects e0, e1. (The
condition e0 6= e1 just expresses the condition e0 ∩ e1 =∅ on homotopy
intervals – if it were not satisfied, I-homotopy would just mean equality
of f and g. . . ) For the usual choice I = 1 = (e0→ e1), an I-homotopy
from f to g is just a morphism between functors f → g – the I-homotopy
relation between f and g is the existence of such a morphism, it is a
transitive, and generally non-symmetric relation. If we take I to be a
category with just two objects e0 and e1, equivalent to the final category,
an I-homotopy between f and g is just an isomorphism from f to g
– the I-homotopy relation now is both transitive and symmetric, and
it is a lot more restrictive than the previous one. If we take I to be
the barycentric subdivision of 1, which can also be interpreted as an [p. 100]
amalgamated sum of 1 with itself, namely

I =
e0 e2e1

,

an I-homotopy from f to g is essentially a triple (k, u, v), with k : X → Y
and u : f → k and v : g → k maps in Hom(X , Y ); this time, the relation
of I-homotopy is symmetric, but by no means transitive. Returning
to general M , it is customary to introduce the equivalence relation in
Hom(X , Y ) generated by the relation of I-homotopy – we’ll say that f
and g are I-homotopic in the wide sense, and we’ll write

f ∼
I

g,

if they are equivalent with respect to this relation. As seen from the
examples above (where M = (Cat)), this relation still depends on the
choice of the homotopy interval I. Let’s first look at what we can do for
fixed I, and then how what we do depends on I.

If f and g are I-homotopic, then so are their composition with any
Y → Z or T → X . This implies that the relation ∼

I
of I-homotopy in the

wide sense is compatible with compositions. If we denote by

Hom(X , Y )I

the quotient set of Hom(X , Y ) by the equivalence relation of I-homotopy
in the wide sense, we get composition between the sets Hom(X , Y )I,
and hence a structure of a category MI having the same objects as M ,
and where maps from X to Y are I-homotopy classes (in the wide sense –
this will be understood henceforth when speaking of homotopy classes)
of maps from X to Y in M . Two objects X , Y of M , i.e., of MI which
are isomorphic as objects of MI will be called I-homotopic. This means
also that we can find maps in M (so-called I-homotopisms – namely
MI-isomorphisms)

f : X → Y, g : Y → X
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such that we get I-homotopy relations in the wide sense

g f ∼
I

idX , f g ∼
I

idY .

We’ll say X is I-contractible if X is I-homotopic to the final object eM = e
of M (which visibly is also a final object of MI), i.e., if X is a final object
of MI. In terms of M , this means that there exists a section f of X over
e, such that f pX is I-homotopic in the wide sense to idX (where pX is
the unique map X → e). In fact, if there is such a section f , any other
section will do too.

From the homotopy lemma a) it follows that the canonical functor [p. 101]
M →W−1M = HM factors into

M → MI→ HM =W−1M ,

and from b) it follows that if f , g : X ⇒ Y are in the same I-class, then
f is in W iff g is, hence by passage to quotient a subset

WI ⊂ Fl(MI)

of the set of arrows in MI, namely a notion of weak equivalence in MI. It
is evident from the universal property of HM that the canonical functor
MI→ HM induces an isomorphism of categories

HMI =W−1
I MI

∼−→ HM =W−1M .

It’s hard at this point not to expect that WI should satisfy the same
mild saturation conditions as W , so let’s look into this in the stride
(even though I have not had any use of this so far). Condition b) of
saturation, namely that if f , g are composable and two among f , g, g f
are in W , so is the third, carries over trivially. Condition a), namely the
tautological looking condition that W should contain all isomorphisms,
makes already a problem, however. It is OK though if W satisfies the
following saturation condition, which is a strengthening of condition c)
of page 59:

c’) Let f : X → Y and g : Y → X such that g f ∈ W and f g ∈ W ,
then f , g ∈W .

This condition c’) carries over to MI trivially. This suggests to introduce
a strengthening of the “mild saturation conditions”, which I intend
henceforth to call by the name of “saturation”, reserving the term of
“strong saturation” to what I have previously referred to occasionally as
“saturation” – namely the still more exacting condition that W consists of
all arrows made invertible by the localization functor M → HM =W−1M ,
or equivalently, by some functor M → H. Thus, we’ll say W is saturated
iff it satisfies the following:

a’) For any X in M , idX ∈W .

b’) Same as b) before: if two among f , g, g f are in W , so is the third.

c’) If f : X → Y and g : Y → X are such that g f , f g ∈ W , then
f , g ∈W .
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Each of these conditions carries over from W to a WI trivially.
I can’t help either having a look at the most evident exactness proper-

ties of the canonical functor M → MI: Thus one immediately sees that
for two maps

f , g : X ⇒ Y = Y1 × Y2,

with components fi , gi (i ∈ {1, 2}), f and g are I-homotopic in the wide
sense iff so are fi and gi (for i ∈ {1,2}). The analogous statement is
valid for maps into any product object Y =

∏

Yi on a finite set of indices. [p. 102]
The dual statement so to say, when X is decomposed as a sum X =

∐

X i ,
is valid too, provided taking products with I is distributive with respect
to finite direct sums. Thus we get that M → MI commutes with finite
products, and with finite sums too provided they are distributive with
respect to multiplication with any object (or with I only, which would
be enough).

The notion of I-homotopy in the wide sense between f , g : X ⇒ Y can
be interpreted in terms of strict I′-homotopy with variable I′, as follows,
provided we make some mild extra assumptions on (M , W ), namely:

a) (Just for memory) M is stable under finite products.

b) M is stable under amalgamated sums I qe J under the final object
e (I and J endowed with sections over e).

c) If moreover I and J are aspheric over e, then so is I qe J .
Conditions b) and c) give a means of constructing new homotopy

intervals K, by amalgamating two homotopy intervals I and J, using
as sections of I and J for making the amalgamation, either δ0 or δ1,
which gives four ways of amalgamating – of course we take as endpoints
of the amalgamated interval, the sections over e coming from the two
endpoints of I (giving rise to δ0 for K) and J (giving rise to δ1 for K)
which have not been “used up” in the amalgamation. Maybe the handiest
convention is to define the amalgamated interval IlorJ, without any
ambiguity of choice, as being

I∨ J= (I ,δI1)qe (J ,δJ0) endowed with the two
sections coming from
δI0 : e→ I , δI1 : e→ J ,

and defining the three other choices in terms of this operation, by
replacing one or two among the summands I, J by the “opposite” interval
Ǐ or J̌. The operation of amalgamation of intervals, and likewise of
homotopy intervals, just defined, is clearly associative up to a canonical
isomorphism, and we have a canonical isomorphism of intervals

(I∨ J)̌ ' Ǐ∨ J̌.

I forgot to check, for amalgamation of homotopy intervals, the condition
b) of page 59, namely e0∩e1 =∅M (which has not so far played any role,
anyhow). To get this condition, we’ll have to be slightly more specific
in condition b) above on M of existence of the relevant amalgamations,
by demanding (as suggested of course by the visual intuition of the
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situation) that I and J should become subobjects of the amalgamation
K, and their intersection should be reduced to the tautological part e
of it. More relevant still for the use we have in mind is to demand
that those amalgamations should commute to products by an arbitrary
element X of M . This I’ll assume in the interpretation of ∼

I
in terms of [p. 103]

strict homotopies. Namely, let

Comp(I)

by the set of all homotopy intervals deduced from I by taking amal-
gamations of copies of I and Ǐ, with an arbitrary number n ≥ 1 of
summands. Thus we get just I and Ǐ for n= 1, four intervals for n= 2,
. . . , 2n intervals for n arbitrary. It is now immediately checked that for
f , g in Hom(X , Y ), the relation f ∼

I
g is equivalent to the existence of

K ∈ Comp(I), such that f and g be K-homotopic (in the strict sense).

Remark. The saturation conditions a’)b’)c’) on W are easily checked
for the usual notion of weak equivalence for morphisms of topoi, and
hence also in the categories (Cat) and in any topos, and therefore in any
category Aˆ (where it boils down too to the corresponding properties
on W(Cat), as WA = i−1

A (W(Cat))). Thus it seems definitely reasonable
henceforth to take these as the standard notion of saturation (referring
to its variants by the qualifications “mild” or “strong”). On the other
hand, the stability conditions a)b)c) on (M , W ) are satisfied whenever M
is a topos, with the usual notion of weak equivalence – the condition c)
being a consequence of the more general Mayer-Vietoris type statement
about amalgamations of topoi under closed embeddings of such (cf.
lemma on page [?]). The same should hold in (Cat), with a similar
Mayer-Vietoris argument – there is a slight trouble here for applying the
precedent result on amalgamation of topoi, because a section e→ C of
an object C of (Cat), namely an embedding of the one-point category
e = 0 into C by choice of an object of C , does not correspond in general
to a closed embedding of topoi. (In geometrical language, we get a
“point” of the topos Cˆ defined by C , but a point need not correspond
to a subtopos, let alone a closed one. . . ) This shows the asphericity
criterion for amalgamation of topoi, and hence also for amalgamation
of categories, has not been cut out with sufficient generality yet. As this
whole Comp(I) story is just a digression for the time being, I’ll leave it
at that now.

More important than amalgamation of intervals, is to compare the
notions of homotopy defined in terms of a homotopy interval I, to the
corresponding notions for another interval, J. Here the natural idea first
is to see what happens if we got a morphism of intervals (compatible
with endpoints, by definition)

J→ I.

It is clear then, for f , g ∈ Hom(X , Y ), that any I-homotopy from f to g [p. 104]
gives rise to a J-homotopy; hence if f and g are I-homotopic, they are
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J-homotopic, and hence the same for homotopy in the wide sense. We
get thus a canonical functor

MI→ MJ

which is the identity on objects, entering into a cascade of canonical
functors

M → MI→ MJ→ H,

where H = HM = W−1M can be viewed as the common localization
of M , MI, MJ with respect to the notion of weak equivalences in these
categories. We may view MJ as a closer approximation to H than
MI. There is of course an evident transitivity relation for the functors
corresponding to two composable morphisms of intervals

K→ J→ I.

Remark. In order to get that ∼
I

implies ∼
J

, it is sufficient to make a

much weaker assumption than existence of a morphism of intervals
J→ I – namely it suffices to assume that the two sections δIi : e → I
are J-homotopic. More generally, let ∼ be an equivalence relation in
Fl(M), compatible with compositions and with cartesian products (this
is the case indeed for ∼

J
), and let I= (I ,δ0,δ1) any object I of M (not

necessarily aspheric over e) endowed with two sections over e, such
that δ0 ∼ δ1. Then the interval I gives rise to an equivalence relation ∼

I
in Fl(M), whose definition is quite independent of W – and a priori, if
f ∼
I

g and f ∈W , this need not imply g ∈W . However, the condition

δ0 ∼ δ1 implies immediately that the relation ∼
I

implies the relation ∼.

When the latter is ∼
J

, we get moreover that W is the inverse image of a

set of arrows in MI, i.e., f ∼
I

g and f ∈W implies g ∈W .

An interesting particular case is the one when we can find a homotopy
interval I0 in M , which has the property that for any other homotopy
interval I in M , its structural sections satisfy

δI0 ∼I0
δI1.

This implies that the homotopy relation ∼
I0

is implies by all other similar

relations ∼
I
, i.e., it is the coarsest among all relations ∼

I
. We may then

view I0 as a “fundamental” or “characteristic” homotopy interval in M , in
the sense that the relation f ∼

W
g in the sense below, namely existence

of a homotopy interval I such that f ∼
I

g, is equivalent to f ∼
I0

g, i.e.,

can be check using the one and unique I0. In the case of M = (Cat), we
get readily 1 as a characteristic homotopy interval. More specifically, [p. 105]
if δ0,δ1 : e→ I are two sections of an object I of (Cat), i.e., two objects
e0, e1 of the small category I , then these are 1-homotopic iff e0, e1
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belong to the same connected component of I , which is automatic if I
is 0-connected, and a fortiori if I is aspheric. This accounts to a great
extent, it seems, for the important role 1 is playing in the homotopy
theory of (Cat), and consequently in the whole foundational set-up I
am developing here, using (Cat) as the basic “modelizer”.

It is not clear to me for the time being whether it is reasonable to expect
in more or less any modelizer (M , W ) the existence of a characteristic
homotopy interval (provided of course a homotopy interval exists).
This is certainly the case for the elementary modelizers met so far.
Presumably, I’ll have to come back upon this question sooner or later.

We’ll now see that the set of equivalence relations∼
I

on Fl(M), indexed

by the set of homotopy intervals I, is “filtrant décroissant”, namely that
for two such relations ∼

I
and ∼

J
, there is a third “wider” one, ∼

K
, implied

by both. It is enough to construct a K, endowed with morphisms

K→ I, K→ J

of homotopy intervals. Indeed, there is a universal choice, namely the
category of homotopy intervals admits binary products – we’ll take thus

K= I× J,

where the underlying object of K is just I × J , endowed with the two
sections δIi ×δ

J
i (i ∈ {0, 1}).

As usual, we’ll denote by ∼
W

or simply ∼ the equivalence relation on

Fl(M), which is the limit or union of the the equivalence relations ∼
I

–

in other words

f ∼
W

g iff exists I, a homotopy interval in M , with f ∼
I

g.

For X , Y in M , we’ll denote by

Hom(X , Y )W

the quotient of Hom(X , Y ) by the previous equivalence relation. This
relation is clearly compatible with compositions, and hence we get
a category MW , having the same objects as M , which can be equally
viewed as the filtering limit of the categories MI,

MW = lim−→
I

MI,

where we may take as indexing set for the limit the set of all I’s, pre-
ordered by I≤ J iff there exists a morphism of intervals J→ I (it’s the
preorder relation opposite to the usual one on the set of objects of a [p. 106]
category. . . ).

We now get canonical functors

M → MI→ MW → H,

where H can again be considered as the common localization of the
three categories M , MI (any I), MW with respect to the notion of weak
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equivalence in each. It is clear that the set of weak equivalences in
MW , say W , is saturated provided W is. Also, the canonical functor
M → MW commutes with finite products, and also with finite sums
provided formation of such sums in M commutes with taking products
with any fixed element of M .

A map f : X → Y is called a homotopy equivalence or a homotopism
(with respect to W ) if it is an isomorphism in MW , namely if there exists
g : Y → X such that

g f ∼
W

idX , f g ∼
W

idY .

This implies that f and g are weak equivalences. If such an f exists,
namely if X and Y are isomorphic objects of MW , we’ll say they are
W-homotopic, or simply homotopic. This implies that there exist weak
equivalences X → Y and Y → X , but the converse of course isn’t always
true. If Y is the final object eM , we’ll say X is W-contractible (or simply
contractible) instead of W -homotopic to Y = e. In case there exists a
characteristic homotopy interval I0, all these W -notions boil down to
the corresponding I0-notions considered before.

Remark. If occurs to me that in all what precedes, we never made any
use really of the existence of a homotopy interval! The only notion
we have effectively been working with, it seems to me, is the notion
of “weak homotopy interval”, by which I mean a triple I = (I ,δ0,δ1)
satisfying merely the condition that I be aspheric over e (which is the
condition c) on page 59). Such an I always exists of course, we need
only take I = e itself! In case however an actual homotopy interval
(with Ker(δ0,δ1) = ∅M ) does exist, to make sure that the notion of
W -homotopy obtained by using all weak homotopy intervals is the same
when using only actual homotopy intervals, we should be sure that
for any I aspheric over e, any two sections δ0,δ1 of I over e are W -
homotopic in the initial meaning. This is evidently so when M = (Cat)
and W = W(Cat) (indeed, it is enough that I be 0-connected, instead
of being aspheric), and in the case when M is one among the usual [p. 107]
elementary modelizers. The question of devising notions which still
make sense when there is no homotopy interval in M isn’t perhaps so
silly after all, if we remember that the category of semi-simplicial face
complexes (namely without degeneracies) is indeed a modelizer, but
it hasn’t hot a homotopy interval. However, for the time being I feel it
isn’t too urgent to get any more into this.

49 I would like now to elaborate a little on the notion of a contractible Contractible objects. Multiplicative
intervals.element X in M , which (I recall) means an object, admitting a section

e0 : e→ X , such that the constant map

c = pX e0 : X → e→ X

is homotopic to idX , i.e., there exists a homotopy interval I such that
idX ∼I c (I-homotopy in the wide sense).
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If X is contractible, then the constant map c : X → X is a weak equiv-
alence (as it is homotopic to idX which is) and hence by the saturation
condition c’) (in fact the mild saturation condition c) suffices) it follows
that pX : X → e is a weak equivalence. In fact, one would expect it
is even universally so, i.e., that pX is an aspheric map, as a plausible
generalization of the homotopy lemma c) above (which we have used
already a number of times as our main asphericity criterion in elemen-
tary Aˆ. . . ). The natural idea to prove asphericity of pX , namely that
for any base change S → e, the projection XS = X × S → S is a weak
equivalence, is to apply the precedent criterion to XS , viewed as an
element of M/S . As the base change functor commutes with products, it
is clear indeed that for two maps f , g : X ⇒ Y in M , I-homotopy of f
and g will imply IS-homotopy of fS and gS , with evident definition of
base change for an “interval”. On the other hand, asphericity of I over e
implies tautologically asphericity of IS over S, the final object of M/S ,
which is all we need to care about to get the result that XS → S is a
weak equivalence. (The condition b) on homotopy intervals is definitely
misleading here, as it would induce us to put the extra condition that
the base change functor is compatible with initial elements, which is
true indeed if ∅M is strict, but here a wholly extraneous condition. . . )

Thus X contractible implies X aspheric over e. It is well-known that the
converse isn’t true, already for M = (Ss sets), or M = (Spaces) with the
usual notions of weak equivalences, taking aspheric complexes which
are not Kan complexes, or “aspheric” spaces (in the sense of singular
cohomology) which are not CW-spaces. The same examples show, too,
that even a good honest homotopy interval need not be contractible, [p. 108]
contrarily to what one would expect from the intuitive meaning of an
“interval”. In those two examples, the condition of getting two “disjoint”
sections of the aspheric I over e looks kind of trivial – kind of unrelated
to the question of whether or not I is actually contractible, and not only
aspheric. What comes to mind here is to look for contractible homotopy
intervals, namely homotopy intervals (I ,δ0,δ1) (including condition
b) that Ker(δ0,δ1) = ∅M ) such that I is not only aspheric over e, but
even contractible. Existence of contractible homotopy intervals seems a
priori a lot stronger than just existence of homotopy intervals, but in the
cases I’ve met so far, the two apparently coincide. As a matter of fact,
the first choice of homotopy interval that comes to mind, in all those
examples, is indeed a contractible one – so much so that till the notes
today I was somewhat confused on this matter, and was under the tacit
impression that homotopy intervals are all contractible, and trivially so!
But probably, as usual with most evidently false impressions, underneath,
something correct should exist, worth being explicitly stated.

First thing that comes to mind is here to look at the simplest case of
an aspheric interval I which is contractible – namely when I is even I-
contractible, and more specifically still, when there exists an I-homotopy
(an “elementary”, not a “composed” one!) from idI to one of the two
constant maps of I into itself, defined by the two sections δ0,δ1 – say
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by δ1, to be specific. Such a homotopy is a map

h : I × I → I

in M , having the two properties expressed symbolically by

h(e0, x) = x , h(e1, x) = e1,

where x may be viewed as any “point” of I with “values” in an arbitrary
parameter object T of M , i.e., x : T → I , and e0, e1 are the constant
maps T → I defined by δ0,δ1. If we view h as a composition law on I ,
these relations just mean that e0 acts as a left unit, and e1 as a left zero
element. Such composition law in an interval I , a would-be homotopy
interval as a matter of fact, has been repetitively used before, and this use
systematized in the “comparison lemma for homotopy intervals” (page
60); there we found that if I is an object of M with such a composition
law, and if there exists an aspheric interval J and a morphism of intervals
from J into I, then I is equally aspheric. This we would now see as
coming from the fact that I being I-contractible is J-contractible, and a
fortiori (as J is aspheric over e) aspheric over e. In any case, we see that
when I is endowed with a composition law as above, then I is aspheric
over e iff it is contractible, and equivalently iff δ0 and δ1 are homotopic.

In case when there exists a Lawvere element LM in M , for instance if [p. 109]
M is a topos, this element is automatically endowed with an idempotent
composition law, coming from intersection of subobjects, and in case M
admits a strict initial object, LM is endowed with two canonical sections
which are indeed “disjoint”, corresponding respectively to the “full” and
the “empty” subobjects. Then (as already noticed) previously in the
corollary of the comparison lemma) M admits a homotopy interval iff
LM is such an interval, namely is aspheric over eM . But we can now
add that in this case, there exists even a contractible homotopy interval,
namely LM itself. It is even a “strict homotopy interval”, namely one
admitting a composition L × L→ L having the properties above (where
δ0 and δ1, for the first time, play asymmetric roles!). Thus when a
Lawvere element exists in M , there is an equivalence between the three
properties we may expect from a pair (M , W ), with respect to homotopy
intervals, namely:

(∃homotopy int.)⇐ (∃contractible hom. int.)⇐ (∃strict hom. int.).

It seems that in all cases I’ve in mind at present, when there exists a
homotopy interval, there exists even a strict one. The only case besides
topoi (where it is so, because of the existence of a Lawvere element)
which I have looked up so far, is the case of (Cat) and various full
subcategories, all containing 1 which is indeed a strict homotopy
interval, as it represents the presheaf on (Cat)

C 7→ set of all cribles in C .

If we take the choice I = two-point category equivalent to final one, this
also is a strict homotopy interval, as it represents the functor

C 7→ set of all full subcategories of C ,
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hence again an intersection law. The first homotopy interval though is
a lot more important than the second, because the first one is “charac-
teristic”, namely sufficient for checking the homotopy relation between
any two maps in (Cat), whereas the second isn’t. A “perfect” homotopy
interval would be one which is both strict (hence contractible) and
characteristic.

2.4.

50 While writing the notes last time, and afterwards while pondering a Reflection on some main impres-
sions. The foresight of an “idyllic pic-
ture” (of would-be “canonical mod-
elizers”).

little more about the matter, a few impressions came gradually into
the fore. One was about the interplay of four basic “homotopy notions”
which more or less mutually determine each other, namely the homotopy
relation between maps, the notion of homotopy interval, the notion of
homotopy equivalences or homotopisms (which has formal analogy to
weak equivalences the was it is handled), and the notion of contractible [p. 110]
objects. Another impression was about the dependence of these notions
upon a preliminary notion of “weak equivalence”, namely upon W ⊂
Fl(M), being a rather loose one. Thus the construction of homotopy
notions in terms of a given interval I (including the category MI with
the canonical functor M → MI) is valid for any interval in any category
M with final object and binary products (instead of binary products, it
is even enough that I be “squarable”, namely all products X × I exist
in M). As for the W -homotopy notions, they depend on W via the
corresponding notion of W -asphericity over e, which is at first sight
the natural condition to impose upon an interval I, in order for the
corresponding I-homotopy notions to fit nicely with W (as expressed
in the homotopy lemma). But then we noticed that a much weaker
condition than asphericity on I suffices – namely that the two sections
δ0,δ1 of I over e be W -homotopic, which means essentially that the
“points” of I they define can be “joined” by a finite chain of W -aspheric
intervals mapping into I . This strongly suggests (in view of the main
application we have in mind, namely to the study of modelizers) that the
natural condition to impose upon intervals, in most contexts of interest
to us, will be merely 0-connectedness. But this notion is intrinsic to the
category M , irrespective again of the choice of any W ; and therefore
the corresponding homotopy notions in M will turn out (in the cases
at least of greatest interest to us) to be equally intrinsic to the category
M . On the other hand (and here fits in the third main impression that
peeled out two day ago), the work carried through so far in view of the
“observation” and the (naive) “question” of last week (pages 94 and 95)
strongly suggests that in the nicest modelizers (including (Cat) and the
elementary modelizers, presumably), the notion of weak equivalence W
can be described in terms of the homotopy notions, more specifically in
terms of the notion of contractible objects (when exactly and how should
appear in due course). Thus it will follow that for those modelizers,
the modelizing structure W itself is uniquely determined in terms of
the intrinsic category structure – thus any equivalence between the
underlying categories of any two such modelizers should automatically
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be model-preserving! It will be rather natural to call the modelizers
which fit into this idyllic picture canonical modelizers, as their modelizing
structure W is indeed canonically determined by the category structure.
Next thing then would be to try to gain an overall view of how to get “all”
canonical modelizers, if possible in as concrete terms as the overall view
we got upon elementary modelizers Aˆ in terms of the corresponding
test categories A. [p. 111]

51 First thing though I would like to do now, is to elaborate “from scratch” The four basic “pure” homotopy no-
tions with variations.on the four basic homotopy notions and their interplay, much in the

style of a “fugue with variations” I guess, and without interference
of a pregiven notion W of weak equivalence – relationship with a W
will be examined only after the intrinsic homotopy notions and their
interrelations are well understood.

We start with a category M , without for the time being any specific
assumptions on M . The strongest we’re going to introduce, I guess,
is existence of finite products, and incidently maybe finite sums and
fiber products. In the cases we have in mind, M is a “large” category,
therefore it doesn’t seem timely here introduce Mˆ and the embedding
of M into Mˆ.

The most trivial implications between the four basic homotopy notions
are symbolized by the plain arrows in the diagram below, the somewhat
more technical ones by dotted arrows. It is understood these notions
correspond to a given “homotopy structure” on M , symbolized by the
letter h, and which (in the most favorable cases) may be described at
will in terms of any one of the four notions. I’ll first describe separately
each of these basic notions, and afterwards the relationships symbolized
by the arrows in the diagram. I recall that in interval in M is just an
object I , endowed with two subobjects e0, e1 which are final objects of
M , or equivalently, with two sections δ0,δ1 of I over a fixed final object
eM = e of M . I definitely want to forget entirely for the time being about
any condition of the type e0 ∩ e1 =∅M (initial object of M) – we may
later refer to these as “separated” intervals (namely the endpoints e0, e1
are “separated”). We’ll denote by Int(M) the set of all intervals in M ,
by Int(M) the corresponding category (the notion of a morphism of
intervals being the obvious one). Now here’s the organigram:

(D)

1) homotopy relation
Rh ⊂ Fl(M)× Fl(M)

2) homotopism
Wh ⊂ Fl(M)

3) homotopy intervals
Σh ⊂ Int(M)

4) contractible objects
Ch ⊂ Ob(M)

1

2

3

A) Homotopy relation between maps. As a type of structure, a ho- [p. 112]
motopy relation between maps in M is a subset

Rh ⊂ Fl(M)× Fl(M),
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namely a relation in the set Fl(M) or arrows of M , the basic assumption
being that whenever f and g are “homotopic” arrows, then they have
the same source, and the same target. Thus, the data Rh is equivalent
to giving a “homotopy relation” in any one of the sets Hom(X , Y ), with
X and Y objects in M . The relevant saturation condition is twofold:

a) the relation Rh is an equivalence relation, or equivalently, the
corresponding relations in the sets Hom(X , Y ) are equivalence
relations;

b) stability under composition: if f and g are homotopic, then so
are v f and vg, and so are f u and gu, for any arrow v or u such
that the relation makes sense.

When these conditions are satisfied, we’ll say we got a homotopy
relation between maps of M . This relation between f and g will be
denoted by a symbol like

f ∼
h

g.

If the basic assumption is satisfied, but not the saturation condition,
there is an evident way of “saturating” the given relation, getting one Rh
which is saturated, i.e., a homotopy relation in M (in fact, the smallest
one containing Rh).

Given a homotopy relation Rh, we denote by

Hom(X , Y )h

the corresponding quotient sets of the set Hom(X , Y ), they compose
in an evident way, so as to give rise to a category Mh having the same
objects as M , and to a canonical functor

M → Mh

which is the identity on objects, and surjective on arrows. We may
view thus Mh as a quotient category of M , having the same objects as
M . Clearly, Rh 7→ Mh is a bijective correspondence between the set
of homotopy relations in M , and the set of quotient categories of M
satisfying the aforesaid property. By abuse of language, we may even
consider that considering a homotopy relation in M , amounts to the
same as giving a functor M → Mh from M which is bijective on objects
and surjective on arrows.

When we got a homotopy relation Rh in M , we deduce a notion of
homotopisms

Wh ⊂ Fl(M),

namely those arrows in M which become isomorphisms in Mh. Also we [p. 113]
deduce a notion of homotopy interval, i.e.,

Σh ⊂ Int(M),

namely those intervals I in M such that the two marked sections be
homotopic. (NB Σh is non-empty if and only if M has a final element,
in this case Σh contains all intervals such that δ0 = δ1 – which we may
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call trivial intervals, for instance the final interval with I = e. . . ) This
notion of a homotopy interval is considerably wider than the one we
have worked with so far, however it is clearly the right one in the context
of pure homotopy notions. To avoid any confusion, we better call this
notion by the name of weak homotopy intervals – funnily there won’t
be any unqualified “homotopy intervals” in our present set-up of “pure”
homotopy notions!

The two prescriptions above account for two among the plain arrows
in our organigram.

We’ll often make use of an accessory assumption on Rh, which can be
expressed by demanding that the canonical functor M → Mh commute
to binary products, in case we assume already such products exist in M .
This can be expressed also by the property that for two maps

f , g : X ⇒ Y1 × Y2,

f and g are homotopic iff so are fi and gi (i ∈ {1, 2}) (where the “only
if” part is satisfied beforehand anyhow). This implies too that in Mh
binary products exist, and that f ∼ f ′, g ∼ g ′ implies f × g ∼ f ′ × g ′.
On the other hand, it is trivial that if M admits a final object, this is
equally a final object of Mh (and hence, under the accessory assumption
on Rh, the functor M → Mh commute to finite products).

B) Homotopisms. As a type of structure on M , we got just a subset

Wh ⊂ Fl(M),

without any basic assumption to make. The natural saturation condition
is just the strong saturation for a subset of Fl(M), which can be expressed
by stating that Wh can be obtained as the set of arrows made invertible
by some functor from M into a category M ′, or equivalently, by the
localization functor

M →W−1
h M .

We may refer to a strongly saturated Wh as a “homotopism structure” (or
“homotopy equivalence structure”) in M – but as in the case A), we’ll have
soon enough to make pretty strong extra assumptions. Maybe we should,
at the very least, demand for the notion of homotopy structure that the
canonical functor above, which is bijective on objects in any case, should
be moreover surjective on arrows – thus I’ll take this as a basic assumption [p. 114]
after all. This assumption makes sense of course independently of any
saturation condition. If Wh is not strongly saturated, then denoting by
W h the subset of Fl(M) of all arrows made invertible by the canonical
functor, this will now be a strongly saturated set of arrows (in fact
the smallest one containing Wh, and giving rise to the same localized
category, and hence satisfying the basic assumption too) – thus W h is
indeed a homotopism structure on M . When M admits a final object,
this will equally be a final object of W−1

h M . We may now define in terms
of Wh the notion of contractible objects in M , forming a subset

Ch ⊂ Ob(M),
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as those objects X in M such that the projection pX : X → e is in Wh,
or equivalently, such that X is a final object in the localized category
W−1

h M . This accounts for the third plain arrow of the organigram.
We’ll now dwell a little more on the first dotted arrow, namely the

description of a homotopy relation

Rh ⊂ Fl(M)× Fl(M)

in terms of Wh: the natural choice here is to define f , g ∈ Fl(M) to be
homotopic (or Wh-homotopic, if ambiguity may arise) iff their images
in the category W−1

h M are equal. This relation between maps in M
clearly satisfies the basic assumption on source and target, as well as
the saturation condition – it is therefore a “homotopy relation” in M ,
namely the one associated to W−1

h , viewed as a quotient category of
M . It is clear that we recover Wh from Rh, consequently, by the process
described in A).

To make the relationship between the notions 1) and 2) still clearer,
let’s denote respectively by

Hom1(M), Hom2(M)

the set of all homotopy relations, resp. of homotopism notions, in M .
We got maps 3.4. There is no map r21, only r12, see

correction in §52.
Hom1(M) Hom2 M

r21

r12
,

and the relevant fact here is that

r12 : Hom2→ Hom1

is injective, and admits r21 as a left inverse. Thus, we may view Hom2
as a subset of Hom1, i.e., the structure of a “homotopism notion” on
M as a particular case of the structure of a “homotopy relation” on M .
Namely, a structure of the latter type can be described in terms of a
notion of homotopism in M , iff the canonical functor M → Mh it gives
to is a localization functor. [p. 115]

For a general Rh ∈ Hom1(M), if we consider the corresponding Wh
(= r21(Rh)) in Hom2(M), it is clear that the canonical functor M → Mh
of A) factors into

M →W−1
h → Mh,

and Rh “is in Hom2(M)”, i.e., Rh = r12(Wh), iff the second functor

W−1
h M → Mh

(which is anyhow bijective on objects and surjective on arrows) is an
isomorphism, or equivalently, faithful. Here is a rather direct sufficient
condition on Rh for this to be so,† namely: †3.4. See §52 for a [?] of this rash

statement!C12) If f , g : X → Y are homotopic, there exists a homotopism X ′→ X ,
two sections s0, s1 of X ′ over X , and a map h : X ′→ Y , such that

f0 = hs0, f1 = hs1.
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Remark. Intuitively, we are thinking of course of X ′ as a product X × I ,
where I= (I , e0, e1) is a weak homotopy interval, and s0, s1 are defined
in terms of e0, e1. In Quillen’s somewhat different set-up, X ′ is referred
to as a “cylinder object for X ”, suitable for defining the “left homotopy
relation” associated to a given Wh. The condition C12 is not autodual,
we could state a dual sufficient condition in terms of a “path object for
Y ”, namely a homotopism Y → Y ′ endowed with two retractions t0, t1
upon Y – but we don’t have any use for this in the present set-up, which
(as for as the main emphasis is concerned) is by no means autodual, as
is Quillen’s.

The condition C12 above can be viewed equally as a condition on a
Wh ∈ Hom2(M).

We may interpret the set Hom2(M) of homotopism notions in M as
the set of all quotient categories Mh of M , having the same objects
as M , and such that moreover the canonical functor M → Mh be a
localizing functor. As in A), the relevant “accessory assumption” on Wh
(a particular case indeed of the corresponding one for Rh) is that this
functor commute to products. I don’t see any simple computational way
though to express this condition directly in terms of Wh, as previously
in terms of Rh. I would only like to notice here a consequence of this
assumption (I doubt it is equivalent to it), namely that the cartesian
product of two homotopisms is again a homotopism – which implies, for
instance, that the product of a finite family of contractible objects of M [p. 116]
is again contractible.

C) Weak homotopy intervals. We assume M stable under finite prod-
ucts. The type of structure we’ve in view is a set of intervals in M ,

Σh ⊂ Int(M),

called the “weak homotopy intervals”. No basic assumption on this set,
it seems; the natural “saturation condition” is the following:
(Sat 3) Any interval I = (I ,δ0,δ1) in M , such that the sections δ0,δ1

of I be Σh-homotopic (see below), is in Σh.
The assumption on I means, explicitly, that there exists a finite chain

of sections of I
s0 = δ0, s1, . . . , sN = δ1,

joining δ0 to δ1, and for two consecutive si , si+1 an interval J in Σh, and
a map of intervals from J or J̌ to (I , si , si+1), i.e., a map J → I , mapping
the two given sections of J , one into si , the other into si+1 (without
specification which is mapped into which).

The significance of this saturation condition becomes clear in terms
of the second dotted arrow of the organigram. Namely, in terms of any
subset Σh of Int(M), we get a corresponding homotopy relation between
maps, say Rh, which is the equivalence relation in Fl(M) generated by
the “elementary” homotopy relation (with respect to Σh) between maps
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f , g in M , namely the relation R0

f ∼
R0

g
def
⇐⇒ there exists I in Σh, and an I-homotopy

from f to g.

The corresponding equivalence relation Rh in Fl(M) is already saturated,
namely stable under compositions, moreover it satisfies condition C12
above – thus we may view this homotopy relation as defined in terms of
a homotopisms notion – thus in fact the second dotted arrow should go
from 3) to 2) rather than from 3) to 1)! Now, if we look at the subset Σh
of Int(M) defined in terms of Rh as in A) (namely the set of “homotopy
intervals with respect to RH”), we get

Rh ⊂ Rh,

and the equality holds iff Rh satisfies (Sat 3)? At the same time, in case
of arbitrary Rh, we get the construction of its saturation, Rh, which may
of course be described alternatively as the smallest saturated subset of
Int(M) containing Rh.

We’ll call weak homotopy interval structures on M , any set Σh of [p. 117]
intervals in M , satisfying the saturation condition above. The set of all
such structures on M will be denoted by Hom3(M), thus we get two
embeddings

Hom3(M) ,→ Hom2(M) ,→ Hom1(M),

in such a way that a weak homotopy interval structure on M may
be viewed also as a particular case of a homotopism structure on M ,
and a fortiori as a particular case of a homotopy relation on M . Of
course, the homotopy relations or homotopism structures on M we’ll
ultimately be interested in, are those stemming from weak homotopy
interval structures on M . Recall that M admits finite products, and
these structures satisfy automatically the accessory assumption, namely
commutation of the canonical functor M → Mh to finite products.

It is immediate that if we start with a homotopy relation Rh, the
corresponding Σh as defined in A) is saturated. Thus, the canonical
embedding r13 of Hom3 into Hom1 admits a canonical left inverse r31,
the restriction of which to Hom2 is a canonical left inverse r32 of the
natural embedding r23 of Hom3 into Hom2.

D) Contractibility structures. (We still assume M admits finite prod-
ucts.) As a type of structure, it is a set of objects of M

Ch ⊂ Ob(M),

without any “basic assumption” on Ch it seems. These objects will be
called the contractible objects. Sorry, there is a basic assumption here I
just overlooked, namely every X in Ch should have at least one section
(thus I better assume beforehand, as in C), that M has a final object
e). To get the natural saturation condition on Ch, we’ll make use of the
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third dotted arrow in the organigram, by associating to Ch the set Σh of
“contractible intervals”, namely intervals I= (I ,δ0,δ1) such that I is in
Ch. Of course in general there is no reason that Σh should be saturated,
never mind – it defines anyhow (as seen in C)) a homotopism notion
in M , and hence (as seen in B)) a notion of contractible objects, i.e.,
another subset Ch of Ob(M). Now it occurs to me that it is by no means
clear that the latter contains Ch, which brings near the necessity of a
more stringent basic assumption on Ch, namely for the very least

Ch ⊂ Ch

(this will imply that any X in Ch has indeed a section over e, as this
is automatically the case for Wh-contractible objects). The saturation
condition (Sat 4) will of course be equality

Ch = Ch,

and for general Ch (satisfying the basic assumption Ch ⊂ Ch), Ch can be [p. 118]
viewed as the “saturation” of Ch, namely the smallest saturated subset of
Ob(M) satisfying the basic assumption, or in other words, the smallest
contractibility structure on M such that the objects in Ch are contractible.

It may be worth while to state more explicitly the basic assumption
here, and the saturation condition on Ch.
(Bas 4) For any X in Ch, we can find a finite sequence of maps from X

to X ,
f0 = idX , f1, . . . , fN = cs,

joining the identity map of X to a constant map cs (defined by
some section s of X ), in such a way that two consecutive maps
fi , fi+1 are Ch-homotopic in the strict sense, namely we can find
Yi in Ch and two sections δi

0 and δi
1 of Yi over e, and a map

hi : Yi × X → X ,

such that

hi ◦ (δi
0 × idX ) = fi , hi ◦ (δi

1 × idX ) = fi+1.

(Sat 4) Any object X in M satisfying the condition just stated is in Ch.
The third dotted arrow can be viewed as denoting an embedding of

Hom4(M) (the set of all contractibility structures on M) into Hom3(M),
we finally get a cascade of three inclusions

Hom4(M) ,→ Hom3(M) ,→ Hom2(M) ,→ Hom1(M),

in terms of which a contractibility structure on M can be viewed a a
particular case of any of the three types of homotopy structures on M
considered before.

If we start with a homotopism structure Wh on M , and consider the
corresponding set Ch of contractible objects of M (namely objects X
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such that X → e is in Wh), it is pretty clear that Ch satisfies the satura-
tion condition (Sat 4), but by no means clear that it satisfies the basic
assumption (Bas 4), even in the special case when we assume moreover
that Wh comes from a weak homotopy interval structure Σh on M . The
trouble comes from the circumstance that there is no reason in general
that the contractibility of an object X of M can be described in terms of
a sequence of elementary homotopies between maps fi : X → X (joining
idX to a constant map) involving weak homotopy intervals Ii which
are moreover contractible. I doubt this is always so, and there doesn’t
come either any plausible extra condition on Σh which may ensure this,
except precisely that Σh can be generated (through saturation) by the [p. 119]
subset Σhc of its contractible elements, which is just another way of
saying that this Σh ∈ Hom3(M) comes already from a contractibility
structure Ch ∈ Hom4(M)! Thus, definitely the uniformity of formal
relationships between successively occurring notions seems broken here,
namely there does not seem to be any natural retraction r43 of Hom3(M)
onto the subset Hom4(M). For the least, if there is such a retraction, its
definition should be presumably a somewhat more delicate one than
the first that comes to mind. I will not pursue this matter any further
now, as it is not clear if we’ll need it later.

It is clear that for any weak homotopy interval structure Σh on M ,
Σh is stable under the natural notion of finite products of intervals (in
the sense of the category structure of Int(M)). We saw already that this
is handy, as the consideration of products of intervals allows to show
that the family of homotopy relations ∼

I
in Fl(M), for variable I in Σh, is

“filtrant décroissant”, so we get the relation ∼
h

as the filtering direct limit

or union of the more elementary relations ∼
I
. Similarly, if Ch ⊂ Ob(M)

is a contractibility structure on M , Ch is stable under finite products.

Remark. From the way we’ve been working so far with homotopy
notions, it would seem that we’re only interested here in homotopy
notions which stem from a structure in Hom3(M), namely which can be
described in terms of a notion of weak homotopy intervals. The focus
on contractibility has set in only lately, and it is too soon to be sure
whether we’ll be working only with homotopy structures on M which
can be described in terms of a contractibility notion, namely which are in
Hom4(M). In the cases I’ve had in mind so far, it turns out, it seems that
the homotopy notions dealt with do come from a structure in Hom4(M),
i.e., from a contractibility structure.

E) Generating sets of weak homotopy intervals. Contractors.
Let Σh be a weak homotopy interval structure on M .‡ A subset Σ0

h is ‡This implies we assume M stable under
finite products.called generating, if ΣH is just its saturation (cf. C) above), i.e., for any I

in Σh, the two endpoints can be joined by a chain as in (Sat 3), involving
only intervals in Σ0

h. This implies that all homotopy notions dealt with
so far can be checked directly in terms of intervals in Σ0

h. We’ve met a
particular case of this before, when Σ0

h is reduced to just one element
I – we then called I “characteristic”, but “generating weak homotopy
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interval” now would seem the more appropriate expression. Even when [p. 120]
there should not exist such a generating interval, the natural next best
assumption to make is the existence of a generating set Σ0

h which is
“small” (namely an element of the “universe” we are working in). The
case of a finite generating set of intervals reduces to the case of a single
one though, by just taking the product of those intervals.

An interesting case is when the generating set Σ0
h consists of con-

tractible objects of M . Such a generating set exists iff the structure
considered Σh comes from a contractibility structure. About the best we
could hope for is the existence of a single generating contractible weak
homotopy interval I. If we got any interval I in M , this can be viewed as a
generating contractible weak homotopy interval for a suitable homotopy
structure on M (then necessarily unique) iff the identity map of I can be
joined to a constant one by a chain of maps, such that two consecutive
ones are tied by an I-homotopy or an Ǐ-homotopy. The most evident
way to meet this condition is by a one-step chain from idI to the constant
map defined by one of the endpoints, δ1 say. This brings us back to
structure of a composition law

I × I → I

in I , having e0 as a left unit and e1 as a left zero element. Let’s call
an interval, endowed with such a composition law, a contractor in M .
Thus starting from a contractor in M is about the nicest way to define
a homotopy structure in M , as a matter of fact the strongest type of
such a structure – namely a contractibility structure, admitting a gener-
ating contractible weak homotopy interval (and better still, admitting a
generating contractor).

Of course, starting with the weakest kind of homotopy structure on
M , namely just a homotopy relation Rh ∈ Hom1(M), if I is a homotopy
interval which is moreover endowed with a structure of a contractor, i.e.,
if it is a contractor such that the end-point sections δ0,δ1 are homotopic,
then I is automatically contractible (never mind if it is generating or
not).

It seems to me that the homotopy structures I’ve looked at so far
(such as (Cat)) and various standard elementary modelizers Aˆ) are not
only contractibility structures, but they all can be defined by a single
contractor each.

Besides the “basic contractor” 1 in (Cat), there are two general ways
I’ve met so far for getting contractors. One has been made explicit in
these notes a number of times, namely the Lawvere element LM in M if [p. 121]
it exists, and if moreover M has a strict initial element, ∅M . Recall that
LM represents the contravariant functor on M

X 7→ set of all subobjects of X ,

and that the “full” and “empty” subobjects of X , for variable X , define two
sections δ0 and δ1 of LM . I forgot to state the extra condition that in M
fibered products exist (intersection of two subobjects would be enough);
then the intersection law endows LM with a structure of a contractor
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LM , admitting δ0 as a unit and δ1 as a zero element. Moreover, it is
clear that LM as an interval is separated, i.e., Ker(δ0,δ1) =∅M . More
precisely still, LM can be viewed as a final object of the category of all
separated intervals in M , namely for any such interval, there is a unique
map of intervals

I→ LM .

This implies that if M is endowed with a homotopy structure, such that
there exists a weak homotopy interval which is separated, then LM is
such an interval, and it is moreover contractible. It is doubtful though,
even if we can find a generating contractor for the given homotopy
structure on M , that the Lawvere contractor is generating too.

Here now is a second interesting way of getting contractors. We
assume that M admits finite products (as usual). Let X be an objects,
and assume the object Hom(X , X ), representing the functor

Y 7→ Hom(X × Y, X ) = HomY (XY , XY ),

exists in M . (NB XY denotes X × Y , viewed as an object of M/Y .)
Composition of endomorphisms of XY clearly endow this functor with
an associative composition law, admitting a two-sided unit, which I call
e0. Notice that sections of

I= Hom(X , X )

can be identified with maps X → X , and the section corresponding to
idX is of course the two-sided unit. On the other hand, if X admits
sections, i.e., admits “constant” endomorphisms, it is clear that the
corresponding sections of I are left zero elements. If we choose a section
of X , I becomes a contractor. Its interest lies in the following

Proposition. Assume finite products exist in M, and M endowed with
a homotopy structure.§ Let X be an object of M endowed with a section §[?]
eX , and suppose the object Hom(X , X ) exists, hence a contractor I as seen
above. The following two conditions are equivalent:

a) X is contractible.

b) I is contractible (or, equivalently as seen above, I is a weak homotopy
interval, namely the two endpoints are homotopic).

Moreover, this condition implies the following two: [p. 122]
c) For any object Y in M, if Hom(Y, X ) exists, it is contractible.

d) For any Y in M, if Hom(X , Y ) exists, the natural map

Y 7→ Hom(X , Y )

(identifying Y to the “subobject of constant maps from X to Y ”) is a
homotopism.

The equivalence of a) and b) is just a tautological translation of con-
tractibility and homotopy relations in terms of weak homotopy intervals
J (cf. cor. 2 below). That c) and d) follow comes from the fact that
the monoid object I = End(X ) = Hom(X , X ) operates on the left on
Hom(Y, X ), on the right on Hom(X , Y ), and the following:
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Corollary 1. Let I be a weak homotopy interval, assume the underlying I
“operates” on an object H, namely we are given a map

h : I ×H → H (“operation” of I on H)

satisfying the relations (where h(u, f ) is written simply u · f ):

e0 · f = f , e1 · (e1 · f ) = e1 · f ,

namely e0 acts as the identity and e1 acts as an idempotent p on H (a very
weak associativity assumption indeed if I is a contractor, as e1 · e1 = e1).
Assume the image of p, i.e., Ker(idH , p) exists, let H0 be the corresponding
subobject of H, and

p0 : H → H0

the map induced by p. Then p0 is a homotopism (and hence the inclusion
i : H0→ H, which is a section of p0, is a homotopism too).

Because of the saturation property c’) on homotopies, it is enough to
check that p = ip0 is a homotopism (as p0i = idH already is one), and
for this it is enough to see it is homotopic to the identity map of H. But
a homotopy between the two is realized by h, qed.

The argument for equivalence of a) and b) above can be generalized
as follows:

Corollary 2. Let M be as before, and X and Y objects such that H =
Hom(X , Y ) exists in M. Let f , g : X ⇒ Y be two maps, which we’ll identify
to the corresponding sections of H. Then f and g are homotopic maps iff
they give rise to homotopic sections of H.

F) The canonical homotopy structure: preliminaries on π0. In
order to simplify life, I will in this section make the following assump-
tions on M (which presumably, except for the first, could be considerably [p. 123]
weakened, but these will be sufficient):

a) Finite products exist in M (“pour mémoire”).

b) Arbitrary sums exist in M , they are “disjoint” and “universal”
(which implies that M has a strict initial object).

c) Every object in M is isomorphic to a direct sum of 0-connected
ones.

I recall an object is called 0-connected if it is a) “non-empty”, i.e.,
non-isomorphic to ∅M , and b) connected, i.e., any decomposition of
it into a sum of two subobjects is trivial (namely, one is “empty”, the
other is “full”). Also, under the assumption b), well-known standard
arguments show that for any object X , a decomposition of X into a
direct sum of 0-connected components is essentially unique (namely
the corresponding set of subobjects of X is unique), if it exists. The
subobjects occurring in the sum are called the connected components of
X , and the set of connected components of X is denoted as usual by
π0(X ). We thus get a natural functor

X 7→ π0(X ), M → (Sets),
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This can be equally described as a left adjoint to the functor

E 7→ EM , (Sets)→ M ,

associating to a set E the corresponding “constant object” EM of M ,
sometimes also denoted by the product symbol E × eM = E × e (e the
final object of M), namely the direct sum in M of E copies of e. The
adjunction formula is

HomM (X , EM )' Hom(Sets)(π0(X ), E).

The adjunction relation implies that the functor π0 commutes with all
direct limits which exist in M , and in particular (and trivially so) to
direct sums.

I’ll finally assume also, to fix the ideas:
d) The final object of M is 0-connected, i.e., π0(e) = one-point set.
Empty objects of M , on the other hand, are of course characterized

by the condition
π0(∅M ) = ;.

Finally, I’ll make in the end a very strong assumption on M , which
however is satisfied more or less trivially in the cases we are interested
in, when M is a would-be modelizer:

e) (Total 0-asphericity of M): the product of two 0-connected objects
of M is again 0-connected.

This is clearly equivalent to the condition
e’) The functor π0 : M → (Sets) commutes to finite products.

Remarks. The crucial assumptions here seem to be b) (which allows [p. 124]
definition of a π0 functor, and topological intuition tied up with con-
nectedness to enter into play), and e), which implies that with respect
to cartesian products, the usual intuitive background for connectedness,
rooted in the example of M = (topological spaces) is indeed valid. This
condition is clearly stronger than d), which is a mere condition for
convenience in itself (otherwise, a decomposition of e into connected
components would mean a corresponding decomposition of M as a
product category, and everything could be looked at “componentwise”).
As for e) it could probably be dispensed with, by still defining π0(X ) as
a strict pro-set. In the case of modelizers anyhow, such generalization
seems quite besides the point.

The condition e), however innocent-looking in terms of topological
intuition, seems to me an extremely strong condition indeed. I suspect
that in case M is a topos, it is equivalent to total asphericity. In any case,
if M is the topos associated to a locally connected topological space,
we’ve seen time ago that the condition e) implies X is irreducible, and
hence totally aspheric. In view of this exactingness of e), I’ll not use it
unless specifically stated.
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3.4.

52 Before pursuing the review of “pure homotopy notions” begun in yes- Inaccuracies rectified.
terday’s notes, I would like to correct some inaccuracies which flew in
when looking at the relationship between the two first basic homotopy
notions, namely the notion of a homotopy relation, and the notion of a
homotopism structure. As usual, the provisional image I had in mind
was still somewhat vague, while the reasonable expectations came out
more clearly through the process of writing things down (including
factual inaccuracies!).

The two notions clearly correspond to two kinds of ways of construct-
ing new categories M ′ in terms of a given one, and a functor

M → M ′

which is bijective on objects, and has the property moreover that for
any category C , the corresponding functor

Hom(M ′, C)→ Hom(M , C)

is a fully faithful embedding in the strict sense, namely injective on [p. 125]
objects. One way is to take for M ′ any quotient category of M , by
an equivalence relation which is the discrete one on objects – thus it
corresponds just to an equivalence relation R in Fl(M), compatible with
the source and target maps and with compositions. The other is to take
as M ′ a localization with respect to some W ⊂ Fl(M), and if we take W
strongly saturated we get a bijective correspondence between these M ′

and the set of strongly saturated subsets of Fl(M).
It wouldn’t be any more reasonable to call an arbitrary R as above,

corresponding to an arbitrary quotient category M ′ with the same ob-
jects as M , a “homotopy relation” on M (as I did though yesterday), as
it would be to call an arbitrary strongly saturated W ⊂ Fl(M) a “homo-
topism structure” on M (as I nearly did yesterday, but then rectified in
the stride). The characteristic flavor of homotopy theory comes in, when
we get an M ′ which is both a quotient category and a localization of M.
Thus neither approach, via R or via W , is any more contained in the
other, then the converse. We should regard the homotopy structure on
M to be embodied in the basic functor

M → M ′,

which is a description where no choice yet is made between the two
possible descriptions of M ′, either by an R, or by a W . If we describe
M ′ in terms of R, the extra assumption to make on R for calling it a
“homotopy relation”, is that the canonical functor

M → M/R

should be localizing. Alternatively, describing M ′ by W , the extra as-
sumption to make on W (as we did yesterday) in order to call W a
homotopism structure on M , is that the canonical localization functor

M →W−1M
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be essentially a passage-to-quotient functor, namely surjective on arrows
(as we know already it is bijective on objects). Thus the set of all
homotopy relations on M is in one-to-one correspondence with the
set of all homotopism structures on M , and if we denote these sets
(in accordance with yesterday’s provisional notations) Hom1(M) and
Hom2(M), we get thus a bijective correspondence

Hom1(M)↔ Hom2(M).

The set of homotopy structures Hom(M) on M may be either defined
as the usual quotient set defined by the previous two-member system
of transitive bijections between sets, or more substantially, as a set of
isomorphism classes of categories M ′ “under M”, i.e., endowed with a
functor M → M ′, and subject to the following two extra conditions:

a) The functor M → M ′ is bijective on objects, surjective on arrows. [p. 126]

b) The functor M → M ′ is a localization functor (it will be so then,
in view of a), in the strict sense, namely M ′ will be M -isomorphic,
not only M -equivalent, to a localization W−1M).

However, the question arises whether it is possible to define such a
homotopy structure on M in terms of an arbitrary R, i.e., an arbitrary
quotient category having the same objects (let Q(M) =Q be the set of all
such R’s) or in terms of an arbitrary localization of M , or what amounts
to the same, in terms of an arbitrary strongly saturated W ⊂ Fl(M) (let’s
call L(M) = L the set of all such W ’s). The first thing that comes to
mind here, is that we got two natural maps

(1) Q L
r

s

between Q and L, which are defined by the observation that whenever
we have a functor i : M → M ′, injective on objects, it defines both an
R ∈ Q (namely f ∼

R
g iff i( f ) = i(g)) and a W ∈ L (namely f ∈ W if

i( f ) is invertible). For defining r(R) resp. s(W ), we apply this to the
case when M ′ = M/R resp. W−1M . Let’s look a little at the two cases
separately.

Start with R in Q, we get W = r(R),

W =
�

f ∈ Fl(M)
�

� i( f ) invertible
	

,

where
i : M → M/R

is the canonical functor, we thus get a canonical functor (compatible
with the structures “under M”)

(2) αR : MW → MR,

where for simplicity I write

MR = M/R, MW =W−1M .
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We may define W as the largest element in L (for the natural order
relation in L, namely inclusion of subsets of Fl(M)) such that a functor
(2) exists (compatible with the functors from M into both sides) – such
a functor of course is unique (by the preliminaries on functors M → M ′

made at the beginning). In terms of (1), we can say that R is actually
a homotopy relation (let’s call Q0(M) =Q0 the subset of Q of all such
relations) iff (2) is an isomorphism, or equivalently (as it is clearly
bijective on objects, surjective on arrows) iff it is injective on arrows, i.e.,
faithful.

Conversely, start now with W in L, we get R= s(W ),

R=
�

( f , g) ∈ Fl(M)× Fl(M)
�

� i( f ) = i(g)
	

,

where now [p. 127]
i : M →W−1M = MW

is the canonical functor defined in terms of W ; we thus get a canonical
functor of categories “under M”

(3) β = βW : MR→ MW ,

as a matter of fact, R is the largest element in Q (for the inclusion rela-
tion of subsets of Fl(M)× Fl(M)) for which a functor (3) exists (then
necessarily unique, as before). We may say that W is a homotopism
structure on M , i.e., W ∈ L0 (where L0 is the subset of L of all ho-
motopism structures on M) iff the functor (3) is an isomorphisms, or
equivalently (as it is clearly bijective on objects, injective on arrows) iff
it is surjective on arrows.

We may describe Q0 and L0 in a purely set-theoretic way, in terms
of the system (r, s) of maps in (1), by the formula (which is just a
translation of the definitions of Q0 and L0)

Q0 =
�

q ∈Q
�

� sr(q) = q
	

L0 =
�

` ∈ L
�

� rs(`) = `
	

,

and we can describe formally the pair of subsets (Q0, L0) of Q, L as the
largest pair of subsets, such that r and s induce between Q0 and L0
bijections inverse of each other. In the general set-theoretic set-up, it
is by no means clear, and false in general, that r maps Q into L0 or L
into Q0 (thus both Q0 and L0 may well be empty, whereas Q and L are
not). Thus it is not clear at all that starting with an arbitrary R ∈ Q,
the corresponding W = i(R) is a homotopism structure, and it is easily
seen that this is not so in general, contrarily to what I hastily stated in
yesterday’s notes. (Take M which just one object, therefore defined by
a monoid G, and MR corresponds to a quotient monoid G′, we may take
G′ = unit monoid, thus W is G itself, and MW the enveloping group G
of G – the map G→ G′ need not be injective!) In the opposite direction,
starting with an arbitrary W in L, the corresponding R need not be a
homotopy relation. (If M is reduced to a point, this amounts to saying
that if we localize a monoid G with respect to a subset W ⊂ G, by
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making invertible the elements in W , the corresponding map G → G
need no be surjective!)

What we may say, though, is that if we start with a pair

(R, W ) ∈Q× L

such that the two functors (2), (3) exist, i.e., such that

W ≤ r(R) and R≤ s(W ),

then (R, W ) ∈ Q0 × L0, i.e., R is a homotopy relation and W is a ho-
motopism structure, and the two are associated. This comes from the [p. 128]
fact that both compositions of the functors (2), (3) must be the identity
functors (being compatible with the “under M” structure), hence α and
β are isomorphisms, which shows both R ∈Q0 and W ∈ L0, and that R
and W are associated. In terms of the set-theoretic situation (1), this
may be described by using the order relations on Q and L, and the fact
that r and s are monotone maps, and satisfy moreover

(*) sr(q)≤ q, rs(`)≤ ` (any q ∈Q,` ∈ L),

which implies that the set C0 of pairs (q,`) of associated elements of
Q0, L0 can be described also as

C0 =
�

(q,`) ∈Q× L
�

� `≤ r(q), q ≤ s(`)
	

.

Thus it doesn’t seem evident to get a homotopy structure on M , just
starting with an R ∈Q or a W ∈ L, without assuming beforehand that R
is a homotopy relation, or W a homotopism structure. The condition
C12 on page 115 may be viewed as a condition on a pair (R, W ) ∈Q× L,
and it clearly implies

R≤ s(W );

if we assume moreover W = r(R) we get R≤ s(r(R)) and hence, in view
of the first inequality (*) above,

R= sr(R), i.e., R ∈Q0,

i.e., R is a homotopy relation, as asserted somewhat quickly yesterday.
The only standard way for getting homotopy structures in a general

category M which I can see by now, is in terms of an arbitrary set Σh of
intervals in M (assuming only that M admits finite products). As soon
as the focus gets upon intervals for describing homotopy structures, the
situation becomes typically non-autodual – in contrast to Quillen’s auto-
dual treatment of homotopy relations (via “left” and “right” homotopies,
involving respectively “cylinder” and “path” objects). This is in keeping
with the highly non-autodual axiom on universal disjoint sums in M ,
which we finally introduced by the end of yesterday’s reflection.

To come back however upon the relationships between the four basic
“homotopy notions” introduced in yesterday’s notes, I would now rather
symbolize these relations in the following diagram of maps between
sets [p. 129]
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Q(M) L(M)

Q0 = Hom1(M) Hom2(M) = L0

Hom3(M) Hom4(M)

r

s

∼

("homotopy structures"
on M , defined in terms
of homotopy relations, or
homotopism structures)

(weak homotopy
interval structures)

(contractibility
structures) ,

which in terms of the preceding reflections, and yesterday’s, is self- Déployer le diagramme, trop tassé dans les
deux dimensions. [I think I’ve fixed that; I
also reversed the brace for clarity.]

explanatory. The vertical arrow from Q(M) to Hom3(M) is the canonical
retraction – in terms of the latter, and its composition with s : L(M)→
Q(M), there are ways after all to associate to any R in Q(M) or W in L(M)
a homotopy structure on M , provided only M admits finite products,
by using weak homotopy intervals. If h is the homotopy structure thus
defined, we get a priori a functor

Mh→ MR = M/R resp. Mh→ MW =W−1M ,

provided we assume R resp. W satisfy the “accessory assumption”,
namely that the corresponding functor M → M ′ (where M ′ is either MR
or MW ) commute with finite products.

The main fact to remember from this whole discussion, it seems to
me, is that there are not really four, but only three essentially distinct
types of structure (among yesterday’s) we may consider upon M as
“homotopy-flavored” structures, namely

homotopy structures
Hom1(M)↔ Hom2(M)

⇐
weak homotopy
interval structures
Hom3(M)

⇐
contractibility
structures Hom4(M).

It would seem at present that the homotopy structures that naturally
come up in our present “modelizer story” are all of the strictest type, and
even describable in terms of just one generating contractible weak homo-
topy interval (I would like to drop the qualification “weak”, definitely
when a contractibility assumption comes in!), and even a generating
contractor, with commutative idempotent composition law. [p. 130]

53 Before pursuing yesterday’s reflection about the π0-functor and its re- Compatibility of a functor u : M →
N with a homotopy structure on M.lation to homotopy structures on M , it seems more convenient to in-

terpolate some more or less obvious “functorialities” on the homotopy
notions just developed. They all seem to turn around the relationship
of such notions in M with a more or less arbitrary functor

u : M → N ,

for the time being I am not making any special assumption on u. In
terms of the four ways we got for describing a homotopy structure in
M , we get four corresponding natural conditions of “compatibility” of u
with a given homotopy structure h, namely:
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(i) If f ∼
h

g in M , i.e. ( f , g) ∈ Rh, then u( f ) = u(g).

(i’) If I= (I ,δ0,δ1) ∈ Σh is a weak homotopy interval, then u(δ0) =
u(δ1).

(ii) If f ∈Wh, i.e., f is a homotopism, then u( f ) is an isomorphism.

(ii’) If X ∈ Ch is a contractible object, then u(X ) is a final object
(NB here we assume that u(eM ) is a final object in N).

(NB It is understood implicitly, whenever dealing with intervals and
with contractible objects, that M admits finite products.)

The conditions (i) and (ii) are clearly equivalent, and equivalent to
the requirement that u factors into

(1) M → Mh→ N ,

where M → Mh is the canonical functor of M into the corresponding
homotopy-types category. We also have the tautological implications
(i) ⇒ (i’) and (ii) ⇒ (ii’). Moreover we have (trivially) (ii’) ⇒ (i’)
whenever the homotopy structure on M is a weak homotopy interval
structure, and moreover the functor u commutes to finite products. All
these implications are summarized in the diagram

(i) (ii)

(i’) (ii’)
*

Hom3

Hom4 ,

where the symbol Hom3 or Hom4 indicates that the implication qualified
by it is valid provided we assume that the homotopy structure on M is
in Hom3 (namely is defined in terms of weak homotopy intervals) resp.
in Hom4 (namely is a contractibility structure), and where (*) denotes
the extra assumption of commutation of u with finite products.

We’ll say the functor u is compatible with the homotopy structure h [p. 131]
on M , if it satisfied the equivalent conditions (i), (ii), i.e., if it factors
as in (1) above. In case u commutes with finite products, and if either
the homotopy structure h can be described in terms of weak homotopy
intervals, or in terms of contractible objects, the compatibility of u with
h can be checked correspondingly, either by (i’), or by (ii’).

54 An important particular case is the one when Compatibility of a homotopy struc-
ture with a set W of “weak equiva-
lences”. The homotopy structure hW .N =W−1M

is a localization on M by a set of arrows in M

W ⊂ Fl(M).

We’ll say that the homotopy structure h on M is compatible with W , if
it is with the canonical functor M →W−1M . If W is strongly saturated,
this is most readily expressed by the condition that Wh ⊂W , i.e., any
homotopism is in W (i.e., “any homotopism is a weak equivalence”, if
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the elements of W are named “weak equivalences”); in case M admits
finite products and the localization functor commutes to these (e.g., the
case (M , W ) is a strict modelizer), and if moreover h is a contractibil-
ity structure, it is sufficient to check that for any contractible X , the
projection X → e is in W .

If we don’t assume or know beforehand that W is strongly saturated,
but just saturated say, we may still introduce a more stringent compat-
ibility condition, by saying that the homotopy structure h and W are
strictly compatible if Wh ⊂W . Using the saturation condition c’) on W ,
it is easily seen that in the case when h is a contractibility structure,
then Wh ⊂W (strict compatibility) is equivalent to: for contractible X ,
the projection X → e is “universally in W ”, or (as we’ll say) W-aspheric.
Indeed, to deduce from this that any homotopism f : X → Y is in W ,
we are reduced to checking that any endomorphism of either X or Y
which is homotopic to the identity map, is in W . Now this will follow
from the assumption, and the following

Proposition. Assume the homotopy structure h on M can be defined by
a generating set Σ0

h of weak homotopy intervals I= (I ,δ0,δ1) which are
W -aspheric (i.e., I W-aspheric over e), where W ⊂ Fl(M) is any saturated
subset (in fact, mildly saturated is enough). Then W is the inverse image
by the canonical functor M → Mh = M of a subset W ⊂ Fl(M), i.e., if f , g
are homotopic arrows in M, if one is in W, so is the other. Moreover (if
W is saturated) Wh ⊂W, i.e., h and W are strictly compatible.

The first statement is just the “homotopy lemma” part b) (page 99), [p. 132]
the second follows by the argument sketched above.

We’re about back now to the context we started with three days ago
(par. 48, page 98 and following), where we started with a W (viewed as
a notion of “weak equivalence”), and in terms of W constructed various
homotopy notions – namely those, we would now say, corresponding to
the homotopy structure defined by the set of all intervals I in M which
are W -aspheric (i.e., I is W -aspheric over e). As a matter of fact, we 11.4. By which we mean that I → e is

“universally in W ”. The terminology used
here for “W -aspheric” is highly ambiguous,
cf. discussion p. 181 and following.

were a little stricter still, by restricting to intervals which are moreover
“disjoint” (and which we called “homotopy intervals” relative to W ), but
this restriction now definitely appears as awkward and artificial. I will
henceforth call homotopy intervals (with respect to W ), any interval
(not necessarily a separated one) which is W -aspheric. Let hW be the
corresponding homotopy structure on M , which is a weak homotopy
interval structure admitting the set of all W -homotopy intervals as a
generating set of weak homotopy intervals. (Clearly, there will be many
weak homotopy intervals for this structure, which are far from being
W -aspheric, i.e., far from being homotopy intervals.) Of course, as
stated in the preceding proposition, hW and W are strictly compatible,
i.e.,

WhW
⊂W,

i.e., any hW -homotopism is in W (i.e., is a “weak equivalence”). As a
matter of fact, the definition of homotopy notions in terms of W we
gave in loc. sit. were just the widest one we could think of by that time,
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which would ensure the “compatibility” of these notions with W , in a
sense which wasn’t technically clear (not even definable at that point)
as it is now, but however reasonably clear in terms of mathematical “bon
sens”. At present though the question arises rather naturally whether
the homotopy structure hW we selected “au flair” by that time is indeed
the best one, namely the widest one, we could get. More explicitly, this
means whether the homotopy structure hW is the widest (in terms of the
natural order relation considered in the previous paragraph) among all
those which are compatible with W in the strict sense WhW

⊂W . Now
this is certainly not so, if we are not a little more specific about restricting
to homotopy structure definable in terms of a weak homotopy interval
structure. For instance, if we take for W a homotopism structure on
M , compatible with products, corresponding to a homotopy structure
h, to say hW is the “best” would imply that W itself can be described in
terms of weak homotopy intervals which is not always the case. (Take [p. 133]
for instance M to be an abelian category, say projective complexes
of modules and quasi-isomorphism between these; in this case, more
generally whenever M is a “zero objects” namely one which is both
initial and final, any interval in M is trivial, i.e., δ0 = δ1, and hence any
weak homotopy interval structure on M is trivial, namely Wh is reduced
to isomorphisms. . . )

Thus the more reasonable question here is whether any homotopy
structure h on M , definable in terms of a weak homotopy interval
structure, and such that Wh ⊂W , satisfies h≤ hW . Clearly, for such an
h, any weak homotopy interval I (for h) satisfies u(δ0) = u(δ1), where
u : M →W−1M is the canonical functor (indeed, it is enough for this
that Wh ⊂W instead of Wh ⊂W , where W is the strong saturation of
W ), and conversely, if W = W and if moreover u commutes to finite
products. On the other hand, h ≤ hW means that any I ∈ Σh is in ΣhW

,
which also means that its endpoint sections δ0,δ1 are hW -homotopic,
namely may be joined by a chain of sections, any two consecutive of
which are related by some J-homotopy, where J is a W-aspheric interval.
Thus we get the:

Proposition. Let W a saturated set of arrows in M (M stable under finite
products), hence a corresponding homotopy structure hW on M, defined in
terms of W-aspheric intervals† in M as a generating set of weak homotopy †11.4. Cf. note on preceding page.

intervals for hW . Consider the following conditions:
(i) hW is the widest of all homotopy structures h on M which are

(a) strictly compatible with W, i.e., such that Wh ⊂W and more-
over

(b) definable in terms of a weak homotopy interval structure.

(ii) For any object I of M and two sections δ0,δ1 of I such that u(δ0) =
u(δ1) (where u : M →W−1M is the canonical functor), δ0 and δ1
are hW -homotopic, namely can be joined by a chain of elementary
homotopies as above, involving W -aspheric† intervals J.

Then (ii) implies (i), and conversely if W is strongly saturated and moreover
u commutes to finite products.



§55 Maps between homotopy structures. 139

In connection with the π0-functor, we are going to get pretty natural
conditions in terms of 0-connectedness for ensuring (ii) and hence (i),
which should apply I guess to all “reasonable” modelizers (M , W ). It
would thus seem that in practical terms, the definition of hW is the best,
in all cases of actual interest to us. Of course, in case W is strongly
saturated and u commutes with finite products, the widest h is the
one whose weak homotopy intervals are triples (I ,δ0,δ1) satisfying
u(δ0) = u(δ1), which we could have used instead of just W -aspheric
intervals, which are also the intervals such that I → e is in W (and hence [p. 134]
universally so in terms of the assumption made of compatibility of u with
products). The trouble with working with this h, rather than with hW as
above, is twofold though: a) The assumptions of strong saturation on W
and compatibility with products are not so readily verified in the cases of
interest to us, and the second moreover is not always satisfied, e.g., there
are test categories which are not strict, i.e., elementary modelizers which
are not strict; b) the condition u(δ0) = u(δ1) is not readily verified in
terms of W directly, whereas the condition of W -asphericity is – still
more so if W is compatible with products and hence I → e is W -aspheric
just means it is in W .

55 Let’s now look at “morphisms” between categories endowed with homo- Maps between homotopy structures.
topy structures, (M1, h1) and (M2, h2) say. The natural definition here is
to take as morphisms between these homotopy structures the functors
u : M1→ M2 that give rise to a commutative square of functors

M1 M2

M1 M2

u

u ,

where the vertical arrows are the canonical functors into the respective
homotopy-types categories, and u a suitable functor, necessarily unique.
The existence of u can be expressed at will in terms of the Hom1 or
Hom2 structures, namely as

(i) f ∼
h1

g implies u( f )∼
h2

u(g),

or as
(ii) f ∈Wh1

implies u( f ) ∈Wh2
.

These conditions, when M1 and M2 have final objects and these are
respected by u, imply that u transforms weak homotopy intervals into
weak homotopy intervals, and homotopisms into homotopisms. Con-
versely, if u commutes with finite products, and if h1 can be defined by
a weak homotopy interval structure (respectively, by a contractibility
structure), then for u to be a morphism of homotopy structures, it is
(necessary and) sufficient that u carry weak homotopy intervals (resp.
contractible objects) into same.

In case h1 is described in terms of a generating set Σ0
h1

of weak homo-
topy intervals, and if u commutes with finite products, the most economic
way often to express that u is a morphism of homotopy structures, is by
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the condition that for any I in Σ0
h1

, u(I) be a weak homotopy interval in [p. 135]
M2, namely u(δ0) ∼

h2

u(δ1). If we assume moreover that the intervals

I in Σ0
h1

are contractible, the previous condition is equivalent to u(I)
being a contractible object of M2 for any I in Σ0

h1
. The case I am mainly

thinking of, of course, is the one when h1 can be described by a single
generating weak homotopy interval, possibly even contractible, or even
by a (generating) contractor. In the latter case, because of commuta-
tion of u with finite products, u(I) will be equally a contractor – and
contractible for h2 iff u is a morphism of homotopy structures.

In the precedent paragraphs, I forgot to mention the reduction of the
corresponding compatibility conditions (of a functor u : M → N , or of a
saturated W ⊂ Fl(M)) with a homotopy structure h, when the latter is
defined in terms of just a generating set Σ0

h of weak homotopy intervals,
possibly reduced to a single one, and moreover u or W is “compatible
with finite products”. In the first case, it is enough to check u(δ0) = u(δ1)
for any I in Σ0

h – and if I is contractible, this amounts to demanding
u(I) is a final object of N . In the second case it is enough for strict
compatibility, i.e., Wh ⊂W , to check that for any I in Σ0

h, I → e is in W
(this condition is also necessary, if any I in Σ0

h is contractible). Even if W
is not supposed compatible with finite products, namely M →W−1M
does not commute with finite products, it is still sufficient for Wh ⊂W
that all I’s in Σ0

h be W-aspheric (as stated in prop. (p. 131)), and this is
necessary too, if the I’s are contractible.

4.4.

56 This seemingly endless review of generalities on homotopy notions is Another glimpse upon canonical
modelizers. Provisional working
plan – and recollection of some ques-
tions.

getting a little fastidious - and still I am not quite through yet I feel. One
main motivation for embarking on this review was one strong impression
which grew out of the reflections of now just one week ago (paragraph
48), namely that the interesting “test functors” from a test category A into
a modelizer (M , W ) are those which factor through the full subcategory
Mc of contractible objects of M . The presumable extra condition to put
on a functor A→ Mc to correspond to an actual test functor i from A to
M are strikingly weak, such as i∗(I) should be aspheric over eAˆ under
the assumption we got a contractible generating homotopy interval I
in M . In any case, if M0

c is any full subcategory of Mc which gives rise
(by taking intervals in M0

c ) to a family of homotopy intervals which
generates the homotopy structure hW on M associated to W , it should [p. 136]
suffice, if M is a “canonical modelizer”, that the asphericity condition
on i∗(I) should be verified for any I in M0

c ; this will presumably turn
out in due course as part of the definition (still ahead) of a “canonical”
modelizer. Now, the most evident way to meet this condition, is to take
for i a fully faithful functor whose image contains M0

c , or what amounts
essentially to the same, any full subcategory of M containing M0

c ! As
we would like though A to be “small”, this will be feasible only if M0

c
is small – hence the significance of the condition of a small generating
family of weak homotopy intervals for hW (which will imply that we
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can find such a family with contractible intervals, provided only the
homotopy structure hW can be described by a contractibility structure,
as we did indeed assume). Just as the homotopy structure hW of M was
defined in terms of W , conversely the notion of weak equivalences W
should be recoverable in terms of the homotopy structure, and more
specifically in terms of the subcategory Mc and the small “generating”
subcategories M0

c of Mc, which we may now as well denote by A, by
taking the inclusion functor i : A→ M of such an A, hence a functor

i∗ : M → Aˆ,

and taking
W = (i∗)−1(WAˆ).

Of course, we’ll have still to check under which general conditions
upon a pair (M , W ) of a category and a saturated set of arrows W , or
rather, upon a pair (M , Mc) of a category endowed with a contractibility
structure Mc = Ch (where we think of h as an hW ), is it true that the
saturated set of arrows

W (A) = (i∗)−1(WAˆ) ⊂ Fl(M)

in M does not depend upon the choice of the full small homotopy-
generating subcategory A of Mc (if restrictive conditions are needed
indeed). It may be reasonable to play safe, to restrict at first to subcate-
gories A which are stable under finite products in M , which will ensure
that A is a strict test category, i.e., Aˆ is a strict elementary modelizer,
namely Aˆ is totally aspheric. But such restriction – as well as to test
functors which are fully faithful – should be a provisional one, as ulti-
mately we want of course to be able to use test categories such as
for “testing” rather general (canonical) modelizers, whereas is by no
means stable under products, nor embeddable faithfully in modelizers
such as (Spaces) say.

This expectation of W to be recoverable in terms of the corresponding [p. 137]
homotopy structure h= hW on M takes its full meaning, when joined
with another one, namely that the latter can be canonically described in
terms of the category structure of M and the corresponding notion of
0-connectedness. This latter expectation is extremely strongly grounded,
and I’ll come back to it circumstantially very soon I think (I started on it
two days ago, but then it got too late to take it to the end, and yesterday
was spent on some formal digressions. . . ). The two “expectations” put
together, when realized by carefully cutting out the suitable notions,
should imply that the structure of any “canonical modelizer” is indeed
determined “canonically” in terms of its category structure alone.

To come back to the relationship between test categories and cate-
gories of the type M0

c , the idea which has been lurking lately is that
possibly, test categories can be viewed as no more, no less, as categories
endowed with a homotopy structure (necessarily unique) which is a
contractibility structure, and for which all objects are contractible. At any
rate, there must be a very close relationship between the two notions,
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which I surely want to understand. But as it would be quite unreason-
able to restrict the notion of a test category (and its weak and strong
variants) to categories admitting finite products, this shows that for a
satisfactory understanding of the above relationship, we should be able
to work with contractibility structures, and presumably too with weak
homotopy interval structures, in categories A where we do not make the
assumption of stability under products. Thus in the outline of the last
few days, I still wasn’t general enough it would seem! This situation
reminds me rather strongly of the early stages when developing the
language of sites, and restricting to sites where fiber-products exist –
this seems by then a very weak and natural assumption indeed, before
it appeared (first to Giraud, I believe) that it was quite an awkward and
artificial restriction indeed, which had to be overcome in order to work
really at ease. . .

All this now gives a lot of interesting things to look up in the short
run! I’ll make a provisional plan of work, as follows:

a) Relation between a homotopy structure and the π0 functor, and
description of the so-called canonical homotopy structures.

b) Write down in the end the “key result” on test functors A→ (Cat)
which is overripe since the reflections of four days ago (par. 47).
Presumably, this will yield at the same time an axiomatic charac- [p. 138]
terization of W(Cat), namely of the notion of weak equivalence for
functors between categories.

c) At this point, we could go on and try and carry through the similar
characterization for test functors A→ Bˆ, where A and B are both
test categories. There are also some generalities to develop about
“morphisms” between test categories, which is ripe too for quite a
while and cannot be pushed off indefinitely – here would be the
right moment surely. If the expected “key result” for test functors
A→ Bˆ carries through nicely it could presumably be applied
at once in order to study general test functors A→ M , and thus
get the clues for cutting out “the” natural notion of a canonical
modelizer, which “was in the air” since the “naive question” of par.
46 (page 95).

d) However, there is another approach to canonical modelizers which
is just appearing, via the idea (described above) of associating
canonically a notion of “weak equivalence” W to a homotopy
structure of type Hom4, i.e., to a contractibility structure, subject
possibly to some restrictions. This ties in, as explained above,
with a closer look at the relationship between test categories,
and “coarse” contractibility structures (where all objects are con-
tractible).

It would seem unreasonable to push off a) and b) any longer now –
so I’ll begin with these. I am hesitant however between c) and d) – with
a feeling that the later approach d) may well turn out to be technically
the most expedient one. Both have to be carried through anyhow, and
the two together should give a rather accurate picture of what canonical
modelizers are about.



§57 Relation of homotopy structures to 0-connectedness and . . . 143

On the other hand, there are still quite a bunch of questions which
have been waiting for investigation – for instance the list of questions of
nearly three weeks ago (page 42). Among the six questions stated there,
four have been settled, or are about to be settled through the previous
program (if it works out), questions 4) and 6) remain, the first one
being about Aˆ being a closed model category, and about the homotopy
structure of (Cat). There are a number of more technical questions
too, for instance I did not finish yet my review of the “standard” test
categories and never wrote down the proof that f (simplices with face
operations and no degeneracies) is indeed a weak test category. But
for the time being, all these questions appear as somewhat marginal
with respect to the strong focus the reflection has been gradually taking
nearly since the very beginning – namely an investigation of modelizers [p. 139]
and, more specifically, the gradual unraveling of a notion of “canonical
modelizer”. I certainly feel like carrying this to the end at once, without
any digressions except when felt relevant for the main focus at present.
As for choosing precedence between c) and d), it is still time to decide,
when we’re through with a) and b)!

57 Relation of homotopy structures to 0-connectedness and to π0. Here Relation of homotopy structures to
0-connectedness and π0. The canon-
ical homotopy structure hM of a cat-
egory M.

we’re resuming the reflection started in par. 51 F) (page 122). All we
did there was to introduce some conditions on a category M , namely a)
to e) (page 123), and introduce the functor

π0 : M → (Sets).

As before, we’ll assume now M satisfies conditions a) to d) (the first
three, or rather b) and c), are all that is needed for defining the functor
π0), and will not assume e), or the equivalent e’) of π0 commuting to
finite products, unless explicitly specified.

We suppose now, moreover, M endowed with a homotopy structure
h. We’ll say that h is π0-admissible, or simply 0-admissible, if h is com-
patible with the functor π0, which can be expressed by either one of the
following two equivalent conditions (cf. page 130):

(i) f ∼
h

g implies π0( f ) = π0(g),

for any two maps f , g in M , or
(ii) f ∈Wh (i.e., f a homotopism) implies π0( f ) bijective.
Another equivalent formulation is that the functor π0 factors through

the quotient category Mh of homotopy types

M → Mh→ (Sets),

we’ll still denote by π0 the functor Mh→ (Sets) obtained.
If h is 0-admissible, it satisfies (i’) and (ii’) below:
(i’) For any weak homotopy interval (I ,δ0,δ1) ∈ Σh,π0(δ0) = π0(δ1).

As π0(eM ) is a one-point set by the assumption d) on M , for any section
δ of an object I , π0(δ) may be described as just an element of π0(I),
which is the unique connected component of I through which factors
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the given section; thus (i’) can be expressed by saying that for any weak
homotopy interval, the two “endpoints” belong to the same connected
component of I , a natural condition indeed! It is automatically satisfied [p. 140]
if I is connected. In fact, (i’) is satisfied iff Σh admits a generating subset
Σ0

h made up with connected intervals.
(ii’) Any contractible object X is connected (and hence 0-connected).
Conversely (cf. page 130), if condition e) holds, i.e., π0 commutes to

products, and if moreover h is definable in terms of Σh, i.e., comes from
a weak homotopy interval structure, then (i’) implies 0-admissibility.
If M admits even a generating family of contractible weak homotopy
intervals, namely if h comes from a contractibility structure on M , then
(ii’) equally implies 0-admissibility.

Remarks. 1) We can generalize these converse statements, by dropping
the condition e) on M , but demanding instead that the connected com-
ponent involved (namely I itself in case (ii’)) is not only 0-connected,
but even “0-connected over eM ”, which just means that its products by
any 0-connected object of M is again 0-connected. In the case (ii’),
this condition es equally necessary for admissibility. (The corresponding
statements could have been made in the general context of page 130 of
course. . . )

2) The name of 0-admissibility suggests there may exist correspond-
ingly “higher” notions of n-admissibility for h, where n is any natural
integer. I do see a natural candidate, namely whenever we have a func-
tor πn from M to n-truncated homotopy types (as is the case, say, when
M is either a topos – we then rather get prohomotopy types – or a mod-
elizer). But it would seem that in all cases of geometrical significance,
and when moreover h is defined by a weak homotopy interval structure,
that 0-admissibility implies already n-admissibility for any n.

Due to the existence of sup for an arbitrary subset, in each of the or-
dered sets Homi(M) (i ∈ {0, 3, 4}) of homotopy structures in M (either
unqualified, or weak homotopy interval structures, or contractibility
structures), it follows that for each of these three types of homotopy
structures, there is a widest one hi among all those of this type which
are 0-admissible. We are interested here, because of topological motiva-
tions, by the case of Hom3, namely weak homotopy interval structures.
We call the corresponding homotopy structure h = h3 the canonical
homotopy structure of M . In case M is totally 0-connected (by which
we mean condition e)), the weak homotopy intervals for this structure
are just those intervals for which δ0,δ1 correspond to the same con-
nected component of I – and we get a generating set of weak homotopy
intervals, by just taking all connected intervals.

Remark. If M is not totally 0-connected, we still get a description of Σh, [p. 141]
as those intervals such that for any 0-connected X , the corresponding
sections of X × I over X correspond to the same connected component
of X × I . It is enough for this that the common connected component
I0 of I for δ0,δ1 should be 0-connected over e – it is not clear to me
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whether this condition is equally necessary. Anyhow, presumably the
case M totally 0-connected will be enough for all we’ll have to do.

In case M is totally 0-connected, the homotopy notions in M for the
canonical homotopy structure are just those which can be described in
terms of “homotopies” using connected intervals – which is intuitively
the first thing that comes to mind indeed, when trying to mimic most
naively, in an abstract categorical context, the familiar homotopy notions
for topological spaces.

Let let
W ⊂ Fl(M)

be any saturated set of arrows in M (viewed as a notion of “weak
equivalence” in M). Consider the corresponding homotopy structure
hW on M , defined in terms of W -aspheric intervals as a generating
family of weak homotopy intervals. Let hM be the canonical homotopy
structure on M . Thus the condition

hW ≤ hM

just means that hW is 0-admissible, or equivalently, that W -aspheric
objects over e which have a section, are 0-connected (for simplicity, I
assume from now on M totally 0-connected). This looks like a very rea-
sonable condition indeed, if W should correspond at all to the intuitions
associated to the notion of “weak equivalence”! As a matter of fact, this
condition is clearly implied by the condition that W itself should be
“0-admissible”, by which we mean that the functor π0 is compatible with
W , i.e., transforms weak equivalences into bijections, or equivalently,
factors through M →W−1M .

What we are looking for however is conditions on W for the equality

hW = hM

to hold. When the previous condition (expressing hW ≤ hM ) is satisfied,
all that remain is to express the opposite inequality, which is done in
the standard way. We thus get:

Proposition. Let M be a category, assume M totally 0-connected (i.e., [p. 142]
satisfying conditions a)b)c)e) of page 123). Let W ⊂ Fl(M) be a saturated
set of arrows in M, consider the associated homotopy structure hW on
M, with W-aspheric intervals as a generating family of weak homotopy
intervals. Consider also the canonical homotopy structure hM on M, with
0-connected intervals as a generating family of weak homotopy intervals
(thus hM = hW0

, where W0 ⊂ Fl(M) consists of all arrows made invertible
by the functor π0 : M → (Sets)). In order for the equality hW = hM to
hold, it is necessary and sufficient that the following two conditions be
satisfied:

a) Any object I of M which is W-aspheric over e and admits a section, is
connected (it is enough for this that W by 0-admissible, i.e., f ∈W
imply π0( f ) bijective);



§57 Relation of homotopy structures to 0-connectedness and . . . 146

b) For any connected object I of M and any two sections δ0,δ1 of I,
these can be “joined” by a finite chain of sections si (0 ≤ i ≤ n),
s0 = δ0, sn = δ1, such that for any two consecutive ones, there exists
an object J, W-aspheric over e, a map J → I and two sections of J
mapped into the sections si , si+1 of I .

The condition a) says there are not too many weak equivalences,
whereas b) says there are still enough for “testing” connectedness in
terms of W -aspheric intervals. Both conditions look plausible enough!

Next step one would think of, in this context, is to give conditions
on W (independently of the previous ones) which will allow to express
W in terms of hW . But for this, I should develop first a description
of a notion of “weak equivalence” in terms of an arbitrary homotopy
structure h on M , as contemplated in the previous paragraph. I decided
however to give precedence to the “key result” still ahead.

Maybe the condition hW = hM , expressed in the previous proposition,
merits a name – we’ll say that the notion of weak equivalence W is
“geometric”, if it satisfies the two conditions a) and b) above, or rather
the slightly stronger a’) in place of a) – namely 0-admissibility of W
(plus b) of course). The conditions a’) and b) are the explicit ones
for checking – but for using that W is geometric, the more conceptual
statement hW = hM (besides 0-admissibility) is the best. Thus, as any
contractor in M which is connected (hence a weak homotopy interval
for hM ) is hM -contractible, it is hW -contractible, and hence W -aspheric
over e, and conversely of course. Using this, we get a converse to part
c) and d) of the proposition of page 121, in the present context, which [p. 143]
we may state in a more complete form as follows:

Proposition. Let M be a totally 0-connected category, W a geometric
saturated set of arrows in M. Assume moreover that for any two objects in
M, the object Hom(X , Y ) in M exists. Let X be an object of M, then the
following conditions a) to c”) are equivalent:

a) For any object Y , Hom(Y, X ) is 0-connected.

a’) For any object Y , Hom(Y, X ) is W-aspheric (i.e., its map to e is
∈W ).

a”) For any object Y , Hom(Y, X ) is W-aspheric over e (i.e., its map to e
is “universally in W”).

a”’) For any object Y , Hom(Y, X ) is hW -contractible.

b)b’)b”)b”’) Same as above, with Y replaced by X .

c) For any object Y , Y → Hom(X , Y ) is in W.

c’) For any object Y , Y → Hom(X , Y ) is W-aspheric.

c”) For any object Y , Y as a subobject of Hom(X , Y ) is a deformation
retract with respect to hW .

If moreover X has a section, these conditions are equivalent to:
d) X is hM -contractible.

d’) X is hW -contractible.
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Example. Let M = (Cat), the assumptions on M are clearly satisfied. If
we take for W the usual weak equivalences, it is clear too that W satisfies
a’) and b) above, i.e., W is geometric. Thus the preceding proposition
is just an elaboration of the result stated after the prop. of page 97 –
which was the moment when it became clear that contractibility was
an important notion in the context of test categories and test functors,
and which was the main motivation too for the somewhat lengthy trip
through generalities on homotopy notions, which is coming now (in the
long last!) to a provisional end. . .

To check if the notions developed in this section are handy indeed, I
would still like to try them out in the case M is an elementary modelizer
Aˆ, corresponding to a test category A. But it’s getting late this night. . .

5.4. [p. 144]

58 Some comments still on the canonical homotopy structure of a category Case of totally 0-connected category
M. The category (Cat) of (small)
categories and homotopy classes of
functors.

M , which we assume again totally 0-connected. Two sections of an object
K are homotopic iff they belong to the same connected component of
X , thus we get an injective canonical map from homotopy-classes of
sections

Γ (X ) = Hom(e, X )→ π0(X ).

We are interested in the case when this map is always a bijection, or
what amounts to the same, when M satisfies the extra condition:

f) Every 0-connected objects of M has a section.

Proposition. Let M be a category satisfying conditions a) to d) of page
123. If M satisfies moreover condition f) above, it satisfies also condition
refit:51.F.e, i.e., M is totally 0-connected.

Indeed, let X , Y be 0-connected objects, we must prove X × Y is 0-
connected. First, it is “non-empty”, because it got a section (as X and Y
each have a section). All that remains to do is show that two connected
components of X×Y are equal. By assumption f), each has a section, say
(si , t i) with i ∈ {1,2}. These two sections can be joined by a two-step
chain

(s1, t1), (s2, t1), (s2, t2)

the first step contained in X × t1 which is connected, the second in
s2 × Y which is connected, hence the two sections belong to the same
connected component, qed.

The condition f) is strictly stronger than e) (when a) to d) are satisfied),
as we see by taking for M the category of all sheaves on an irreducible
topological space X – thus M is a totally aspheric topos, a lot better it
would seem than just totally 0-connected, but condition f) is satisfied iff
the topos is equivalent to the final topos or “one-point topos”, i.e., iff
the topology of X is the chaotic one (X and ; are the only open subsets).
We’ll say M is strictly totally 0-connected, if it satisfies the conditions a)
to f) (where e) is a consequence of the others). Thus, if M is strictly
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totally 0-disconnected, we get for any object X a canonical bijection,
functorial in X

(1) Γ (X )
def
=

homotopy classes
of sections of X

∼−→ π0(X ).

Assume now, moreover, that X , Y are two objects of M such that the
object Hom(X , Y ) exists. Then, using the observation of cor. 2 (p. 122), [p. 145]
we get the familiar relationship

(2) Hom(X , Y ) ∼−→ π0(Hom(X , Y )),

where Hom denotes homotopy classes of maps, with respect to the
canonical homotopy structure of M .

The first example which I have in mind is the case M = (Cat). I was
a little short yesterday about W(Cat) being “geometric” – the condition
a’) of page 142 is evident indeed in terms of the (geometric!) definition
of weak equivalence in terms of non-commutative cohomology (where
we need to case only about zero dimensional cohomology!). But condi-
tion b) is a consequence of the fact that 0-connectedness in (Cat) can
be checked using only 1 (i.e., 1 is a generating contractor for the
canonical homotopy structure of (Cat)), and that 1 is W(Cat)-aspheric
over the final category e, i.e., that for any C in (Cat), the projection

C × 1→ C

is in W(Cat). I want to start being attentive from now on about what
exactly are the formal properties of W(Cat) we are using – it really seems
they boil down to very few, which we have kept using without ever
having to refer to the “meaning” of weak equivalence in terms of coho-
mology (except for proving the formal properties we needed, in terms
of the precise definition of weak equivalence we have been starting with
from the very beginning).

In terms of the canonical homotopy structure in (Cat), admitting 1
as a generating homotopy interval (a contractor, as a matter of fact),
we now get a notion of two functors from a category X to a category Y
being homotopic, and a corresponding notion of homotopy classes of
functors from X to Y , which are in one-to-one correspondence with the
connected components of the category Hom(X , Y ) of all functors from
X to Y . An elementary homotopy from a functor f to another g (with
respect of course to the basic generating interval 1, which is always
understood here) is nothing else but a morphism from f into g. Thus,
homotopy classes of functors are nothing but equivalence classes for
the equivalence relation in Hom(X , Y ) generated by the relation “there
exists a morphism from f to g”. To consider at all this equivalence
relation, rather than the usual one of isomorphy between functors, is
rather far from the spirit in which categories are generally being used
– as is also the very notion of a functor which is a weak equivalence,
which has been our starting point. Topological motivation alone, it
seems, would induce anyone to introduce such barbaric looking notions
into category theory!
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From our point of view, the main point for paying attention to the [p. 146]
homotopy relation for functors, is of course because homotopic functors
define the same map in the localized category (Hot), which category for
the time being is (together with the modelizers designed for describing
it) our main focus of attention. According to the general scheme of
homotopy theory as reviewed previously, homotopy classes of functors
give rise to a quotient category of (Cat), which is at the same time
a localization of (Cat) with respect to homotopisms, and which we’ll
denote by (Cat). Thus we get a factorization of the canonical functor
from (Cat) to (Hot)

(Cat)→ (Cat)→ (Hot).

This is just the factorization of the localization functor with respect
to W(Cat) = W , through the “partial localization” with respect to the
smaller set Wh ⊂W consisting of homotopisms only. All we have used
about W = W(Cat) (from which the localization (Hot) = W−1(Cat) is
deduced) for getting this factorization, was that f ∈W implies π0( f )
bijective, and that the projections C × 1 → C are in W . (Of course, 6.4. As a matter of fact, the condition about

π0 visibly isn’t needed!we assume tacitly that W is saturated too.) We may view (Hot) as a
localization of (Cat) with respect to the set of arrows W corresponding
to W – as a matter of fact, W may be viewed as the inverse image of
W by the canonical functor from (Cat) to its partial localization (Cat) –
the category of “homotopy types” relative to the canonical homotopy
structure of (Cat).

Well-known analogies would suggest at this point that we may well
be able to describe (Hot) in terms of ((Cat), W ) by a calculus of fractions
– right fractions presumably, or maybe either right or left. This may
possibly lead to a direct proof of the notion of weak equivalence we
have been working with being strongly saturated, without having to
rely upon Quillen’s closed model theory. But it is not yet the moment to
pursue this line of thought, which would take us off the main focus at
present.

59 Before pushing ahead, I would like to make still another point about the Case of the “next best” modelizer
(Spaces) – and need of introducing
the π0-functor as an extra structure
on a would-be modelizer M.

work done yesterday – a point suggested by looking at the case of the
modelizer (Spaces), which after all is the next best “naive” modelizer,
less close to algebra than (Cat), but still worth being taken into account!
This category satisfies the conditions a) to f), except the condition c)
– which would mean that the connected components of a space (as
defined in terms of usual topology) are open subsets, which is true (for a
space and its open subsets) only for locally connected spaces. The point
is that this doesn’t (or shouldn’t) really matter – the way topological [p. 147]
spaces are used as “homotopy models” in standard homotopy theory, it
is pathwise connected components that count, and not the topological
ones. In terms of these, there is still a canonical functor

π0 : (Spaces)→ (Sets),
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this functor however is no longer left adjoint of the functor in opposite
direction, associating to every set E, the corresponding discrete topo-
logical space. (To get an adjunction, we should have to restrict to the
category of pathwise locally connected topological spaces.) It doesn’t
matter visibly – all that’s being used is that π0 commutes to arbitrary
sums, and takes pathwise 0-connected spaces into one-point sets.

This suggests that we should generalize the notions around the “canon-
ical” homotopy structure on a category M , to the case of a category
which need not satisfy the exacting conditions of total 0-connectedness,
by introducing as an extra structure upon M a given functor

π0 : M → (Sets),

subject possibly to suitable restrictions. The first which comes to mind
here is commutation with sums – it doesn’t seem though we’ve had to
use this property so far. All we’ve used occasionally was existence of
finite products in M , and commutation of π0 to these.

If we think of M as a would-be modelizer, and therefore endowed
with a hoped-for functor

M → (Hot),

there is a natural functor π0 indeed on M , namely the composition

M → (Hot)→ (Sets),

where the canonical functor

π0 : (Hot)→ (Sets)

is deduced from the π0-functor (Cat)→ (Sets) considered previously, by
factorization through the localized category (Hot) of (Cat). Thus, “the
least we would expect” from a category M for being eligible as a mod-
elizer is that there should be a natural functor π0 around, corresponding
to the intuition of connected components. In case of a “canonical” mod-
elizer M (maybe we should say rather: canonical with respect to a given
π0), there is the feeling that the functor M → (Hot) we are after could
eventually be squeezed out from just π0, and that it could be viewed as
something like a “total left derived functor” of the functor π0. But this
for the time being is still thin air. . .

What we can do however at present, in terms of a given functor π0, is [p. 148]
to introduce the corresponding notion of 0-connectedness (understood:
with respect to π0), namely objects X such that π0(X ) is a one-point
set, the notion of compatibility of a homotopy structure h on M with
π0, and the π0-canonical (or simply, “canonical”) homotopy structure
on M , which now should be denoted by hπ0

rather than hM (unless
we write hM where M denotes the pair (M ,π0)), which is the widest
weak homotopy interval structure on M which is π0-admissible, and
can be described (assuming π0 commutes with finite products) in terms
of all 0-connected intervals as a generating family of weak homotopy
intervals. The generalities of par. 54 about the relationship of hM with
hW (where W ⊂ Fl(M)) should carry over verbatim, as well as those of
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the next, provided everywhere 0-connectedness is understood relative
to the given functor π0, and “total 0-connectedness” is interpreted as
just meaning that π0 commutes to finite products. Thus, our contact
with “geometry” via true honest connected components of objects was
of short duration, and back we are to pure algebra with just a functor
given which we call π0, God knows why – the culprit for this change
of perspective being poor modelizer (Spaces), which was supposed to
represent the tie with so-called “topology”. . .

60 I almost forgot I still have to check “handiness” of the notions developed Case of strictly totally aspheric topos.
A timid start on axiomatizing the set
W of weak equivalences in (Cat).

yesterday, on the example of test categories or rather, the corresponding
elementary modelizers Aˆ. As usual, I can’t resist being a little more
general, so let’s start with an arbitrary topos A first. It always satisfies
conditions a) and b) of page 123. Condition c), namely that every object
of A could be decomposed into a sum of 0-connected ones, is equivalent
with saying that A admits a generating subcategory A made up with
0-connected objects. In this case, A is called locally 0-connected or simply,
locally connected – which generalizes the notion known under this name
from topological spaces to topoi. On the other hand, condition d) is
expressed by saying that the topos considered is 0-connected – equally
a generalization of the corresponding notion for spaces. Condition e),
about the product of two 0-connected objects being 0-connected, is a
highly unusual one in ordinary topology. For a topological space, it
means that the space is irreducible (hence reduced to a point if the
space is Hausdorff). In accordance with the terminology introduced
yesterday, we’ll say that A is totally 0-connected if it is locally connected,
and if the product of two 0-connected objects is again 0-connected. The
standard arguments show that for this, it is enough that the product [p. 149]
of two elements in A be 0-connected. The topos is called strictly totally
0-connected if it is locally connected, and if moreover every 0-connected
object admits a section – which (as we saw earlier today) implies A is
totally 0-connected, as the wording suggests. It amounts to the same to
demand that every “non-empty” object have a section – and for this it is
enough that the elements in A have a section. This latter condition is
trivially checked for all standard test categories I’ve met so far (they all
have a final object, and there maps of the latter into any other object
of A). A noticeable counterexample here is ( f)ˆ (semisimplicial face
complexes, without degeneracies), where the weak test category f hasn’t
got a final object ( 0 definitely isn’t!) and no n in f except 0 only
has got a section.

Remark. I wonder, when A is totally 0-connected, and moreover mod-
elizing, i.e., the Lawvere element is aspheric over e, if this implies A

is totally aspheric, and that every element which is “non-empty” has a
section (i.e., strict total 0-connectedness).

Next thing is to look at

W ⊂ Fl(A),
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the set of weak equivalences (as defined by non-commutative coho-
mology of topoi), and see if it is “geometric” (page 142). Condition
a’) is clearly satisfied, there remains the condition b), namely whether
0-connectedness of an object of A (A supposed totally 0-connected) can
be tested, using “intervals” which are aspheric over e. More specifically,
we want to test that two sections of I belong to the same connected
component, using for “joining” them intervals that are aspheric over
e. The natural idea here is to assume the generating objects in A to
be aspheric over e (which implies A is totally aspheric, not only totally
0-connected), and to use these objects (endowed with suitable sections)
as testing intervals. This goes through smoothly, indeed, if we assume
moreover strict total zero-connectedness. Thus:

Proposition. Let A be a topos which is strictly totally aspheric (namely
totally aspheric, and every “non-empty” object has a section). Then the set
W ⊂ Fl(A) of weak equivalences in A is “geometric”, and accordingly, the
homotopy structure hW defined in terms of aspheric homotopy intervals, is
the same as the canonical homotopy structure hA defined in terms of merely
0-connected homotopy intervals. Moreover, for any set A ⊂ ObA which
is generating and whose objects are 0-connected, the set of 0-connected
intervals I= (I ,δ0,δ1) with I in A, generate the homotopy structure hW .

A topos A as in the proposition (namely strictly totally aspheric) need [p. 150]
not be a modelizer, i.e., the Lawvere element L need not be aspheric, or
what amounts to the same because of hW = hA and L being a contractor,
L need not be connected: take A= (Sets)! I suspect though this to be
the only counterexample (up to equivalence). For A to be a modelizer,
we need only find an object in A which has got two distinct sections
(because then they must be disjoint, i.e., e0 ∩ e1 = ∅A, because e has
only the full and the “empty” subobject, as a consequence of every “non-
empty” object of A having a section), thus getting a “homotopy interval”
(more specifically, a separated and relatively aspheric one) as requested
for A to be a modelizer. Now for any would-be test category met with
so far (except precisely f and the like, which are not test categories
but only weak ones), this condition that there are objects in A which
have more than just one “point” (= section), is trivially verified.

In case of a topos of the type Aˆ, the notion of weak equivalence in
Aˆ can be described (independently of cohomological notions) in terms
of the notion of weak equivalence in (Cat), more precisely

WA
def
= WAˆ = i−1

A (W),

where
iA : Aˆ→ (Cat), F 7→ A/F

is the canonical functor, and where

W=W(Cat)

is the set of weak equivalences in (Cat). These of course, for the time
being, are defined in terms of cohomology (including a bit of non-
commutative one in dimension 1. . . ). We may however start with any
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W ⊂ Fl((Cat)) and look at which formal properties on W (satisfied for
usual weak equivalences) allow our arguments to go through, in various
circumstances. We may make a list of those which have been used today,
and go on this way a little longer, with the expectation we’ll finally wind
up with an axiomatic characterization of weak equivalences, i.e., of W,
in terms of the category (Cat), say.

a) (Pour mémoire!) W is saturated (cf. page 101).

b) W is 0-admissible, i.e., if f : C → C ′ is in W, π0( f ) is bijective.

c) 1 is W-aspheric over e = 0, i.e., for every C in (Cat), the
projection C × 1→ C is in W.

d) Any C in (Cat) which has a final element is W-aspheric, i.e, C → e
is in W.

The condition a) will be tacitly understood throughout, when taking a [p. 151]
W to replace usual weak equivalences. Conditions b) and c) then were
seen to be enough to imply that hW = h(Cat). On the other hand, one
sees at once that for the proposition over for a topos Aˆ which is strictly
totally aspheric, when we define now WA ⊂ Fl(Aˆ) as just i−1

A (W), in
order to conclude hWA

= hAˆ , all we made use of was (besides saturation
of W of course, i.e., a)) b) and d).

One may object that d) isn’t expressed in terms of the category struc-
ture of (Cat) only, but we could express it in terms of this structure,
by the remark that C has a final object iff there exists a −-homotopy
of idC to a constant section of C (this “section” will indeed be defined
necessarily by a final object of C). As was to be expected, in this formu-
lation, as in c) too, the object 1 of (Cat) is playing a crucial role. But
at this point it occurs to me that c) implies d), by the homotopy lemma
– thus for the time being all we needed was a)b)c).

61 We now in the long last get back to the “key result” promised time Remembering about the promised
“key result” at last!ago, and which we kept pushing off. To pay off the trouble of the long

digression in between, maybe it’ll come out more smoothly. It shall be
concerned with the functor

(1) i : A→ (Cat),

where in the end A will be (or turn out to be) a strict test category,
and we want to give characterizations for i to be a (weak) test functor,
namely the corresponding functor

(2) i∗ : (Cat)→ Aˆ

to induce an equivalence between the localizations, with respect to
“weak equivalences”. We’ll now be a little more demanding, and instead Plus a little more, see below (8).

of just assuming it is the usual notion of weak equivalence either in
(Cat) or in Aˆ, I’ll assume that the set WA ⊂ Fl(Aˆ) is defined in terms of
a saturated set W ⊂ Fl((Cat)) of arrows in (Cat), by taking the inverse
image by the functor

(3) iA : Aˆ→ (Cat)
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as above, whereas in the target category (Cat) of (2), we’ll work with
another saturated set W′ – thus besides (1), the data are moreover

(4) W,W′ ⊂ Fl((Cat)),

two saturated sets of arrows in (Cat), with no special assumption other- [p. 152]
wise for the time being. We will introduce the properties we need on
these, as well as on A and on i, stepwise as the situation will tell us. We
want to derive a set of conditions ensuring that both (2) and (3) induce
equivalences for the respective localizations, namely

(5) i
∗

: (W′)−1(Cat) '−→W−1
A Aˆ and iA : W−1

A Aˆ '−→W−1(Cat).

We may assume beforehand that A is a weak test category (“with respect
to W”) and hence the second functor in (5) is already an equivalence,
in which case the condition that the first functor in (5) exist and be an
equivalence (existence just meaning the condition

(*) W′ ⊂ (i∗)−1(WA), i.e., i∗(W′) ⊂WA)

is equivalent to the corresponding requirement for the composition

(6) fi : (Cat)
i∗
−→ Aˆ

iA−→ (Cat),

namely that this induce an equivalence

(7) (W′)−1(Cat) '−→W−1(Cat).

As a matter of fact, we are going to be slightly more demanding (in ac-
cordance with the notion of a weak test functor as developed previously,
cf. page 85), namely that the inclusion (*) be in fact an equality

(8) W′ = (i∗)−1(WA),

the similar requirement for the functor iA (3) being satisfied by the very
definition of WA in terms of W as

(9) WA = i−1
A (W).

In view of this, the extra requirement (8) boils down to the equivalent
requirement in terms of the composition fi (6):

(10) W′ = f −1
i (W).

To sum up, we want to at least develop sufficient conditions on the
data (W,W′, A, i) for (8) to hold (which allows to define the first functor
in (5), whereas the second is always defined), and the functors in (5)
to be equivalences; or equivalently, for (10) to hold, hence a functor
(7), and for the latter to be an equivalence, and equally iA to induce
an equivalence for the localizations (i.e., the second functor (5) an
equivalence). It should be noted that the latter condition depends only
on (A,W), not on i nor on W′ – it will be satisfied automatically if we
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assume A to be a weak test category relative to W (namely iA and the [p. 153]
right adjoint functor

jA : (Cat)→ Aˆ

to induce quasi-inverse equivalences for the localizations W−1
A Aˆ and

W−1(Cat)). We have already developed handy n.s. conditions for this
in case W = W(Cat) – and it would be easy enough to look up which
formal properties exactly on W(Cat) have been used in the proof, if need
be. At any rate, we know beforehand that we can find (A,W) such that
A be a weak test category (and even a strict test category!) relative
to W. When (A,W) are chosen this way beforehand, the question just
amounts to finding conditions on (W′, i) for (10) to hold and for (7) to
be an equivalence of categories. If we find conditions which actually can
be met, then we get as a byproduct the formula (10) precisely, which
says that there is just one W′ satisfying the conditions on W′, namely
f −1
i (W)! Of course, taking W to be just W(Cat), it will follow surely that
W′ is just W(Cat) – i.e., we should get an axiomatic characterization of
weak equivalences.

Let’s now go to work, following the idea described in par. 57 (pages
96–98), and expressed mainly in the basic diagram of canonical maps
in (Cat), associated to a given object C in (Cat):

(11)

A/C A�C

A× C A ,

which will allow to compare fi(C) = A/C with C . When W=W(Cat), it
was seen in loc. cit. that the two latter among these three arrows are in
W, provided (for the middle one) we assume that i takes its values in the
subcategory of (Cat) of all contractible categories. What remained to be
done, for getting the conditions for fi to be “weakly equivalent” to the
identity functor (and hence induce an equivalence for the localizations)
was to write down conditions for the first functor in (11), A/C → A�C ,
to be in W. We have moreover to be explicit on the conditions to put on
a general W, in order for the two latter maps in (11) to be in W. For
the last functor, this conditions as a matter of fact involves both A and
W, it is clearly equivalent to
W 1) A is W-aspheric over e.
If we assume that A has a final element, this condition is satisfied pro-
vided W satisfies the condition (where there is no A anymore!) that any [p. 154]
X in (Cat) with final element is W-aspheric over e – a condition which
is similar to condition d) above (page 150), but a littler stronger still
(as we want X × C → C in W for any C), it is a consequence however
of condition c), as was seen on page 150 using the remark that X is

1-contractible. Thus we get the handy condition
W 1’) W satisfies condition c) of page 150, i.e., 1 is W-aspheric

over e,
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which will allow even to handle the case of an A which is contractible
(for the canonical homotopy structure of (Cat), namely 1-contractible),
and not only when A has a final object.

To insure that the canonical map

(*) A× C → A�C

is in W, using the argument on page 97, we’ll add one more condition
to the provisional list on page 150, namely:

e) For any cartesian functor u : F → G of two fibered categories over
a third one B (everything in (Cat)), such that the induced maps
on the fibers are in W, u is in W.

We are now ready to state the condition we need (stronger than W 1’)):
W 2) W satisfies conditions a) to c) (page 150) and e) above.

As a matter of fact, a) to c) ensure that W is “geometric”, i.e., essen-
tially hW = h(Cat), hence the proposition page 143 applies, to imply that
the maps

C → Hom(i(a), C)

are in W (they are even hW-homotopisms) and by condition e) this
implies that (*) above is in W. We don’t even need b) (0-admissibility
for W), as all we care about is h(Cat) ≤ hW (not the reverse inequality),
but surely we’re going to need b) or something stronger soon enough,
as W= Fl((Cat))) say surely wouldn’t do!

Now to the last (namely first) map of our diagram (11), namely

(12) A/C → A�C .

To give sufficient conditions for this to be in W, we want to mimic the
standard asphericity criterion for a map in (Cat), which we have used
constantly before. This leads to the extra condition

f) Let u : X ′ → X be a map in (Cat) such that for any a in X , the [p. 155]
induced category X ′

/a be W-aspheric, i.e., X ′
/a → e is in W (or

what amounts to the same if we assume d), e.g., if we assume the
stronger condition c), the induced map X ′

/a → X/a is in W). Then
u is in W.

If u : X ′→ X satisfies the condition stated above, namely that after
any base change X/a → X , the corresponding map u/a is in W, we’ll say
that u is weakly W-aspheric (whereas “W-aspheric” means that after any
base change Y → X , the corresponding fY is in W). Thus, condition f)
can be stated as saying that a weakly W-aspheric map in (Cat) is in W.

For making use of this latter assumption on W, we have to look at
how the induced categories for the functor (12) look like, which functor
(I recall) induced a bijection on objects. These can be described as pairs
(a, p), with a in A and p a map in (Cat)

p : i(a)→ C .

An easy computation shows the
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Lemma. Let (a, p) as above. The induced category (A/C)/(a,p) (for the
functor (12)) is canonically isomorphic to the induced category A/G , where
G is the fibered product in Aˆ displayed in the diagram

(13)

G a

i∗(Fl(C)) i∗(C) ,

where
Fl(C)

def
= Hom( 1, C)

and where the second horizontal arrow in (13) is the i∗-transform of the
target map in (Cat)

Fl(C)
t
−→ C .

Corollary. In order for (12) to be weakly W-aspheric, it is n.s. that the
map

(14) i∗(t) : i∗(Fl(C))→ i∗(C)

in Aˆ be WA-aspheric (i.e., be “universally in WA”).

To make the meaning of the latter condition clear, it should be noted
that the condition f) on W guarantees precisely that for a map u : F ′→ F
in Aˆ (A any category) to be WA-aspheric, it is n.s. that the corresponding
map iA(u) in (Cat) be weakly W-aspheric – the kind of thing we have
been constantly using before of course, when assuming W=W(Cat). [p. 156]

It is in the form of (14) that weak W-asphericity of (12) will actually
be checked, whereas it will be used just by the fact that (12) is in W.

6.4.

62 I finally stopped with the notes last night, by the time when I started An embarrassing case of hasty over-
axiomatization. The unexpected
riches. . .

feeling a little uncomfortable. A few minutes of reflection then were
enough to convince me that definitely I hadn’t done quite enough pre-
liminary scratchwork yet on this “key result” business, and embarked
overoptimistically upon a “mise en équation” of the situation, with the
pressing expectation that a characterization of weak equivalences should
come out at the same time. First thing that became clear, was that the
introduction of two different localizing sets of arrows W,W′ in (Cat)
was rather silly alas, nothing at all would come out unless supposing
from the very start W =W′. Indeed, the crucial step for getting the “key
result” on test functors we are out for, goes as follows.

As the target map

t : Fl(C) = Hom( 1, C)→ C

in (Cat) is clearly a homotopy retraction, and i∗ : (Cat)→ Aˆ commutes
with products, we do have a good hold on the condition (14) of the
last corollary, namely that i∗(t) be WA-aspheric – e.g., it is enough that



§62 An embarrassing case of hasty over-axiomatization. . . . 158

the contractor i∗( 1) in Aˆ be WA-aspheric over eAˆ (for instance, it
is often enough it be 0-connected!). In view of the corollary and the
condition f) on W (last page), we thus get a very good hold upon the
map

(*) A/C → A�C

in (Cat) being in W, and hence on all three maps in the diagram (11)
(page 153) being in W. With this in mind, the key step can be stated as
follows:

Lemma. Assume that W satisfies the conditions a)c)e)f) (pages 150, 154,
155), that A is W-aspheric over e (i.e., A×C → C is in W for any C, which
will be satisfied if A is 1-contractible in (Cat), for instance if A has a
final or initial object), and that the objects i(a) in (Cat) (for any a in
A) are contractible (for the canonical homotopy structure of (Cat), i.e.,

1-contractible, or even only for the wider homotopy structure hW based
on W-aspheric homotopy intervals). Under these conditions, the following [p. 157]
conclusions hold:

a) W= f −1
i (W) (where fi = iAi∗ with yesterday’s notations).

b) The functor f i from W−1(Cat) to itself induced by fi (which is defined
because of a)) is isomorphic (canonically) to the identity functor,
and hence is an equivalence.

The use we have for the three maps in the diagram (12) is completely
expressed in this lemma. The pretty obvious proof below would not
work at all if in a) above, we replace W in the left hand side by a W′! We
have to prove that for a map C → C ′ in (Cat), this is in W iff A/C → A/C ′
is. Now this is seen from an obvious diagram chasing in the diagram
below, using saturation condition b) on W:

A/C A�C A× C C

A/C A�C A× C C ,

where all horizontal arrows are already known to be in W (the assump-
tions in the lemma were designed for just that end). At the same time,
we see that the corresponding statements are equally true for the func-
tors C 7→ A�C and C 7→ A× C , and that two consecutive among the
four functors we got from HW =W−1(Cat) to itself, deduced by local-
ization by W, are canonically isomorphic, which proves b) by taking the
composition of the three isomorphisms

γ(A/C)
∼−→ γ(A�C)

∼−→ γ(A× C) ∼−→ γ(C),

where γ : (Cat)→ HW =W−1(Cat) is the canonical functor.
With this lemma, we have everything needed in order to write down

the full closed chain of implications, between various conditions on
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(W, A, i), from which to read off the “key result” we’re after. Before
doing so, I would like still to make some preliminary comments on the
role of W, and on the nature of the conditions we have been led so far
to impose upon W.

A first feature that is striking, is that all conditions needed are in
the nature either of stability conditions (if such and such maps are in
W, so are others deduced from them), or conditions stating that such
and such unqualified maps (the projection 1 × C → C for any C , say)
are in W. We did not have any use of the only condition stated so far,
namely b) (if f ∈W, π0( f ) is bijective) of a restrictive type on the kind
of arrows allowed in W – which is quite contrary to my expectations.
Thus, all conditions are trivially met if we take W = Fl((Cat)) – all [p. 158]
arrows in (Cat)! This circumstance seems tied closely to the fact that,
contrarily to quite unreasonable expectations, we definitely do not get
an axiomatic characterization of weak equivalences, in terms of the type
of properties of W we have been working with so far. As soon as one
stops for considering the matter without prejudice, this appears rather
obvious. As a matter of fact, using still cohomological invariants of topoi
and categories, there are lots of variants of the cohomological definition
of “weak equivalence”, which will share all formal properties of the
latter we have been using so far, and presumably a few more we haven’t
met yet. For instance, starting with any ring k (interesting cases would
be Z, Z/nZ, Q), we may demand on a morphism of topoi

f : X → Y

to induce as isomorphism for cohomology with coefficients in k, or with
coefficients in any k-module, or with any twisted coefficients which are k-
modules – already three candidates for a W, depending on a given k! We
may vary still more, by taking, instead of just one k, a whole bunch (ki)
of such, or a bunch of (constant) commutative groups – we are thinking
of choices such as all rings Z/nZ, with possibly n being subjected to be
prime to a given set of primes, along the lines of the Artin-Mazur theory
of “localization” of homotopy types. And we may combine this with an
isomorphism requirement on twisted non-commutative 1-cohomology,
as for the usual notion of weak equivalence. Also, in all the isomorphism
requirements, we may restrict to cohomology up to a certain dimension
(which will give rise to “truncated homotopy types”). The impression
that goes with the evocation of all these examples, is that the theory
we have been pursuing, to come to an understanding of “models for
homotopy types”, while we started with just usual homotopy types in
mind and a corresponding tacit prejudice, is a great deal richer than
what we had in mind. Yesterday’s (or rather last night’s) embarrassment
of finding out finally I had been very silly, is a typical illustration of
the embarrassment we feel, whenever a foreboding appears of our
sticking to inadequate ideas; still more so if it is not just mathematics
but ideas about ourselves say or about something in which we are
strongly personally implies. This embarrassment then comes as a rescue,
to bar the way to an unwished-for overwhelming richness dormant in
ourselves, ready to wash away forever those ideas so dear to us. . .
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I am definitely going to keep from now on a general W and work [p. 159]
with this and the corresponding localization, which in case of ambiguity
we better won’t denote by (Hot) any longer (as we might be thinking
of usual homotopy types in terms of usual weak equivalences), but by
HW or (Hot)W, including such notions as rational homotopy types, etc.
(for suitable choices of W). The idea that now comes to mind here
is that possibly, the usual W(Cat) of usual weak equivalences could be
characterized as the smallest of all W’s, satisfying the conditions we
have been working with so far (tacitly to some extent), and maybe a
few others which are going to turn up in due course – i.e. that the usual
notion of weak equivalence is the strongest of all notions, giving rise
to a modelizing theory as we are developing. This would be rather
satisfactory indeed, and would imply that other categories HW we are
working with are all localizations of (Hot), with respect to a saturated
set of arrows in (Hot), satisfying some extra conditions which it may be
worth while writing down explicitly, in terms of the internal structures
of (Hot) directly (if at all possible). All the examples that have been
flashing through my mind a few minutes ago, do correspond indeed
to equivalence notions weaker than so-called “weak” equivalence, and
hence to suitable localizations of the usual homotopy category (Hot).
But it is quite conceivable that this is not so for all W’s, namely that the
characterization just suggested of W(Cat) is not valid. This would mean
that there are refinements of the usual notion of homotopy types, which
would still however give rise to a homotopy theory along the lines I
have been pursuing lately. There is of course an immediate association
with Whitehead’s simple homotopy types – maybe after all they can be
interpreted as elements in a suitable localization HW of (Cat) (and
correspondingly, of any one of the standard modelizers, such as semi-
simplicial complexes and the like)? In any case, sooner or later one
should understand what the smallest of all “reasonable” W’s looks like,
and to which geometric reality it corresponds. But all these questions
are not quite in the present main line of thought, and it is unlikely I am
going to really enter into it some day. . .

63 What I should do though immediately, is to put a little order in the list of Review of terminology (provisional).
conditions for a set W, which came out somewhat chaotically yesterday.
After the notes I still did a little scratchwork last night, which I want
now to write down, before coming to a formal statement of the “key
result” – as this will of course make use of some list of conditions on W. [p. 160]

First of all, I feel a review is needed of the few basic notions which
have appeared in our work, relative to a set of arrows W ⊂ Fl(M) in a
general category M . We will not give to the maps in W a specific name,
such as “weak equivalences”, as this may be definitely misleading, in
the general axiomatic set-up we want to develop; here W(Cat) is just one
among many possible W’s and correspondingly for a small category A,
WA =WAˆ is just one among the many WA’s, associated to the previous
W’s. When M = (Cat), it will be understood we are working with a
fixed set W ⊂ Fl((Cat)), consisting of the basic “equivalences”, on which
the whole modelizer story hinges. We may call them W-equivalences –
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for the time being there will be no question of varying W.
Coming back to a general pair (M , W ⊂ Fl(M)) (not necessarily a

“modelizer”), we may call the maps in W W -equivalences. If M has a
final object e, we get the corresponding notion of W-aspheric object of
M , namely an object X such that the unique map

X → e

is in W , i.e., is a W -equivalence. We’ll define a W-aspheric map

f : X → Y

in M as one which is “universally in W ”, by which I mean that for any
base-change

Y ′→ Y,

the fiber-product X ′ = X ×Y Y ′ exists (i.e., f is “squarable”) and the
map

f ′ : X ′→ Y ′

deduced from f by base change is in W . The thing to be quite careful
about is that for an object X in M , to say that X is W-aspheric over e
(meaning that the map X → e is W -aspheric) implies X is W -aspheric &c.,
but the converse need not hold true. This causes a slight psychological
uneasiness, due to the fact I guess that the notion of a W -aspheric object
has been defined after all in terms of the map X → e, and consequently
may be thought of as meaning is “in W over e”. Maybe we shouldn’t
use at all the word “W -aspheric object” here, not even by qualifying it
as “weakly W -aspheric” to cause a feeling of caution, but rather refer
to this notion as “X is a W -object” – and denote by M(W ) the set of all
these objects (or the corresponding full subcategory of M , and call X
W -aspheric (dropping “over e”) when it is “universally” a W -object. The But we’ll see immediately that this conflicts

with the standard terminology in topoi – so
no good either!

terminology we have been using so far was of course suggested by the

[p. 161]

case when M is a topos and W the usual notion of weak equivalence, but
then to call X in M “W -aspheric” or simply “aspheric” does correspond
to the usual (absolute) notion of asphericity for the induced topos M/X ,
only in the case when the topos M itself is aspheric. This is so in the
case I was most interested in (e.g., M a modelizing topos), but if we
want to use it systematically in the general setting, the term I used of
“W -aspheric object” is definitely misleading. Thus we better change it
now than never, and use the word “W -object” instead, and the notation
M(W ). As for the notion of W -aspheric map, in the present case of a
topos with the notion of weak equivalence, it does correspond to the
usual notion of asphericity for the induced morphism of topoi

M/X → M/Y ,

which is quite satisfactory.
There is still need for caution with the notion of W -aspheric maps (W -

aspheric objects have disappeared in the meanwhile!), when working
in M = (Cat) (and the same thing if M = (Spaces)). Namely, when we
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got a map f : A→ B in (Cat), this is viewed for topological intuition as
corresponding to a morphism of topoi

Aˆ→ Bˆ.

Now, the requirement that f : A→ B should be W(Cat)-aspheric is a lot
stronger than the asphericity of the corresponding morphism of topoi.
Indeed, the latter just means that for any base-change in (Cat) of the
very particular “localization” or “induction” type, namely

B/b → B,

the corresponding map deduced by base change

f/b : A/b → B/b

is a weak equivalence (or equivalently, that A/b is aspheric), whereas
W -asphericity of f means that the same should hold for any base-change
B′→ B in (Cat), or equivalently, that for any such base-change, with B′

having a final element moreover, the corresponding category A′ = A×B B′

is aspheric. To keep this distinction in mind, and because the weaker
notion is quite important and deserves a name definitely, I will refer
to this notion by saying f is weakly W-aspheric (returning to the case
of a general W ⊂ Fl((Cat))) if for any base change of the particular
type B/b → B above, the corresponding map A/b → B/b is in W. We [p. 162]
could express this in terms of the morphism of topoi Aˆ→ Bˆ by saying
that the latter is W -aspheric – being understood that the choice of an
“absolute” W in (Cat), implies as usual a corresponding notion of W-
equivalence for arbitrary morphisms of arbitrary topoi, in terms of the
corresponding morphism between the corresponding homotopy types.
(This extension to topoi of notions in (Cat) should be made quite explicit
sooner or later, but visibly we do not need it yet for the time being.)
One relationship we have been constantly using, and which is nearly
tautological, comes from the case of a map

u : F → G

in a category Aˆ, hence applying iA a map in (Cat)

AF → AG .

For this map to be weakly W-aspheric, it is necessary and sufficient that
for any base-change in Aˆ of the particular type

G′ = A→ G with a in A,

the corresponding map
F ×G a→ a

in Aˆ be in WA – a condition which is satisfied of course if u is WA-
aspheric. This last condition is also necessary, if we assume that W

satisfies the standard property we’ve kept using all the time in case of
(Cat), namely that a map in (Cat) that is weakly W -aspheric, is in W

(condition f) on page 155). Thus we get the
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Proposition. Assume that any map in (Cat) which is weakly W-aspheric
is in W, and let A be any small category, u : F → G a map in Aˆ. Then u is
WA-aspheric (and hence in WA) iff iA(u) : A/F → A/G is weakly W-aspheric.

The assumption we just made on W is of such constant use, that we
are counting it among those we are making once and for all upon W

(which I still have to pass in review).
As for W-aspheric maps in (Cat), this is a very strong notion indeed

when compared with W-equivalence or even with weak W-asphericity.
We did not have any use for it yet, but presumably this notion will
be of importance when it comes to a systematic study of the internal
properties of (Cat) with respect to W (which is still in our program!).

Coming back to a general (M , W ), we have defined earlier a canonical [p. 163]
homotopy structure hW on M , which we may call “associated to W ”
– this is also the weak homotopy interval structure on M , generated
by intervals in M which are W -aspheric over e. This makes sense
at least, provided in M finite products exist. If moreover M satisfies
the conditions b) to d) of page 123 concerning sums and connected
components of objects of M , we have defined (independently of W ) the
canonical homotopy structure hM in M , which may be viewed as the
weak homotopy interval structure generated by all 0-connected intervals
in M . It still seems that in all cases we are going to be interested in, we
have the equality

hW = hM .

When speaking of homotopy notions in M (such as f and g being
homotopic maps, written

f ∼ g,

or a map being a homotopism, or an object being contractible) it will be
understood (unless otherwise stated) that this refers to the homotopy
structure hW = hM . In case we should not care to impose otherwise
unneeded assumptions which will imply hW = hM , we’ll be careful when
referring to homotopy notions, to say which structure we are working
with.

64 We recall that a set of arrows W ⊂ Fl(M) is called saturated if it satisfies Review of properties of the “basic lo-
calizer” W(Cat).the conditions:

a) Identities belong to W .

b) If f , g are maps and f g exists, then if two among f , g, g f are in
W , so is the third.

c) If f : X → Y and g : Y → X are such that g f and f g are in W , so
are f and g.

On the other hand, strong saturation for W means that W is the set
of arrows made invertible by the localization functor

M → MW =W−1M ,

or equivalently, that W can be described as the set of arrows made
invertible by some functor M → M ′. The trouble with strong saturation
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is that it is a condition which often is not easy to check in concrete
situations. This is so for instance for the notion of weak equivalence
in (Cat), and the numerous variants defined in terms of cohomology.
Therefore, we surely won’t impose the strong saturation condition on [p. 164]
W (which we may call the “basic localizer” in our modelizing story), but
rather be happy if we can prove strong saturation as a consequence of
other formal properties of W, which are of constant use and may be
readily checked in the examples we have in mind.

Let’s give finally a provisional list of those properties for a “localizer”
W.
L 1) (Saturation) W is saturated, i.e., satisfies conditions a)b)c) above.

L 2) (Homotopy axiom) 1 is W-aspheric over e, i.e., for any C in
(Cat), the projection

1 × C → C

is in W.

L 3) (Final object axiom) Any C in (Cat) which has a final object is in
(Cat)(W), i.e., C → e is in W (or, as we will still say when working
in (Cat), C is W-aspheric). For a justification of this terminology,see

proposition on p. 167 below.
L 3’) (Interval axiom) 1 is W-aspheric, i.e., 1→ e is in W.

L 4) (Localization axiom) Any map u : A→ B in (Cat) which is weakly
W-aspheric (i.e., the induced maps A/b → B/b are in W) is in W.

L 5) (Fibration axiom) If f : X → Y is a map in (Cat) over an object
B of (Cat), such that X and Y are fiber categories over B and f is
cartesian, and if moreover for any b ∈ B, the induced map on the
fibers fb : X b → Yb is in W, then so is f .

These properties are all I have used so far, it seems, in the case
W =W(Cat) we have been working with till now, in order to develop the
theory of test categories and test functors, including “weak” and “strong”
variants, and including too the generalized version of the “key result”
which is still waiting for getting into the typewriter. Let’s list at once the
implications

L 2)⇒ L 3)⇒ L 3’),

and

if L 1) and L 4) hold (saturation and localization axioms),
then the homotopy axiom L 2) is already implied by the
final object axiom L 3).

Thus, the set of conditions L 1) to L 4) (not including the last one
L 5), i.e., the fibration axiom) is equivalent to the conjunction of L 1)
L 3) L 4). This set of conditions is of such a constant use, that we’ll
assume it throughout, whenever there is a W around:

Definition. A subset W of Fl((Cat)) is called a basic localizer, if it satis- [p. 165]
fies the conditions L 1), L 3), L 4) above (saturation, final object and
localization axioms), and hence also the homotopy axiom L 2).
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These conditions are enough, I quickly checked this night, in order
to validify all results developed so far on test categories, weak test
categories, strict test categories, weak test functors and test functors
with values in (Cat) (cf. notably the review in par. 44, pages 79–88),
provided in the case of test functors we restrict to the case of loc. cit.
when each of the categories i(a) has a final object. All this I believe is
justification enough for the definition above.

As for the fibration axiom L 5), this we have seen to be needed (at least
in the approach we got so far) for handling test functors i : A→ (Cat),
while no longer assuming the categories i(a) to have final objects (which
was felt to be a significant generalization to carry through, in view of
being able subsequently to replace (Cat) by more general modelizers).
While still in the nature of a stability requirement, this fibration axiom
looks to me a great deal stronger than the other axioms. Clearly L 5),
together with the very weak “interval axiom” L 3’) ( 1 → e is in W)
implies the homotopy axiom. It can be seen too that when joined with
L 1), it implies the localization axiom L 4) (using the standard device of
a mapping-cone for a functor. . . ). Thus, a basic localizer satisfying the
fibration axiom L 5) can be viewed also as a W satisfying the conditions

L 1) (saturation), L 3’) (interval axiom), L 5) (fibration axiom).

In the next section, after we will have stated the two key facts about
weak test functors and test functors, which both make use of L 5), we’ll
presumably, for the rest of the work ahead towards canonical modelizers,
assume the fibration condition on the basic localizer W.

There are some other properties of weak equivalence W(Cat) and its
manifold variants in terms of cohomology, which have not been listed
yet, and which surely will turn up still sooner or later. Maybe it’s too
soon to line them up in a definite order, as their significance is still
somewhat vague and needs closer scrutiny. I’ll just list those which
come to my mind, in a provisional order.
L a) 0-admissibility of W, namely f ∈W implies π0( f ) bijective.

This condition, together with the homotopy axiom L 2), will imply [p. 166]

(1) hW = h(Cat) the canonical homotopy structure on
(Cat) defined in terms of the generating
contractor 1 in (Cat),

whereas the homotopy axiom alone, I mean without a), will imply only
the inequality

(1’) h(Cat) ≤ hW,

which is all we care for at present. The latter implies that two maps in
(Cat) which are 1-homotopic (i.e., belong to the same connected
component of Hom(X , Y ) have the same image in the localization
W−1(Cat) = (HotW), and that any map in (Cat)which is a 1-homotopism
is in W, and even is W-aspheric if it is a “homotopy retraction” with
respect to the 1-structure h(Cat). However, in practical terms, even with-
out assuming a) expressly, we may consider (1) to be always satisfied.
This amounts indeed to the still weaker condition than a)
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L a’) If C in (Cat) is W-aspheric over e, it is 0-connected, i.e., non-empty
and connected.

But if it were empty, it would follow that for any X in (Cat), ∅→ X
is in W and hence (HotW) is equivalent to the final category. If C is
non-empty and disconnected, choosing two connected components and
one point in each to make C into a weak homotopy interval for hW, one
easily gets that any two maps f , g : X ⇒ Y in (Cat) are hW-homotopic,
hence have the same image in (HotW), which again must be the final
category. Thus we get:

Proposition. If W satisfies L 1), L 2) (e.g., W a basic modelizer), then
we have equality (1), except in the case when (HotW) equivalent to the
final category.

This latter case isn’t too interesting one will agree. Thus, we would
easily assume (1), i.e., a’). But the slightly stronger condition a) seems
hard to discard; even if we have not made any use of it so far, one sees
hardly of which use a category of localized homotopy types (HotW)
could possibly be, if one is not even able to define the π0-functor on it!
Thus, presumably we’ll have to add this condition, and maybe even more,
in order to feel W deserves the name of a “basic localizer”. . .Among
other formal properties which still need clarification, even in the case
of W(Cat), there is the question of exactness properties of the canonical
functor

(2) (Cat)→W−1(Cat) = (HotW).

I am thinking particularly of the following
L b) The functor (2) commutes with finite sums, [p. 167]
possibly even with infinite ones, which should be closely related to
property a), and
L c) The functor (2) commutes with finite products

(maybe even with infinite ones, under suitable assumptions).
The following property, due to Quillen for weak equivalences, is used

in order to prove for these (and the cohomological analogs) the fibration
axiom L 5) (what we get directly is the case of cofibrations, as a matter
of fact – cf. prop. page 97):
L d) If f : C → C ′ is in W, so is f op : Cop → (C ′)op for the dual

categories.
This is about all I have in mind at present, as far as further properties

of a W is concerned. The property c) however brings to mind the natural
(weaker) condition that the cartesian product of two maps in W should
equally be in W. The argument in the beginning of par. 40 (p. 69) carries
over here, and we get:

Proposition. Let W be a basic localizer, and C in (Cat) such that C is
W-aspheric, i.e., C → e is in W, then C is even W-aspheric over e, i.e., for
any A in C, C × A→ A is in W.
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However, the proof given for the more general statement we have in
mind (of proposition on page 69) does not carry over using only the
localization axiom in the form L 4) it was stated above, as far as I can
see. This suggests a stronger version L 4’) of L 4) which we may have to
use eventually, relative to a commutative triangle in (Cat) as on page 70

P ′ P

C

F

,

when assuming that the induced maps (for arbitrary c in C)

F/c : P ′/c → P/c

are in W, to deduce that F itself is in W. However, this “strong localiza-
tion axiom” is a consequence (as is the weaker one L 4)) of the fibration
axiom L 5), which implies also directly the property we have in mind,
namely

f , g ∈W implies f × g ∈W.

To come to an end of this long terminological and notational digres- [p. 168]
sion, I’ll have to say a word still about test categories, modelizers, and
test functors. We surely want to use freely the terminology introduced
so far, while we were working with ordinary weak equivalences, in the
more general setting when a basic localizer W is given beforehand. As
long as there is only one W around, which will be used systematically
in all our constructions, we’ll just use the previous terminology, being
understood that a “modelizer” say will mean a “W-modelizer”, namely
a category M endowed with a saturated W ⊂ Fl(M), such that W−1M is
equivalent some way or other to W−1(Cat). The latter category, however,
I dare not just designate as (Hot), as this notation has been associated to
the very specific situation of just ordinary homotopy types, therefore I’ll
always write (HotW) instead, as a reminder of W after all! If at a later
moment it should turn out that we’ll have to work with more than one
W (for instance, to compare the W-theory to the ordinary W(Cat)-theory),
we will of course have to be careful and reintroduce W in our wording,
to qualify all notions dependent on the choice of W.

7.4.

65 It has been over a week now and about eighty pages typing, since I Still another review of the test no-
tions (relative to given basic localizer
W).

realized the need for looking at more general test functors than before
and hit upon how to handle them, that I am grinding stubbornly through
generalities unending on homotopy notions. The grinding is a way of
mine to become familiar with a substance, and at the same time getting
aloof of it climbing up, sweatingly maybe, to earn a birds-eye view of a
landscape and maybe, who knows, in the end start a-flying in it, wholly
at ease. . . I am not there yet! The least however one should expect, is
that the test story should now go through very smoothly. As I have been
losing contact lately with test categories and test functors, I feel it’ll be
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worth while to make still another review of these notions, leading up to
the key result I have been after all that time. It will be a way both to
gain perspective, and check if the grinding has been efficient indeed. . .

If
u : M → M ′

is a functor between categories endowed each with a saturated set of
arrows, W and W ′ say, we’ll say u is “model preserving” (with respect to
(W, W ′) if it satisfies the conditions:

a) W = u−1(W ′) (hence the functor u : W−1M → (W ′)−1M ′ exists), [p. 169]

b) the functor u is an equivalence.
We do not assume beforehand that (M , W ), (M ′, W ′) are modelizers

(with respect to a given basic localizer W ⊂ Fl((Cat))), but in the cases
I have in mind, we’ll know beforehand at least one of the pairs to be a
modelizer, and it will follow the other is one too.

In all what follows, a basic localizer W is given once and for all (see
definition on page 165). For the two main results below on the mere
general test functors, we’ll have to assume W satisfies the fibration axiom
L 5) (page 164). We are going to work with a fixed small category A,
without any other preliminary assumptions upon A, all assumptions
that may be needed later will be stated in due course. Recall that A
can be considered as an object of (Cat), and we’ll say A is W-aspheric
if A → e is in W, which implies that A → e is even W-aspheric, i.e.,
A×C → C is in W for any C in (Cat). More generally, if F is in Aˆ, we’ll
call F W-aspheric if the category A/F is W-aspheric. Thus, to say A is
W-aspheric just means that the final object eAˆ of Aˆ is W-aspheric.

We’ll constantly be using the canonical functor

(1) iA : Aˆ→ (Cat), F 7→ A/F ,

and its right adjoint

(2) jA = i∗A : (Cat)→ Aˆ, C 7→ (a 7→ Hom(A/a, C)).

The category Aˆ will always be viewed as endowed with the saturated
set of maps

(3) WA = i−1
A (W).

This gives rise to the notions of WA-aspheric map in Aˆ, and of an object
F of Aˆ being WA-aspheric over eAˆ , namely F → eAˆ being WA-aspheric,
which means that F×G→ G is in WA for any G in Aˆ, which by definition
of WA means that for any G, the map

A/F×G → A/F

in (Cat) is in W. Using the localization axiom on W, one sees that it is
enough to check this for G and object a of A, in which case A/G = A/a has
a final object and hence is W-aspheric by L 3), and the condition amounts
to A/F×a being W-aspheric, i.e. (with the terminology introduced above),
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that F × a is W-aspheric. Thus, an object F of Aˆ is WA-aspheric over [p. 170]
eAˆ iff for any a in A, F × a is W-aspheric. We should beware that for
general A, this does not imply F is W-aspheric, nor is it implies by it.
We should remember that W-asphericity of F is an “absolute notion”,
namely is a property of the induced category A/F or equivalently, of the
induced topos Aˆ/F ' (A/F )ˆ, whereas WA-asphericity of F over eAˆ is
a relative notion for the map of categories

A/F → A

or equivalently, for the map of topoi Aˆ/F → Aˆ (the localization map
with respect to the object F of the topos Aˆ). More generally, for a
map F → G in Aˆ, the property for this map of being WA-aspheric is a
property for the corresponding map in (Cat)

A/F → A/G ,

namely the property we called weak W-asphericity yesterday (page 161),
as we stated then in the prop. page 162. An equivalent way of expressing
this is by saying that for F → G to be WA-aspheric, i.e., to be “universally
in WA”, it is enough to check this for base changes G′→ G with G′ an
object a in A, namely that the corresponding map

F ×G a→ a

in Aˆ should be in WA(for any a in A and map a→ G), which amounts
to saying that F ×G a is W-aspheric for any a in A and map a→ G.

With notations and terminology quite clear in mind, we may start
retelling once again the test category story!

A) Total asphericity. Before starting, just one important pre-test notion
to recall, namely total asphericity, summed up in the

Proposition 1. The following conditions on A are equivalent:
(i) The product in Aˆ of any two objects of A is W-aspheric.

(i’) Every object in A is WA-aspheric over the final element eAˆ .

(ii) The product of two W-aspheric objects is again W-aspheric.

(ii’) Any W-aspheric object of Aˆ is WA-aspheric over eAˆ .

This is just a tautology, in terms of what was just said. Condition (i)
is just the old condition (T 2) on test categories. . .

Definition 1. If A satisfies these conditions and moreover A is W-
aspheric, Aˆis called totally W-aspheric.

Remark. In all cases when we have met with totally aspheric Aˆ, this
condition (i) was checked easily, because we were in one of the two [p. 171]
following cases:

a) A stable under binary products.
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b) The objects of A are contractible for the homotopy structure hWA

of Aˆ associated to WA.

In case b), in the cases we’ve met, for checking contractibility we
even could get away with a homotopy interval I= (I ,δ0,δ1) which is
in A, namely we got I-contractibility for all elements of A, and hence for
the products. All we’ve got to check then, to imply hWA

-contractibility
of the objects a × b, and hence their W-asphericity, is that I itself is
WA-aspheric over eAˆ , namely the products I × a are W-aspheric. This
now has to be checked indeed some way or other – I don’t see any
general homotopy trick to reduce the checking still more. In case when
A= (standard simplices) say, and while still working with usual weak
equivalences W(Cat), we checked asphericity of the products 1 × n
by using a Mayer-Vietories argument, each product being viewed as
obtained by gluing together a bunch of representable subobjects, which
are necessarily W-aspheric therefore. The argument will go through
for general W, if we assume W satisfies the following condition, which
we add to the provisional list made yesterday (pages 166–167) of extra
conditions which we may have to introduce for a basic localizer:
L e) (Mayer-Vietoris axiom) Let C be in (Cat), let C ′, C ′′ be two full

subcategories which are cribles (if it contains a in C and if b→ a,
it contains b), and such that Ob C = Ob C ′∪Ob C ′′. Assume C ′, C ′′

and C ′ ∩ C ′′ are W-aspheric, then so is C .
This condition of course is satisfied whenever W is described in terms

of cohomological conditions, as envisioned yesterday (page 158). We
could elaborate on it and develop in this direction a lot more encom-
passing conditions (“of Čech type” we could say), which will be satisfied
by all such cohomologically defined basic localizers. It would be fun
to work out a set of “minimal” conditions such as L e) above, which
would be enough to imply all Čech-type conditions on a basic localizer.
At first sight, it isn’t even obvious that L e) say isn’t a consequence of
just the general conditions L 1) to L 4) on W, plus perhaps the fibration
axiom L 5) which looks very strong. As long as we don’t have any other
example of basic localizers than in terms of cohomology, it will be hard
to tell!

B) Weak W-test categories.

Definition 2. The category A is a weak W-test category if it satisfies the [p. 172]
conditions

a) A is W-aspheric.

b) The functor i∗A : (Cat)→ Aˆ is model-preserving, i.e.,

b1) W = (i∗A)
−1(WA) (= f −1

A (W), where fA = iAi∗A : (Cat) →
(Cat)),

b2) the induced functor

i
∗
A : (HotW)

def
= W−1(Cat)→WA

−1Aˆ

is an equivalence.
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Proposition 2. The following conditions on A are equivalent:
(i) A is a weak W-test category.

(ii) The functors i∗A and iA are both model-preserving, the induced functors

(HotW) WA
−1Aˆ

are equivalences quasi-inverse of each other, with adjunction mor-

phisms in (HotW) and in (HotA)
def
= WA

−1Aˆ deduced from the ad-
junction morphisms for the pair of adjoint functors iA, i∗A.

(iii) The functor i∗A transforms maps in W into maps in WA(i.e., fA = iAi∗A
transforms maps in W into maps in W), and moreover A is W-
aspheric.

(iii’) Same as in (iii), but restricting to maps C → e, where C in (Cat)
has a final object.

(iv) The categories fA(C) = A/i∗A(C), where C in (Cat) has a final object,
are W-aspheric.

The obvious implications are

(ii)⇒ (i)⇒ (iii)⇒ (iii’)⇒ (iv)

and the proof of (iv) ⇒ (ii) follows from an easy weak asphericity
argument and general non-sense on adjoint functors and localization
(cf. page 35 and prop. on page 38).

Remark. In case W is strongly saturated, and hence A W-aspheric just
means that its image in (HotW) is a final object, the condition of W-
asphericity of A in (iii) or in def. 2 can be restated, by saying that the
endomorphism f A of (HotW) induced by fA transforms final object into
final object – which is a lot weaker than being an equivalence!

C) W-test categories.

Definition 3. The category A is a W-test category if it is a weak W-test [p. 173]
category, and if the localized categories A/a for a in A are equally weak
W-test categories. We say A is a local W-test category if the localized
categories A/a are weak W-test categories.

Clearly, A is a W-test category iff if is a local W-test category, and
moreover A is W-aspheric (as the categories A/a are W-aspheric by L 3)).
Also, A is a local W-test category iff the functors i∗A/a (for a in A) are
model preserving.

Proposition 3. The following conditions on A are equivalent:
(i) A is a local W-test category.

(ii) The Lawvere element
LAˆ = i∗A( 1)

in Aˆ is WA-aspheric over eAˆ , i.e., the products a× LAˆ for a in A
are all W-aspheric.
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(iii) There exists a separated interval I = (I ,δ0,δ1) in Aˆ (i.e., an object
endowed with two sections such that Ker(δ0,δ1) =∅Aˆ), such that
I be WA-aspheric over eAˆ , i.e., all products a× I are W-aspheric.

The obvious implications here are

(i)⇒ (ii)⇒ (iii).

on the other hand (iii) ⇒ (ii) by the homotopy interval comparison
lemma (p. 60), and finally (i) ⇒ (i) by the criterion for weak W-test
categories of prop. 2 (iv), using an immediate homotopy argument (cf.
page 62).

Corollary 1. A is a W-test category iff it is W-aspheric and satisfies (ii)
or (iii) of proposition 3 above.

Remark. In the important case when Aˆ is totally W-aspheric (cf. prop.
1, the asphericity condition on LAˆ or on I in prop. 3 is equivalent to
just W-asphericity of LAˆ resp. of I . In case Aˆ is even “strictly totally
W-aspheric”, i.e., if moreover every “non-empty” object in Aˆ admits a
section, then we’ve seen that hWA

= hAˆ (prop. page 149, which carries
over to a general W satisfying L a’) of page 166, i.e., provided (HotW)
isn’t equivalent to the final category, which case we may discard!), then
condition (ii) just means that the contractor LAˆ is 0-connected – a
condition which does not depend upon the choice of W.

D) Strict W-test categories.

Proposition 4. The following conditions on A are equivalent: [p. 174]
(i) Both functors iA and i∗A are model preserving, moreover iA commutes

to finite products “modulo W”.

(ii) A is a test category and Aˆ is totally W-aspheric.

(ii’) A is a weak test category and Aˆ is totally W-aspheric.

(iii) A satisfies conditions (T 1) (T 2) (T 3) of page 39, with “aspheric”
replaced by “W-aspheric”.

This is not much more than a tautology in terms of what we have
seen before, as we’ll get the obvious implications

(i)⇒ (iii)⇒ (ii)⇒ (ii’)⇒ (i).

Definition 4. If A satisfies the conditions above, it is called a strict W-test
category.

Remarks. 1) When we know that the canonical functor from (Cat)
to the localization (HotW) commutes with binary products, then the
exactness property mod W in (i) implies that the same holds for the
canonical functor from Aˆ to its localization (HotA), and conversely if
W is known to be saturated.
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2) In the case W = W(Cat) we’ve seen that condition (T 2) implies
(T 1), i.e., the conditions of prop. 1 imply A is W-aspheric, i.e., Aˆ is
totally W-aspheric. The argument works for any W defined by cohomo-
logical conditions of the type considered in yesterday’s notes. To have it
work for more general W, we would have to introduce some Čech-type
requirement on W, compare page 171.

3) In the statement of the theorem page 46, similar to the proposition
above, in (i) no assumption is made on i∗A = jA – which I believe was
an omission by hastiness – it is by no means clear to me that we could
dispense with it, and get away with an assumption on iA alone.

E) Weak W-test functors and W-test functors. Let [p. 175]

(M , W ), W ⊂ Fl(M)

be a category endowed with a saturated set of arrows W , and

(4) i : A→ M

a functor, hence a corresponding functor

(5) i∗ : M → Aˆ, X 7→ i∗(X ) = (a 7→ Hom(i(a), X )).

Definition 5. The functor i is called a weak W-test functor (with respect
to the given W ⊂ Fl(M)) if A is a weak W-test category and the functor
i∗ is model-preserving (for W and WA), i.e., if A satisfies the three
conditions:

a) i∗ is model preserving,

b) i∗A : (Cat)→ Aˆ is model preserving,

c) A is W-aspheric.

The conditions b) and c), namely that A be a weak W-test category, do
not depend of course upon M , and it may seem strange in the definition
not to have simply asked beforehand that A satisfy this preliminary
condition – i.e., reduce to the case when we start with a weak W-test
category A. The reason for not doing so is that we’ll find below handy
criteria for all three conditions to hold, without assuming beforehand A
to be a weak W-test category.

As b) and c) imply that

iA : Aˆ→ (Cat)

is model-preserving too, condition a) above can be replaced by the
condition

a’) The composition
fi = iAi∗ : M → (Cat)

is model-preserving (for the pair W,W).
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Of course, as conditions b), c) imply that (Aˆ,WA) is a modelizer
(with respect to W), the condition a) will imply (M , W ) is a modelizer
too.

We recall the condition for i∗ to be model-preserving decomposes into
two:

a1) W = (i∗)−1(WA) (= f −1
i (W)),

a2) The functor i∗ induced by i∗ on the localizations (which exists [p. 176]
because of a1))

W−1M → (HotA)
def
= WA

−1Aˆ

is an equivalence.

Definition 6. The functor i is called a W-test functor if this functor
and the induced functors i/a : A/a → M (for a in A) are weak W-test
functors.

In view of the definition 3, this amounts to the two conditions:
a) A is a W-test category, i.e., the functors i∗A and i∗A/a are model-

preserving and A is W-aspheric,

b) the functors i∗ and (i/a)∗ from M into the categories Aˆ and
(A/a)ˆ→ Aˆ/a are model-preserving (for W and WA resp. WA/a ).

Example. Consider the canonical functor induced by iA

i0
A : A→ (Cat), (Cat) endowed with W,

this functor is a weak W-test functor (resp. a W-test functor) iff A is a
weak W-test category (resp. a W-test category).

These two definitions are pretty formal indeed. Their justification is
mainly in the two theorems below.

We assume from now on that the basic localizer W satisfies the fibration
axiom L 5) of page 164. Also, we recall that an object X in (Cat) is
contractible (for the canonical homotopy structure of (Cat)) iff X is non-
empty and the category Hom(X , X ) is connected – indeed it is enough
even that idX belong to the same connected component as some constant
map from X into itself. This condition is satisfied for instance if X has a
final or an initial object.

Theorem 1. We assume that M = (Cat), W =W, i.e., we’ve got a functor

i : A→ (Cat), (Cat) endowed with W,

and we assume that for any a in A, i(a) is contractible (cf. above), i.e.,
that i factors through the full subcategory (Cat)cont of contractible objects
of (Cat). The following conditions are equivalent:

(i) i is a W-test functor (def. 6).

(i’) For any a in A, the induced functor i/a : A/a → (Cat) is a weak
W-test functor, and moreover A is W-aspheric.
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(ii) i∗( 1) is WA-aspheric over eAˆ , i.e., the products a× i∗( 1) in Aˆ
are W-aspheric, for any a in A, and A is W-aspheric.

The obvious implications here are [p. 177]

(i)⇒ (i’)⇒ (ii),

for the last implication we only make use, besides A being W-aspheric,
that the functors (i/a)∗ transform the projection 1→ e in (Cat), which
is in W by L 3’), into a map in WA/a , i.e., that the corresponding map in
(Cat)

A/a×i∗( 1)→ A/a

be in W, which by the final object axiom implying that A/a → e is in
W, amounts to demanding that the left-hand side is W-aspheric, i.e.,
a× i∗( 1)WA-aspheric.

So we are left with proving (ii)⇒ (i). By the criterion (iii) of prop.
3 we know already (assuming (ii)) that A is a local W-test category,
hence a W-test category as A is W-aspheric (cor. 1); indeed we can use
I = i∗( 1) as a WA-aspheric interval, using the two canonical sections
deduced from the canonical sections of 1. The fact that these are
disjoint follows from the fact that i(a) non-empty for any a in A – we did
not yet have to use the contractibility assumption on the categories i(a).
Thus, we are reduced to proving that i∗ is model-preserving – the same
will then hold for the functors i/a (as required in part b) in def. 6), as the
assumption (ii) is clearly stable under restriction to the categories A/a.
As we know already that iA is model-preserving (prop. 2 (i)⇒ (ii)), all
we have to do is to prove the composition fi = iAi∗ is model-preserving.
But this was proved yesterday in the key lemma of page 156. We’re
through!

Remark. The presentation will be maybe a little more elegant, if we
complement the definition of a W-test functor by the definition of a local
W-test functor, by which we mean that the induced functors i/a : A/a →
M are weak test functors, period – which means also that the following
conditions hold:

a) A is a local W-test category (def. 3), i.e., the functors (i/a)∗ : M →
(A/a)ˆ are all model-preserving;

b) the functors (i/a)∗ (for a in A) are model-preserving.

Thus, it is clear that if i is a W-test functor, it is a local W-test functor
such that moreover A is W-aspheric. The converse isn’t clear in gen-
eral, because it isn’t clear that if A is a W-test category and moreover
all functors (i/a)∗ are modelizing, then i∗ is equally modelizing. The
criterion (i’) of theorem 1 shows however that this is so in the case
when (M , W ) = ((Cat),W), and when we assume moreover the objects
i(a) contractible. We could now reformulate the theorem as a twofold [p. 178]
statement:

Corollary. Under the assumptions of theorem 1, i is a local W-test func-
tor (i.e., all functors i/a : A/a → (Cat) are weak W-test functors, or
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equivalently the functors (i/a)∗ and (iA/a)
∗ from (Cat)→ (A/a)ˆ are all

model-preserving) iff i∗( 1) is WA-aspheric over eAˆ , i.e., the products
a× i∗( 1) in Aˆ are W-aspheric. When this condition is satisfied, in order
for i to be a W-test functor, namely for i∗ to be equally model-preserving,
it is n.s. that A be W-aspheric.

F) W-test functors A→ (Cat) of strict W-test categories. Let again

i : A→ (Cat), (Cat) endowed with W,

be a functor such that the objects i(a) be contractible, we assume now
moreover that Aˆ is totally W-aspheric (def. 1), which implies A is W-
aspheric. Thus, by the corollary above i is a test functor iff it is a local
W-test functor, and by the criterion (iv) of prop. 2 (with C = 1) we
see it amounts to the same that i be a weak W-test functor. (Here we
use the assumption of total W-asphericity, which implies that if i∗( 1)
is W-aspheric, it is even WA-aspheric over eAˆ .) Thus, the three variants
of the test-functor notion coincide in the present case. With this in mind,
we can now state what seems to me the main result of our reflections so
far, at any rate the most suggestive reformulation of theorem 1 in the
present case:

Theorem 2. With the assumptions above (Aˆ totally W-aspheric and the
objects i(a) in (Cat) contractible), the following conditions on the functor
i : A→ (Cat) are equivalent:

(i) i is a W-test functor.

(ii) i∗ : (Cat)→ Aˆ is model-preserving, i.e., for any map f in (Cat), f
is in W iff i∗( f ) is in WA (i.e., iff iAi∗( f ) is in W), and moreover the
induced functor

i∗ : (HotW)→ (HotA)
def
= WA

−1Aˆ

is an equivalence.

(iii) The functor above exists, i.e., f in W implies i∗( f ) in WA, i.e., iAi∗( f )
in W.

(iv) The functor i∗ transforms W-aspheric objects into WA-objects (i.e.,
the condition in (iii) is satisfied for maps C → e in W).

(v) The functor i∗ transforms contractible objects of (Cat) into objects [p. 179]
of Aˆ, contractible for the homotopy structure hWA

associated to
WA – or equivalently, i∗ is a morphism of homotopy structures (cf.
definition on page 134).

(vi) The functor i∗ transforms the projection 1→ e into a map in W,
or equivalently (as A is W-aspheric) i∗( 1) is W-aspheric.

We have the trivial implications

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (vi)⇐ (v),
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where the implication (v)⇒ (vi) is in fact an equivalence, due to the
fact that the contractibility structure on (Cat) is defined in terms of 1
as a generating contractor, and that the assumption i∗( 1)W-aspheric
implies already that it is WA-aspheric over eAˆ (because A is totally WA-
aspheric), and hence contractible as it is a contractor and hWA

is defined
in terms of “weak homotopy intervals” which are WA-aspheric over eAˆ .
Thus, the only delicate implication is (vi)⇒ (i), which however follows
from theorem 1 (ii)⇒ (i).

We got the longed-for “key result” in the end!

9.4. [p. 180]

66 After writing down nicely, in the end, that long promised key result, I Revising (and fixing?) terminology
again.thought the next thing would be to pull myself up by my bootstraps

getting the similar result first for test functors A→ Bˆ with values in an
elementary modelizer Bˆ, and then for general “canonical” modelizers
(M , W ). So I did a little scratchwork pondering along those lines, before
resuming the typewriter-engined work. What then turned out, it seems,
is that there wasn’t any need at all to pass through the particular case
M = (Cat) and the somewhat painstaking analysis of our three-step
diagram on page 96. Finally, the most useful result of all the eighty pages
grinding, since that point, is by no means the so-called key result, as I
anticipated – the day after I finally wrote it down, it was already looking
rather “étriqué” – why all this fuss about the special case of test functors

[“étriqué” can be translated as
“narrow-minded” here, I think.]

with values in (Cat)! The main result has been finally more psychological
than technical – namely drawing attention, in the long last, to the key
role of contractible objects and, more specifically, of the contractibility
structure associated to modelizers (M , W ), suggesting that the localizer
W should, conversely, be describable in terms of the homotopy structure
hW . This was point d) in the “provisional plan of work” contemplated
earlier this week (page 138) – by then I had already the feeling this
approach via d) would turn out to be the most “expedient” one – but it
was by then next to impossible for me to keep pushing off still more the
approach b) via test functors with values in (Cat), which I finally carried
through. One point which wasn’t wholly clear yet that day, as it is now,
is the crucial role played by the circumstance that for the really nice
modelizers (surely for those I’m going to call “canonical” in the end),
the associated homotopy structure is indeed a contractibility structure.
Here, as so often in mathematics (and even outside of mathematics. . . ),
the main thing to dig out and discover is where the emphasis belongs
– which are the really essential facts or notions or features within a
given context, and which are accessory, namely, which will follow suit
by themselves. It took a while before I would listen to what the things
I was in were insistently telling me. It finally got through I feel, and I
believe that from this point on the whole modelizing story is going to
go through extremely smoothly.

Before starting with the work, just some retrospective, somewhat
more technical comments, afterthoughts rather I should say. First of
all, I am not so happy after all with the terminological review a few
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days ago (pages 159–163), and notably the use of the word “aspheric” [p. 181]
in the generalization “W -aspheric” map (in a category M endowed
with a saturated set of arrows W ) – which then practically obliged me,
when working in (Cat), to call “weakly aspheric” a functor C ′ → C
which spontaneously I surely would like to call simply “aspheric” –
and as a matter of fact, it turned out I couldn’t force myself to add a
“weakly” before as I decreed I should – or if I did, it was against a very
strong feeling of inappropriateness. That decree precisely is an excellent
illustration of loosing view of where the main emphasis belongs, which
I would like now to make very clear to myself.

In all this work the underlying motivation or inspiration is geometrico-
topological, and expressed technically quite accurately by the notion
of a topos and of maps (or “morphisms”) of topoi, and the wealth of
geometric and algebraic intuitions which have developed around these.
One main point here is that topoi may be viewed as the natural common
generalization of both topological spaces (the conventional support
for so-called topological intuition), and of (small) categories, where
the latter may be viewed as the ideal purely algebraic objects carrying
topological information, including all the conventional homology and
homotopy invariants. This being so, in a context where working with
small categories as “spaces”, the main emphasis in choice of terminology
should surely be in stressing throughout, through the very wording,
the essential identity between situations involving categories, and cor-
responding situations involving topological spaces or topoi. Thus, it
has been about twenty years now that the needs for developing étale
cohomology have told me a handful of basic asphericity and acyclicity
properties for a map of topoi (which apparently have not yet been assim-
ilated by topologists, in the context of maps of topological spaces. . . ),
including the condition for such a map to be aspheric. This was recalled
earlier (page 37), and the corresponding notion for a functor f : C ′→ C
was introduced. The name “aspheric map” of topoi, or of topological
spaces, or of categories, is here a perfectly suggestive one. As the notion
itself is visibly a basic one, there should be no question whatever to
change the name and replace it say by “weakly aspheric”, whereas the
notion is surely quite a strong one, and doesn’t deserve such minimizing
qualification! There is indeed a stronger notion, which in the context
of topological spaces or étale cohomology of schemes reduces to the
previous one in the particular case of a map which is supposed proper.
This condition could be expressed by saying that for any base-change
Y ′ → Y for the map f : X → Y (at least any base-change within the [p. 182]
given context, namely either spaces or schemes with étale topology),
the corresponding map

f ′ : X ′ = X ×Y Y ′→ Y ′

is a weak equivalence, or what amounts to the same, that for any Y ′ the
corresponding map is aspheric. This property, if a name is needed indeed,
would properly be called “universally aspheric”. Thus, in (Cat) a map
f : X → Y will be called either aspheric, or universally aspheric, when
for any base-change of the special type Y/y → Y , namely “localization”
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in the first case, or any base-change whatever Y ′ → Y in the second
case, the corresponding map f ′ is a weak equivalence. On the other
hand, if Y is just the final object e of (Cat), it turns out the two notions
for X (being “aspheric over e” and being “universally aspheric over e”)
coincide, and just mean that X → e is a weak equivalence. In accordance
with the use which has been prevalent for a long time in the context
of spaces, such an object will be call simply an aspheric object – which
means that the corresponding topos is aspheric (namely has “trivial”
cohomology invariants, and hence trivial homotopy invariants of any
kind. . . ).

In case the notion of weak equivalence is replaced by a basic localizer
W ⊂ Fl((Cat)), there is no reason whatever to change anything in this
terminology – except that, if need, we will add the qualifying W, and
speak of W-aspheric or universally W-aspheric maps in (Cat), as well of
W-aspheric objects of (Cat).

What about terminology for maps and objects within a category Aˆ?
Here the emphasis should be of course perfect coherence with the
terminology just used in (Cat). An object F of Aˆ should always be
sensed in terms of the induced topos Aˆ/F ' (A/F )ˆ, or what amounts to
the same, in terms of the corresponding object A/F in (Cat), which will
imply that “F is aspheric” cannot possibly mean anything else but A/F is
aspheric as an object of (Cat); the same if qualifying by a W – F is called
W-aspheric if A/F is a W-aspheric object of (Cat). Similarly for maps –
thus f : F → G will be called a weak equivalence, if the corresponding
map for the induced topoi is a weak equivalence, or equivalently, if the
corresponding map in (Cat)

A/F → A/G

is a weak equivalence. When a W is given, we would say instead (if
confusion may arise) that f is a W-equivalence. The map will be called [p. 183]
aspheric, or W-aspheric, if the corresponding map in (Cat) is. It turns
out that (because of the localization axiom on W) this is equivalent with
f being “universally a W-equivalence”, i.e., f being “universally in WA”,
namely that for any base-change G′→ G in Aˆ, the corresponding map
in Aˆ

f ′ : F ×G G′→ G′

be in WA, i.e., be a W-equivalence. Of course, when this condition is
satisfied, then for any base change, f ′ will be, not only a W-equivalence,
but even W-aspheric – thus we can say that f is “universally W-aspheric”
– where “universally” refers to base change in Aˆ. This of course does not
mean (and here one has to be slightly cautious) that the corresponding
map in (Cat) is universally W-aspheric (which refers to arbitrary base
change in (Cat)). But this apparent incoherence is of no practical impor-
tance as far as terminology goes, as the work “W-aspheric map in Aˆ” is
wholly adequate and sufficient for naming the notion, without any need
to replace it by the more complicated and ambiguous name “universally
W-aspheric”, which therefore will never be used. We even could rule
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out the formal incoherence, by using the words WA-equivalence, WA-
aspheric maps (which are even universally WA-aspheric maps, without
any ambiguity any longer), as well as WA-aspheric objects – replacing
throughout W by WA. In practical terms, I think that when working
consistently with a single given W, we’ll soon enough drop anyhow both
W and WA in the terminology and notations!

A last point which deserves some caution, is that for general A, there
is no implication between the two asphericity properties of an object F
of Aˆ, namely of F being W-aspheric (i.e., the object A/F of (Cat) being
W-aspheric, i.e., the map

(*) A/F → e

in (Cat) being in W), and the property that F → e be W-aspheric, namely
that map

(**) A/F → A/e = A

in (Cat) being aspheric (which also means that the products F×a for a in
A are W-aspheric objects of Aˆ, i.e., the categories A/F×a are W-aspheric,
i.e., the maps

A/F×a → e

in (Cat) are W-aspheric. A third related notion, weaker than the last
one is the property that F → e be a W-equivalence, which also means [p. 184]
that the map (**) in (Cat) is a W-equivalence, i.e., is in W. If A is W-
aspheric, this third notion however reduces to the first one, namely F
to be W-aspheric.

These terminological conventions, in the all-important cases of (Cat)
and categories of the type Aˆ, should be viewed as the basic ones and there
should be no question whatever to requestion them, because say of the
need we are in to devise a terminology, applicable to the general case
of a category M endowed with any saturated set of maps W ⊂ Fl(M)
(which are being thought of as still more general substitutes of “weak
equivalences”). This shows at once that we will have to renounce to the
name of “W -aspheric” which we have used so far, in order to designate
maps which are “universally in W ”; indeed, this contradicts the use we
are making of this word, in the case of (Cat). The whole trouble came
from this inappropriate terminology, which slipped in while thinking
of the Aˆ analogy, and forgetting about the still more basic (Cat)! The
mistake is a course one indeed, and quite easy to correct – we better
refrain altogether from using the word “aspheric” in the context of a general
pair (M , W ), and rather speak of maps which are “universally in W ” or
“universal W-equivalences”, which is indeed more suggestive, and does
not carry any ambiguity. The notion of “W -aspheric map” should be
reserved to the case when, among all possible base-change maps Y ′→ Y
in M , we can sort out some which we may view as “localizing maps”
– all maps I’d think in cases M is a topos, and pretty few ones when
M = (Cat). As for qualifying objects of M , we’ll just be specific in stating
properties of the projection X → eM – such as being a W -equivalence, or
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a universal W -equivalence, or a homotopism for hW (in which case the
name “contractible object” is adequate indeed). It may be convenient,
when we got a W , to denote by

UW ⊂W ⊂ Fl(M)

the corresponding set of maps which are universally in W , a property
which then can be abbreviated into the simple notation

f ∈ UW

or “ f is in UW . It should be noted that UW contains all invertible maps
and is stable by composition, but it need not be saturated, thus f and
f g may be in UW without g being so.

This terminological digression was of a more essential nature, as a [p. 185]
matter of fact, than merely technical. There is still another correction
I want to make with terminology introduced earlier, namely with the
name of a “contractor” I used for intervals endowed with a suitable
composition law (page 120). The name in itself seems to me quite
appropriate, however I have now a notion in reserve which seems
to me a lot more important still, a reinforcement it turns out of the
notion of a strict test category – and which I really would like to call
a contractor. I couldn’t think of any more appropriate name – thus I
better change the previous terminology – sorry! – and call those nice
intervals “multiplicative intervals”, thus referring to the composition
law as a “multiplication” (with left unit and left zero element). The
name which first slipped into the typewriter, when it occurred that a
name was desirable, was not “contractor” by the way but “intersector”,
as I was thinking of the examples I had met so far, when composition
laws were defined in terms of intersections and were idempotent. But
this doesn’t square too well with the example of contractors Hom(X , X ),
when X is an object which has a section – and this example turns out as
equally significant.

One last comment is about the “Čech type” condition L e) on the basic
localizer W, introduced two days ago (page 171). As giving a “crible”
in a category amounts to the same as giving a map

C → 1

(by taking the inverse image of the source-object {0} of 1), and there-
fore giving two such amounts to a map from C into 1× 1, we see that
the situation when C is the union of two cribles is expressed equivalently
by giving a functor from C into the subcategory

C0 =

� b
a

c

�

of 1× 1 (dual to the barycentric subdivision of 1). The asphericity
conditions on C ′, C ′′ and C ′ ∩ C ′′ then just mean that this functor is
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W-aspheric, which by the localization axiom L 4) implies that the functor
itself is a weak equivalence. Thus (by saturation), the conclusion that C
should be W-aspheric, just amounts to the following condition, which
is in a way the “universal” special case when C = C0, and C ′, C ′′ are the
two copies of 1 contained in C0:
L e’) The category C0 above is W-aspheric.

If we now look upon the projection map of C0 upon one factor 1 [p. 186]
(carrying a and b into {0} and c into {1}), we get a functor which is
fibering, and whose fibers are 1 and 0, which are W-aspheric. Hence
the fibration axiom L 5) on W implies the Mayer-Vietoris axiom L e)
(page 171). This argument rather convinces me that the fibration axiom
should be strong enough to imply all Čech-type W-asphericity criteria
which one may devise (provided of course they are reasonable, namely
hold for ordinary weak equivalences!). More and more, it seems that
the basic requirements to make upon a basic localizer, which will imply
maybe all others, are L 1) (saturation), L 3’) (the “standard interval
axiom”, namely 1 is W-aspheric), and the powerful fibration axiom
L 5). This brings to my mind though the condition L a) of page 165,
namely that f ∈W implies π0( f ) bijective, which wasn’t needed really
for the famous “key result” I was then after, and which for this reason
I then was looking at almost as something accessory! I now do feel
though that it is quite an essential requirement, even though we made
no formal use of it (except very incidentally, in the slightly weaker form
L a’), which just means that (HotW) isn’t equivalent to the final category).
I would therefore add it now to the list of really basic requirements on
a “basic localizer”, and rebaptize it therefore as L 6), namely:
L 6) (Connectedness axiom) f ∈W implies π0( f ) bijective, i.e., the

functor π0 : (Cat)→ (Sets) factors through W−1(Cat) = (HotW)
to give rise to a functor

π0 : (HotW)→ (Sets).

This, as was recalled on page 166, is more than needed to imply

hW = h(Cat),

namely the homotopy structure in (Cat) associated to W (in terms of
W-aspheric intervals) is just the canonical homotopy structure (defined
in terms of 0-connected intervals), which is also the homotopy structure
defined by the single “basic” (multiplicative) interval 1.
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11.4.
I forget to clear up still another point of terminology – namely about

“weak homotopy intervals” – it turns out finally we never quite came
around defining what “homotopy intervals” which aren’t weak should
be! The situation is very silly indeed - so henceforth I’ll just drop the [p. 187]
qualificative “weak” – thus from now on a “homotopy interval” (with
respect to a given homotopy structure h in a category M) is just an
interval whose end-point sections δ0,δ1 are homotopic. In case h = hW ,
where W is a given saturated set of arrows in M , the notion we get
is a lot wider than the notion of a homotopy interval (with respect to
W ) introduced earlier (page 132, and which we scarcely ever used it
seems, so much so that I even forgot till this very minute it had been
introduced formally), where we were restricting to intervals for which
I → e is universally in W , i.e., is in UW (we may call such objects simply
UW -objects). Anyhow, it seems that so far, the only property of such
intervals we kept using from the beginning is the one shared with all
homotopy intervals in the wider sense I am now advocating. There is
just one noteworthy extra property which is sometimes of importance,
especially in the characterization of test categories, namely the property
Ker(δ0,δ1) =∅M ; this was referred to earlier by the name “separated
interval” – which however may lead to confusion when for objects of M
we have (independently of homotopy notions) a notion of separation.
Therefore, we better speak about separating intervals as those for which
Ker(δ0,δ1) = ∅M (initial object in M), hence a notion of separating
homotopy interval (with respect to a given homotopy structure h, or
with respect to a given saturated W , giving rise to hW ).



Part IV

Asphericity structures and
canonical modelizers

11.4. [p. 188]

67 A little more pondering and scribbling finally seems to show that the Setting out for the asphericity game
again: variance of the category
(HotA), for arbitrary small category
A and aspheric functors.

real key for an understanding of modelizers isn’t really the notion of
contractibility, but rather the notion of aspheric objects (besides, of
course, the notion of weak equivalence). At the same time it appears
that the notion of an aspheric map in (Cat), more specifically of a W-
aspheric “map” (i.e., a functor between small categories) is a lot more
important than being just a highly expedient technical convenience, as
it has been so far – it is indeed one of the basic notions of the theory of
modelizers we got into. As a matter of fact, I should have known this
for a number of weeks already, ever since I did some scribbling about
the plausible notion of “morphism” between test-categories (as well as
their weak and strong variants), and readily convinced myself that the
natural “morphisms” here were nothing else but the aspheric functors
between those categories. I kind of forgot about this, as it didn’t seem
too urgent to start moving around the category I was working with.
If I had been a little more systematic in grinding through the usual
functorialities, as soon as a significant notion (such as the various test
notions) appears, I presumably would have hit upon the crucial point
about modelizers and so-called “asphericity structures” a lot sooner,
without going through the long-winded detour of homotopy structures,
and the still extremely special types of test functors suggested by the con-
tractibility assumptions. However, I believe that most of the work I went
through, although irrelevant for the “asphericity story” itself, will still be
useful, especially when it comes to pinpointing the so-called “canonical”
modelizers, whose modelizing structure is intrinsically determined by
the category structure.

First thing now which we’ve to do is to have a closer look at the
meaning of asphericity for a functor between small categories. There is
no reason whatever to put any restrictions on these categories besides
smallness (namely the cardinals of the sets of objects and arrows being

184
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in the “universe” we are implicitly working in, or even more stringently
still, A and B to be in (Cat) namely to be objects of that universe). Thus,
we will not assume A and B to be test categories or the like. We will
be led to consider, for any small category A, the localization of Aˆ with
respect to W-equivalences, which I’ll denote by (HotWA ) or simply (HotA):

(1) (HotWA ) = (HotA) =W−1Aˆ.

These categories, I suspect, are quite interesting in themselves, and they [p. 189]
merit to be understood. Thus, one of Quillen’s results asserts that (at
least for W = W(Cat) = ordinary weak equivalences, but presumably
his arguments will carry over to an arbitrary W) in case A is a product
category × A0, where A0 is any small category and the category
of standard, ordered simplices, then Aˆ is a closed model category
admitting as weak equivalences the set WA; and hence (HotA), the corre- 3.5. This, I quickly became aware, is a

misrepresentation of Quillen’s result – that
“weak equivalences” he introduced are a lot
stronger than WA. I’ll have to come back
upon this soon enough!

sponding “homotopy category”, admits familiar homotopy constructions,
including the two types of Dold-Puppe exact sequences, tied up with
loop- and suspension functors. It is very hard to believe that this should
be a special feature of the category as the multiplying factor – surely
any test category or strict test category instead should do as well. As
we’ll check below, the product of a local test category with any category
A0 is again a local test category, hence a test-category if both factors
are (W-)aspheric. Thus suggests that maybe for any local test category
A, the corresponding Aˆ is a closed model category – but it isn’t even
clear yet if the same doesn’t hold for any small category A whatever!
It’s surely something worth looking at.

As we’ll see presently, it is a tautology more or less that a functor

(1) i : A→ B,

giving rise to a functor

(2) i∗ : Bˆ→ Aˆ

(commuting to all types of direct and inverse limits), induces a functor
on the localizations

i∗ : (HotB)→ (HotA),

provided i is W-aspheric. Thus,

A 7→ (HotA)

can be viewed as a functor with respect to A, provided we take as
“morphisms” between “objects” A the aspheric functors only – i.e., it is a
functor on the subcategory (Cat)W-asph of (Cat), having the same objects
as (Cat), but with maps restricted to be W-aspheric ones.

We’ll denote by
Hot(W) =W−1(Cat)

the homotopy category defined in terms of the basic localizer W. For
any small category A, we get a commutative diagram [p. 190]
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(3)

Aˆ (Cat)

(HotA) (Hot(W))

iA

γA γW or γ

iA ,

we denote by
ϕA = γiA = iAγA : Aˆ→ (Hot(W))

the corresponding composition.
Coming back to the case of a functor i and corresponding i∗ ((1) and

(2)), the functors i∗, iA, iB do not give rise to a commutative triangle,
but to a triangle with commutation morphism λi:

Bˆ Aˆ

(Cat)

i∗

iB iA

λi

,

i.e., for any F in Bˆ, we get a map

(4) λi(F) : iAi∗(F) = A/i∗(F)→ iB(F) = B/F ,

the first hand side of (4), also written simply A/F when there is no
ambiguity for i, can be interpreted as the category of pairs

(a, p), a ∈ Ob A, p : i(a)→ F,

where p is a map in Bˆ, B identified as usual to a full subcategory of Bˆ
(hence i(a) identified with an object of Bˆ). The map λi(F) for fixed F
is of course the functor

(a, p) 7→ (i(a), p).

The topological significance of course is clear: interpreting i as defining
a “map” or morphisms of the corresponding topoi Aˆ and Bˆ, having
i∗ as inverse image functor, an object F of Bˆ gives rise to an induced
topos Bˆ/F

'−→ (B/F )ˆ, and the restriction of the “topos above” Aˆ to the
induced Bˆ/F , or equivalently the result of base change Bˆ/F → Bˆ,
gives rise to the induced morphism of topoi Aˆ/i∗(F)→ Bˆ/F , represented
precisely by the map λi(F) in (Cat).

The condition of W-asphericity on i may be expressed in manifold
ways, as properties of either one of the three aspects

λi , i∗, iAi∗

of the situation created by i, with respect to the localizing sets W, WA,
WB, or to the notion of aspheric object. As WA is defined in terms of W
as just the inverse image of the latter by iA, and the same for aspheric
objects, it turns out that each of the conditions we are led to express [p. 191]
on i∗, can be formulated equivalently in terms of the composition iAi∗.
I’ll restrict to formulate these in terms of i∗ only, which will be the form
most adapted to the use we are going to make later of the notion of a
W-aspheric map, when introducing the so-called “asphericity structures”
and corresponding “testing functors”.
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27.5.

68 It has been over six weeks now that I didn’t write down any notes. The Digression on a “new continent”.
reason for this is that I felt the story of asphericity structures and canon-
ical modelizers was going to come now without any problem, almost
as a matter of routine to write it down with some care – therefore, I
started doing some scratchwork on a few questions which had been
around but kept in the background since the beginning, and which were
a lot less clear in my mind. Some reflection was needed anyhow, before
it would make much sense to start writing down anything on these.
Finally, it took longer than expected, as usual – partly because (as usual
too!), a few surprises would turn up on my way. Also, I finally allowed
myself to become distracted by some reflection on the “Lego-Teichmüller
construction game”, and pretty much so during last week. The occasion
was a series of informal talks Y. has been giving in Molino’s seminar,

[Y. = Yves Ladegaillerie]on Thurston’s hyperbolic geometry game and his compactification of
Teichmüller space. Y. was getting interested again in mathematics after
a five year’s interruption. He must have heard about my seminar last
year on “anabelian algebraic geometry” and the “Teichmüller tower”,
and suggested I might drop in to get an idea about Thurston’s work.
This work indeed appears as closely related in various respects to my
sporadic reflections of the last two years, just with a diametrically op-
posed emphasis – mine being on the algebro-geometric and arithmetic
aspects of “moduli” of algebraic curves, his on hyperbolic riemannian
geometry and the simply connected transcendental Teichmüller spaces
(rather than the algebraic modular varieties). The main intersection
appears to be interest in surface surgery and the relation of this to the
Teichmüller modular group. I took the occasion to try and recollect
about the Lego-Teichmüller game, which I had thought of last year as a
plausible, very concrete way for modelizing and visualizing the whole
tower of Teichmüller groupoids Tg,ν and the main operations among
these, especially the “cutting” and “gluing” operations. The very infor-
mal talk I gave was mainly intended for Y. as a matter of fact, and it was [p. 192]
an agreeable surprise to notice that the message this time was getting
through. For the fiver or six years since my attention became attracted
by the fascinating melting-pot of key structures in geometry, topology,
arithmetic, discrete and algebraic groups, intertwining tightly in a kind
of very basic Galois-Teichmüller theory, Y. has been the very first person
I met so far to have a feeling for (a not yet dulled instinct I might say, for
sensing) the extraordinary riches opening up here for investigation. The
series of talks I had given in a tentative seminar last year had turned
short, by lack of any active interest and participation of anyone among
the handful of mere listeners. And the two or three occasions I had the
years before to tell about the matter of two-dimensional maps (“cartes”)
and their amazing algebro-arithmetic implications, to a few highbrow
colleagues with incomparably wider background and know-how than
anyone around here, I met with polite interest, or polite indifference
which is the same. As there was nobody around anyhow to take any
interest the these juicy greenlands, nobody would care to see, because
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there was no text-book nor any official seminar notes to prove they
existed, after a few years I finally set off myself for a preliminary voyage.

I thought it was going to take me a week or two to tour it and kind
of recense resources. It took me five months instead of intensive work,

[“recense” could be translated as
“survey”]

and two impressive heaps of notes (baptized “La Longue Marche à
travers la théorie de Galois”), to get a first, approximative grasp of
some of the main structures and relationships involved. The main
emphasis was (still is) on an understanding of the action of profinite
Galois-groups (foremost among which GalQ/Q and the subgroups of
finite index) on non-commutative profinite fundamental groups, and
primarily on fundamental groups of algebraic curves – increasingly too
on those of modular varieties (more accurately, modular multiplicities)
for such curves – the profinite completions of the Teichmüller group.
The voyage was the most rewarding and exciting I had in mathematics
so far – and still it became very clear that it was just like a first glimpse
upon a wholly new landscape – one landscape surely among countless
others of a continent unknown, eager to be discovered.

This was in the first half of the year 1981 – just two years ago, it turns
out, but it look almost infinitely remote, because such a lot of things took
place since. Looking back, it turns out there have been since roughly
four main alternating periods of reflection, one period of reflection
on personal matters alternating with one on mathematics. The next
mathematical reflection started with a long digression on tame topology
and the “déployment” (“unfolding”) of stratified structures, as a leading [p. 193]
thread towards a heuristic understanding of the natural stratification of
the Mumford-Deligne compactifications of modular multiplicities Mg,ν
(for curves of genus g endowed with ν points). This then led to the
“anabelian seminar” which turned short, last Spring. Then a month or
two sicknees, intensive meditation for three or four months, a few more
months for settling some important personal matter; and now, since
February, another mathematical reflection started.

I am unable to tell the meaning of this alternation of periods of
meditation on personal matters and periods of mathematical reflection,
which has been going through my life for the last seven years, more and
more, very much like the unceasing up and down of waves, or like a
steady breathing going through my life, without any attempt any longer
of controlling it one way or the other. One common moving force surely
is the inborn curiosity – a thirst for getting acquainted with the juicy
things of the inexhaustible world, whether they be the breathing body of
the beloved, or the evasive substance of one’s own life, or the much less
evasive substance of mathematical structure and their delicate interplay.
This thirst in itself is of a nature quite different of the ego’s – it is the
thirst of life to know about itself, a primal creative force which, one
suspects, has been around forever, long before a human ego – a bundle
mainly of fears, of inhibitions and self-deceptions – came into being.
Still, I am aware that the ego is strongly involved in the particular way in
which the creative force expresses itself, in my own life or anyone else’s
(when this force is allowed to come into play at all. . . ). The motivations
behind any strong energy investment, and more particularly so when
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it is an activity attached with any kind of social status or prestige, are
a lot more complex and ego-driven than one generally cares to admit.
True, ambition by itself is powerless for discovering or understanding
or perceiving anything substantial whatever, neither a mathematical
relationship nor the perfume of a flower. In moments of work and of
discovery, in any creative moments in life, as a matter of fact, ambition
is absent; the Artisan is a keen interest, which is just one of the manifold
aspect of love. What however pushes us so relentlessly to work again,
and so often causes our life and passion gradually to dry off and become
insensitive, even to the kindred passion of a follow-being, or to the
unsuspected beauties and mysteries of the very field we are supposed
to be plowing – this force is neither love nor keen interest for the things
and beings in this world. It is interesting enough though, and surely
deserves a close look!

I thought I was starting a retrospective of six weeks of scratchwork on [p. 194]
homotopical algebra – and it turns out to be a (very) short retrospective
rather of the up-and-down movement of my mathematical interests and
investments during the last years. Doubtless, the very strongest attrac-
tion, the greatest fascination goes with the “new world” of anabelian
algebraic geometry. It may seem strange that instead, I am indulging in
this lengthy digression on homotopical algebra, which is almost wholly
irrelevant I feel for the Galois-Teichmüller story. The reason is surely an
inner reluctance, an unreadiness to embark upon a long-term voyage,
well knowing that it is so enticing that I may well be caught in this
game for a number of years – not doing anything else day and night
than making love with mathematics, and maybe sleeping and eating
now and then. I have gone through this a number of times, and at
times I thought I was through. Finally, I came to admit and to accept,
two years ago, I was not through yet – this was during the months of
meditation after the “long march through Galois theory” – which had
been, too, a wholly unexpected fit of mathematical passion, not to say
frenzy. And during the last weeks, just reflecting a little here and there
upon the Teichmüller-Lego game and its arithmetical implications, I let
myself be caught again by this fascination – it is becoming kind of clear
now that I am going to finish writing up those notes on algebra, almost
like some homework that has got to be done (anyhow I like to finish
when I started something) – and as soon as I’m through with the notes,
back to geometry in the long last! Also, the idea is in the air for the
last few months – since I decided to publish these informal notes on
stacks or whatever it’ll turn out to be – that I may well go on the same
way, writing up and publishing informal notes on other topics, including
tame topology and anabelian algebraic geometry. In contrast to the
present notes, I got heaps of scratchwork done on these in the years
before – in this respect time is even riper for me to ramble “publicly”
than on stacks and homotopy theory!

From Y. who looked through a lot of literature on the subject, it
strikes me (agreeably of course) that nobody yet hit upon “the” natural
presentation of the Teichmüller groupoids, which kind of imposes itself
quite forcibly in the set-up I let myself be guided by. Technically speaking



§69 Digression on six weeks’ scratchwork: derivators, and . . . 190

(and this will rejoice Ronnie Brown I’m sure!), I suspect one main
reason why this is so, is that people are accustomed to working with
fundamental groups and generators and relations for these and stick to
it, even in contexts when this is wholly inadequate, namely when you
get a clear description by generators and relations only when working [p. 195]
simultaneously with a whole bunch of base-points chosen with case –
or equivalently, working in the algebraic context of groupoids, rather
than groups. Choosing paths for connecting the base-points natural
to the situation to just one among them, and reducing the groupoid
to a single group, will then hopelessly destroy the structure and inner
symmetries of the situation, and result in a mess of generators and
relations no-one dares to write down, because everyone feels they won’t
be of any use whatever, and just confuse the picture rather than clarify
it. I have known such perplexity myself a long time ago, namely in
van Kampen-type situations, whose only understandable formulation
is in terms of (amalgamated sums of) groupoids. Still, standing habits
of thought are very strong, and during the long march through Galois
theory, two years ago, it took me weeks and months trying to formulate
everything in terms of groups or “exterior groups” (i.e., groups “up to
inner automorphism”), and finally learning the lesson and letting myself
be convinced progressively, not to say reluctantly, that groupoids only
would fit nicely. Another “technical point” of course is the basic fact
(and the wealth of intuitions accompanying it) that the Teichmüller
groups are fundamental groups indeed – a fact ignored it seems by most
geometers, because the natural “spaces” they are fundamental groups
of are not topological spaces, but the modular “multiplicities” Mg,ν –
namely topoi! The “points” of these “spaces” are just the structures
being investigated (namely algebraic curves of type (g,ν)), and the
(finite) automorphism groups of these “points” enter into the picture
in a very crucial way. They can be adequately chosen as part of the
system of basic generators for the Teichmüller groupoid Tg,ν. The latter
of course is essentially (up to suitable restriction of base-points) just the
fundamental groupoid of Mg,ν. It is through this interpretation of the
Teichmüller groups or groupoids that it becomes clear that the profinite
Galois group GalQ/Q operates on the profinite completion of these and
of their various variants, and this (it turns out) in a way respecting the
manifold structures and relationships tying them tightly together.

29.5. [p. 196]

69 Before resuming more technical work again, I would like to have a short Digression on six weeks’ scratchwork:
derivators, and integration of homo-
topy types.

retrospective of the last six weeks’ scratchwork, now lying on my desk
as a thickly bunch of scratchnotes, nobody but I could possibly make
any sense of.

The first thing I had on my mind has been there now for nearly
twenty years – ever since it had become clear, in the SGA 5 seminar
on L-functions and apropos the formalism of traces in terms of derived
categories, that Verdier’s set-up of derived categories was insufficient for
formulating adequately some rather evident situations and relationships,
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such as the addition formula for traces, or the multiplicative formula for
determinants. It then became apparent that the derived category of an
abelian category (say) was too coarse an object various respects, that it
had to be complemented by similar “triangulated categories” (such as the
derived category of a suitable category of “triangles” of complexes, or the
whole bunch of derived categories of categories of filtered complexes of
order n with variable n), closely connected to it. Deligne and Illusie had
both set out, independently, to work out some set-up meeting the most
urgent requirements (Illusie’s treatment in terms of filtered complexes
was written down and published in his thesis six years later (Springer
Lecture Notes No

¯ 239)). While adequate for the main tasks then at
[Illusie 1971, 1972]hand, neither treatment was really wholly satisfactory to my taste. One

main feature I believe making me feel uncomfortable, was that the
extra categories which had to be introduced, to round up somewhat a
stripped-and-naked triangulated category, were triangulated categories
in their own right, in Verdier’s sense, but remaining nearly as stripped
by themselves as the initial triangulated category they were intended to
provide clothing for. In other words, there was a lack of inner stability
in the formalism, making it appear as very much provisional still. Also,
while interested in associating to an abelian category a handy sequence
of “filtered derived categories”, Illusie made no attempt to pin down
what exactly the inner structure of the object he had arrived at was
– unlike Verdier, who had introduced, alongside with the notion of a
derived category of an abelian category, a general notion of triangulated
categories, into which these derived categories would fit. The obvious
idea which was in my head by then for avoiding such shortcomings,
was that an abelian category A gave rise, not only to the single usual
derived category D(A) of Verdier, but also, for every type of diagrams, [p. 197]
to the derived category of the abelian category of all A-valued diagrams
of this type. In precise terms, for any small category I , we get the
category D(Hom(I ,A)), depending functorially in a contravariant way
on I . Rewriting this category DA(I) say, the idea was to consider

(*) I 7→ DA(I),

possibly with I suitably restricted (for instance to finite categories, or to
finite ordered sets, corresponding to finite commutative diagrams), as
embodying the “full” triangulated structure defined by A. This of course
at once raises a number of questions, such as recovering the usual
triangulated structure of D(A) = DA(e) (e the final object of (Cat))
in terms of (*), and pinning down too the relevant formal properties
(and possibly even extra structure) one had to assume on (*). I had
never so far taken the time to sit down and play around some and
see how this goes through, expecting that surely someone else would
do it some day and I would be informed – but apparently in the last
eighteen years nobody ever was interested. Also, it had been rather
clear from the start that Verdier’s constructions could be adapted and
did make sense for non-commutative homotopy set-ups, which was
also apparent in between the lines in Gabriel-Zisman’s book on the

[Gabriel and Zisman 1967]foundations of homotopy theory, and a lot more explicitly in Quillen’s
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axiomatization of homotopical algebra. This axiomatization I found
very appealing indeed – and right now still his little book is my most

[Quillen 1967]congenial and main source of information on foundational matters of
homotopical algebra. I remember though my being a little disappointed
at Quillen’s not caring either to pursue the matter of what exactly a “non-
commutative triangulated category structure” (of the type he was getting
from his model categories) was, just contenting himself to mumble a few
words about existence of “higher structure” (then just the Dold-Puppe
sequences), which (he implies) need to be understood. I felt of course
that presumably the variance formalism (*) should furnish any kind of
“higher” structure one was looking for, but it wasn’t really my business
to check.

It still isn’t, however I did some homework on (*) – it was the first
thing indeed I looked at in these six weeks, and some main features
came out very readily indeed. It turns out that the main formal variance
property to demand on (*), presumably even the only one, is that for a
given map f : I → J on the indexing categories of diagram-types I and
J , the corresponding functor

f ∗ : D(J)→ D(I)

should have both a left and a right adjoint, say f! and f∗. In case J = e, the
two functors we get from D(I) to D(e) =D (the “stripped” triangulated [p. 198]
category) can be viewed as a substitute for taking, respectively, direct
and inverse limits in D (for a system of objects indexed by I), which in
the usual sense don’t generally exist in D (except just finite sums and
products). These operations admit as important special cases, when I is
either one of the two mutually dual categories

(**)

b

a

c

or

b

a

c

,

the operation of (binary) amalgamated sums or fibered products, and
hence also of taking “cofibers” and “fibers” of maps, in the sense intro-
duced by Cartan-Serre in homotopy theory about thirty years ago. I also
checked that the two mutually dual Dold-Puppe sequences follow quite
formally from the set-up. One just has to fit in a suitable extra axiom to
ensure the usual exactness properties for these sequences.

Except in the commutative case when starting with an abelian category
as above, I did not check however that there is indeed such “higher
variance structure” in the usual cases, when a typical “triangulated
category” in some sense or other turns up, for instance from a model
category in Quillen’s sense. What I did check though in this last case,
under a mild additional assumption which seems verified in all practical
cases is the existence of the operation f! =

∫

I (“integration”) and f∗ =
∏

I (cointegration) for the special case f : I → e, when I is either of
the two categories (**) above. I expect that working some more, one
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should get under the same assumptions at least the existence of f! and
f∗ for any map f : I → J between finite ordered sets.

My main interest of course at present is in the category (Hot) itself,
more generally in Hot(W) =W−1(Cat), where W is a “basic localizer”.
More generally, if (M , W ) is any modelizer say, the natural thing to do,
paraphrasing (*), is for any indexing category I to endow Hom(I , M)
with the set of arrows WI defined by componentwise belonging to W ,
and to define

D(M ,W )(I) = D(I)
def
= W−1

I Hom(I , M),

with the obvious contravariant dependence on I , denoted by f ∗ for
f : I → J . The question then arises as to the existence of left and right
adjoints, f! and f∗. In case we take M = (Cat), the existence of f! goes
through with amazing smoothness: interpreting a “model” object of
Hom(I , (Cat)), namely a functor

I → (Cat)

in terms of a cofibered category X over I [p. 199]

p : X → I ,

and assuming for simplicity f cofibering too, f!(X ) is just X itself, the
total category of the cofibering, viewed as a (cofibered) category over
J by using the functor g = f ◦ p! This applies for instance when J is
the final category, and yields the operation of “integration of homotopy
types”

∫

I , in terms of the total category of a cofibered category over I .
If we want to rid ourselves from any extra assumption on f , we can
describe D(I) (up to equivalence) in terms of the category (Cat)/I of
categories X over I (not necessarily cofibered over I), WI being replaced
by the corresponding notion of “W-equivalences relative to I” for maps
u : X → Y of objects of (Cat) over I , by which we mean a map u such
that the localized maps

u/i : X/i → Y/i

are in W, for any i in I . Regarding now any category X over I as a
category over J by means of f ◦ p, this is clearly compatible with the
relative weak equivalences WI and WJ , and yields by localization the
looked-for functor f!.

This amazingly simple construction and interpretation of the basic f!
and

∫

I operations is one main reward, it appears, for working with the
“basic localizer” (Cat), which in this occurrence, as in the whole test-
and asphericity story, quite evidently deserves its name. It has turned
out since that in some other respects – for instance, paradoxically when
it comes to the question of the relationship between this lofty integra-
tion operation, and true honest amalgamated sums – the modelizers
Aˆ associated to test categories A (namely the so-called “elementary
modelizers”) are more convenient tools than (Cat). Thus, it appears
very doubtful still that (Cat) is a “model category” in Quillen’s sense,
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in any reasonable way (with W of course as the set of “weak equiva-
lences”). I finally got the feeling that a good mastery of the basic aspects
of homotopy types and of basic relationships among these, will require
mainly great “aisance” in playing around with a number of available

[“aisance” here could be “ease” or
“fluency”]

descriptions of homotopy types by models, no one among which (not
even by models in (Cat), and surely still less by semisimplicial structures)
being adequate for replacing all others.

As for the f∗ and cointegration
∏

I operations among the categories
D(I), except in the very special case noted above (corresponding to
fibered products), I did not hit upon any ready-to-use candidate for it,
and I doubt there is any. I do believe the operations exist indeed, and
I even have in mind a rather general condition on a pair (M , W ) with [p. 200]
W ⊂ Fl(M), for both basic operations f! and f∗ to exist between the
corresponding categories D(M ,W )(I) – but to establish this expectation
may require a good amount of work. I’ll come back upon these matters
in due course.

There arises of course the question of giving a suitable name to the
structure I → D(I) I arrived at, which seems to embody at least some
main features of a satisfactory notion of a “triangulated category” (not
necessarily commutative), gradually emerging from darkness. I have
thought of calling such a structure a “derivator”, with the implication
that its main function is to furnish us with a somehow “complete” bunch
(in terms of a rounded-up self-contained formalism) of categories D(I),
which are being looked at as “derived categories” in some sense or other.
The only way I know of for constructing such a derivator, is as above in
terms of a pair (M , W ), submitted to suitable conditions for ensuring
existence of f! and f∗, at least when f is any map between finite ordered
sets. We may look upon D(I) as a refinement and substitute for the
notion of family of objects of D(e) = D0 indexed by I , and the integration
and cointegration operations from D(I) to D0 as substitutes (in terms of
these finer objects) of direct and inverse limits in D0. When tempted to
think of these latter operations (with values in D0) as the basic structures
involved, one cannot help though looking for the same kind of structure
on any one of these subsidiary categories D(I), as these are being thought
of as derived categories in their own right. It then appears at once that
the “more refined substitutes” for J -indexed systems of objects of D(I)
are just the objects of D(I × J), and the corresponding integration and
cointegration operations

D(I × J)→ D(I)

are nothing but p! and p∗, where p : I × J → I is the projection. Thus,
one is inevitably conducted to look at operations f! and f∗ instead of
merely integration and cointegration – thus providing for the “inner
stability” of the structure described, as I had been looking for from the
very start.

The notion of integration of homotopy types appears here as a natural
by-product of an attempt to grasp the “full structure” of a triangulated
category. However, I had been feeling the need for such a notion of
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integration of homotopy types for about one or two years already (with-
out any clear idea yet that this operation should be one out of two [p. 201]
main ingredients of a (by then still very misty) notion of a triangulated
category of sorts). This feeling arose from my ponderings on stratified
structures and the “screwing together” of such structures in terms of
simple building blocks (essentially, various types of “tubes” associated
to such structures, related to each other by various proper maps which
are either inclusion or – in the equisingular case at any rate – fiber
maps). This “screwing together operation” could be expressed as being
a direct limit of a certain finite system of spaces. In the cases I was most
interested in (namely the Mumford-Deligne compactifications M ĝ,ν of
the modular multiplicities Mg,ν), these spaces or “tubes” have exceed-
ingly simple homotopy types – they are just K(π, 1)-spaces, where each
π is a Teichmüller-type discrete group (practically, a product of usual
Teichmüller groups). It then occurred to me that the whole homotopy
type of M ĝ,ν, or of any locally closed union of strata, or (more generally
still) of “the” tubular neighborhood of such a union in any larger one,
etc. – that all these homotopy types should be expressible in terms of
the given system of spaces, and more accurately still, just in terms of
the corresponding system of fundamental groupoids (embodying their
homotopy types). In this situation, what I was mainly out for, was
precisely an accurate and workable description of this direct system
of groupoids (which could be viewed as just one section of the whole
“Teichmüller tower” of Teichmüller groupoids. . . ). Thus, it was a re-
warding extra feature of the situation (by then just an expectation, as a
matter of fact), that such a description should at the same time yield a
“purely algebraic” description of the homotopy types of all the spaces
(rather, multiplicities, to be wholly accurate) which I could think of
in terms of the natural stratification of M ĝ,ν. There was an awareness
that this operation on homotopy types could not be described simply
in terms of a functor I → (Hot), where I is the indexing category, that
a functor i 7→ X i : I → M (where M is some model category such as
(Spaces) or (Cat)) should be available in order to define an “integrated”
homotopy type

∫

X i . This justified feeling got somewhat blurred lately,
for a little while, by the definitely unreasonable expectation that finite
limits should exist in (Hot) after all, why not! It’s enough to have a
look though (which probably I did years ago and then forgot in the
meanwhile) to make sure they don’t. . .

Whether or not this notion of “integration of homotopy types” is more
or less well known already under some name or other, isn’t quite clear
to me. It isn’t familiar to Ronnie Brown visibly, but it seems he heard
about such a kind of thing, without his being specific about it. It was the [p. 202]
episodic correspondence with him which finally pushed me last January
to sit down for an afternoon and try to figure out what there actually
was, in a lengthy and somewhat rambling letter to Illusie (who doesn’t
seem to have heard at all about such operations). This preliminary
reflection proved quite useful lately, I’ll have to come back anyhow upon
some of the specific features of integration of homotopy types later, and
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there is not much point dwelling on it any longer at present.

70 This was a (finally somewhat length!) review of ponderings which didn’t Digression on scratchwork (2): co-
homological properties of maps in
(Cat) and in Aˆ. Does any topos ad-
mit a “dual” topos? Kan fibrations
rehabilitated.

take me more than just a few days, because it was about things some of
which were on my mind for a long time indeed. It took a lot more work
to try to carry through the standard homotopy constructions, giving rise
to the Dold-Puppe sequences, within the basic modelizer (Cat). Most of
the work arose, it now seems to me, out of a block I got (I couldn’t tell
why) against the Kan-type condition on complexes, so I tried hard to get
along without anything of the sort. I kind of fooled myself into believing
that I was forced to do so, because I was working in an axiomatic set-up
dependent upon the “basic localizer” W, so the Kan condition wouldn’t
be relevant anyhow. The main point was to get, for any map f : X → Y
in (Cat), a factorization

X
i
−→ Z

p
−→ Y,

where p has the property that base-change by p transforms weak equiva-
lences into weak equivalences (visibly a Serre-fibration type condition),
and i satisfies the dual condition with respect to co-base change; and
moreover where either p, or i can be assumed to be in W, i.e., to be a
weak equivalence. (This, by the way, is the extra condition on a pair
(M , W ) I have been referring to above (page 200, for (hopefully) get-
ting f! and f∗ operations.) At present, I do not yet know whether such
factorization always exists for a map in (Cat), without even demanding
that either i or p should be in W.

I first devoted a lot of attention to Serre-type conditions on maps in
(Cat), which turned out quite rewarding – with the impression of arriving
at a coherent and nicely auto-dual picture of cohomology properties of
functors, i.e., maps in (Cat), as far as these were concerned with base
change behavior (and not co-base change). Here I was guided by work
done long ago to get the étale cohomology theory off the ground, and
where the two main theorems achieving this aim were precisely two
theorems of commutation of “higher direct images” Ri g∗ with respect
to base-change by a map h – namely, it is OK when either g is proper,
or h is smooth. It was rather natural then to introduce the notion of [p. 203]
(cohomological) smoothness and (coh.) properness of a map in (Cat),
by the obvious base-change properties. It turned out that these could
be readily characterized by suitable asphericity conditions, which are
formally quite similar to the well-known valuative criterion for a map
of finite type between noetherian schemes to be “universally open”
(which can be viewed as a “purely topological” variant of the notion
of smoothness), resp. “universally closed”, or rather, more stringently,
proper. These conditions, moreover, are trivially satisfied when f : X →
Y turns X into a category over Y which is fibered over Y (i.e., definable
in terms of a contravariant pseudo-functor Y op→ (Cat)), resp. cofibered
over Y (namely, definable in terms of a pseudo-functor Y → (Cat)). If
we call such maps in (Cat) “fibrations” and “cofibrations” (very much
in conflict, alas, with Quillen’s neat set-up of fibrations-cofibrations!),
it turns out that fibrations are smooth, cofibrations are proper. This
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is all the more remarkable, as the notions of fibered and cofibered
categories were introduced with a view upon “large categories”, in
order to pin down some standard properties met in all situations of
“base change” (and later the dual situation of co-base change) – the
main motivation for this being the need to formulate with a minimum
of precision a set-up for “descent techniques” in algebraic geometry.
(These techniques, as well as the cohomological base change theorems,
make visibly a sense too in the context of analytic spaces say, or of
topological spaces, but they don’t seem to have been assimilated yet by
geometers outside of algebraic geometry.) That these typically “general
nonsense” notions should have such precise topological implications
came as a complete surprise! As a consequence, a bifibration (namely a
map which is both a fibration and a cofibration) is smooth and proper
and hence a (cohomological) “Serre fibration”, for instance the sheaves
Ri f∗(F), when F is a constant abelian sheaf on X (i.e., a constant abelian
group object in Xˆ), namely y 7→ Hi(X/y , F), are local systems on Y , i.e.,
factor through the fundamental groupoid of Y .

A greater surprise still was the duality between the notions of properness
and smoothness: just as a map f : X → Y in (Cat) is a cofibration iff the
“dual” map f op : X op → Y op is a fibration, it turns out that f is proper
iff f op is smooth. This was a really startling fact, and it caused me to
wonder, in the context of more general topoi than just those of the type
Xˆ, whether there wasn’t a notion of duality generalizing the relationship

between two topoi Xˆ and Xˇ def
= (X op)ˆ. Indeed, these two categories

of sheaves can be described intrinsically, one in terms of the other, up
to equivalence, by a natural pairing [p. 204]

Xˆ × Xˇ→ (Sets)

commuting componentwise with (small) direct limits, and inducing an
equivalence between either factor with the category of “co-sheaves” on
the other, namely covariant functors to (Sets) commuting with direct
limits. But it isn’t at all clear, starting with an arbitrary topos A say,
whether the category A′ of all cosheaves on A is again a topos, and still
less whether A can be recovered (up to equivalence) in terms of A′ as
the category of all cosheaves on A′.

To come back though to the factorization problem raised above (p.
202), the main trouble here is that, except the case of an isomorphism
i : X ∼−→ Z , I was unable to pin down a single case of a map i in (Cat)
such that co-base change by i transforms weak equivalences (in the
usual sense say) into weak equivalences. One candidate I had in mind,
the so-called “open immersions”, namely functors i : X → Z inducing an
isomorphism between X and a “sieve” (or “crible”) in Z (corresponding
to an open sub-topos of Zˆ), and dually the “closed immersions”, finally
have turned out delusive – a disappointment maybe, but still more a
big relief to find out at last how the score was! Almost immediately in
the wake of this negative result in (Cat), and in close connection with
the fairly well understood

∫

substitute for amalgamated sums in (Cat),
came the big compensation valid in any category Aˆ, namely the fact



§70 Digression on scratchwork (2): cohomological . . . 198

that for a cocartesian square

Y X

Y ′ X ′

i

g f

i′

in Aˆ, where i is a monomorphism, if i (resp. g) is in WA, so is i′ (resp.
f ). This implies that co-base change by a monomorphism in Aˆ transform
weak equivalences into weak equivalences. The common main fact behind
these statements is that for a diagram as above (without assuming i nor
g to be in WA), X ′ can be interpreted up to weak equivalence as the
“integral” of the diagram

Y X

Y ′ ,

more accurately, the natural map in (Cat)

∫ A/Y A/X

A/Y ′
−→ A/X ′

is in W.
The corresponding statement in (Cat) itself, even if i is supposed [p. 205]

to be an open immersion in (Cat) say (or a closed immersion, which
amounts to the same by duality), is definitely false, in other words:
while the modelizer (Cat) allows for a remarkably simple description of
integration of homotopy types, as seen in the previous section, in the
basic case however of an integration

[this integral is set inline in the type-
script]

∫ A/Y A/X

A/Y ′

i

g

(corresponding to “amalgamated sums”), and even when i : Y → X is an
open or closed immersion, this operation does definitely not correspond
to the operation of taking the amalgamated sum X ′ in (Cat). It does
though when X → X ′ is smooth resp. proper, for instance if it is a
fibration resp. a cofibration, and this in fact implies the positive result
in Aˆ noted above. This condition moreover is satisfied if g : Y → Y ′ is
equally an open resp. closed immersion, in which case the situation is
just the one of an ambient X ′, and two open resp. closed subobjects X
and Y ′, with intersection Y . This is a useful result, but wholly insufficient
for the factorization problem we were after in (Cat), with a view of
performing the standard homotopy constructions in (Cat) itself. It may
be true still that if i : Y → X is not only an open or closed immersion,
but a weak equivalence as well, that then i′ : Y ′→ X ′ is equally a weak
equivalence, or what amounts to the same, that X ′ can be identified up
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to weak equivalence with the homotopy integral (which indeed, up to
weak equivalence, just reduces to Y ′); but I have been unable so far
to clear up this matter. If true, this would be quite a useful result, but
still insufficient it seems in order to carry out the standard homotopy
constructions in (Cat) itself.

To sum up, the main drawback of (Cat) as a modelizer is that, except
in very special cases which are just too restricted, amalgamated sums in
(Cat) don’t have a reasonable meaning in terms of homotopy operations
– whereas in a category Aˆ, a topos indeed where therefore amalga-
mated sums have as good exactness properties as if working in (Sets),
these amalgamated sums (for a two-arrow diagram with one arrow a
monomorphism) do have a homotopy-theoretic meaning. This finally
seems to force us, in order to develop some of the basic structure in
Hot(W), to leave the haven of the basic modelizer (Cat), and work in an
elementary modelizer Aˆ instead, where A is some W-test category. This
then brought me back finally to the question whether these modelizers
are closed model categories in Quillen’s sense, when we take of course for
“weak equivalences” WA, and moreover as “cofibrations” (in the sense
of Quillen’s set-up) just the monomorphisms. Relying heavily upon the
result on monomorphisms in Aˆ stated above, it seems to come out that
we do get a closed model category indeed – and even a simplicial model
category, if we are out for this. There is still a cardinality question to
be settles to get the Quillen factorizations in the general case, but this [p. 206]
should not be too serious a difficulty I feel. What however makes me still
feel a little unhappy in all this, is rather that I did not get a direct proof
for an elementary modelizer being a closed model category – I finally
have to make a reduction to the known case of semisimplicial complexes,
settles by Quillen in his notes. This detour looks rather artificial – it is
the first instance, and presumably the last one, where the theory I am
digging out seems to depend on semi-simplicial techniques, techniques
which moreover I don’t really know and am not really eager to swallow.
It’s just a prejudice maybe, a block maybe against the semi-simplicial
approach which I never really liked nor assimilated – but I do have the
feeling that the more refined and specific semi-simplicial techniques
and notions (such as minimal fibrations, used in Quillen’s proof, alas!)
are irrelevant for an understanding of the main structures featuring
homotopy theory and homotopical algebra. As for the notion of a Kan
complex or a Kan fibration – namely just a “fibration” in Quillen’s ax-
iomatic set-up, which I was finally glad to find, “ready for use” – I came
to convince myself at last that it was a basic notion indeed, and it was
no use trying to bypass it at all price. Thus, I took to the opposite,
and tried to pin down a Quillen-type factorization theorem, and his
characteristic seesaw game between right and left lifting properties, in
as great generality as I could manage.
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30.5.

71 The scratchwork done since last month has of course considerably Working program and rambling
questions (group objects as models,
Dold-Puppe theorem. . . ).

cleared up the prospects of my present pre-stacks reflection on ho-
motopy models, on which I unsuspectingly embarked three months ago.
I would like to sketch a provisional working program for the notes still
ahead.

A) Write down at last the story of asphericity structures and canonical
modelizers, as I was about to when I interrupted the notes to do my
scratchwork.

B) Study the basic modelizer (Cat), and the common properties of
elementary modelizers Aˆ, with a main emphasis upon base change
and co-base change properties, and upon Quillen-type factorization
questions. Here it will be useful to dwell somewhat on the “homotopy
integral” variant of taking amalgamated sums in (Cat), on the analogous
constructions for topoi, and how these compare to the usual amalga-
mated sums, including the interesting case of topological spaces. It
turns out that the homotopy integral variant for amalgamated sums is [p. 207]
essentially characterized by a Mayer-Vietoris type long exact sequence
for cohomology, and the cases when the homotopy construction turns
out to be equivalent to usual amalgamated sums, are just those when
such a Mayer-Vietoris sequence exists for the latter. An interesting and
typical case is for topological spaces, taking the amalgamated sum for a
diagram

Y X

Y ′

i

g

,

when i is a closed immersion and g is proper (which is also the basic
type of amalgamations which occur in the “unfolding” of stratified
structures).

In the course of the last weeks’ reflections, there has taken place also
a substantial clarification concerning the relevant properties of a basic
localizer W and how most of these, including strong saturation of W,
follow from just the first three (a question which kept turning up like a
nuisance throughout the notes!). This should be among the very first
things to write down in this part of the reflections, as W after all is the
one axiomatic data upon which the whole set-up depends.

C) A reflection on the main common features of the various contexts
met with so far having a “homotopy theory” flavor, with a hope to
work out at least some of the main features of an all-encompassing new
structure, along the lines of Verdier’s (commutative) theory of derived
categories and triangulated categories. The basic idea here, for the
time being, seems to be the notion of a derivator, which should account
for all the kind of structure dealt with in Verdier’s set-up, as well as in
Deligne’s and Illusie’s later elaborations. There seems to be however
some important extra features which are not accounted for by the mere
derivator, such as external Hom’s with values in (Hot) or some closely
related category, and the formalism of basic invariants (such as πi , Hi
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or Hi), with values in suitable categories (often abelian ones), which
among others allow to check weak equivalence. Such features seem
to be invariably around in all cases I know of, and they need to be
understood I feel.

Coming back to (Hot) itself and to modelizers (M , W ) giving rise
to it, there is the puzzling question about when exactly can we assert
that taking group objects of M and weak equivalences between these
(namely group-object homomorphisms which are also in W ), we get by
localization a category equivalent to the category of pointed 0-connected
homotopy types. This is a well-known basic fact when we take as
models semisimplicial complexes or (I guess) topological spaces – a fact
closely connected to the game of associating to any topological group [p. 208]
its “classifying space”, defined “up to homotopy”. I suspect the same
should hold in any elementary modelizer Aˆ, A a test category, at least in
the “strict” case, namely when Aˆ is totally aspheric, i.e., the canonical
functor Aˆ → (Hot) commutes to finite products. The corresponding
statement for the basic localizer (Cat) itself is definitely false. Group
objects in (Cat) are indeed very interesting and well-known beings
(introduced, I understand from Ronnie Brown, by Henry Whitehead long
time ago, under the somewhat misleading name of “crossed modules”),
yet they embody not arbitrary pointed 0-connected homotopy types
X , but merely those for which πi(X ) = 0 for i > 2. Thus, we get only
2-truncated homotopy types – and presumably, starting with n−Cat
instead of (Cat) as a modelizer, we then should get (n+ 1)-truncated
homotopy types. This ties in with the observation that taking group
objects either in (Cat), or in the full subcategory (Groupoids) of the
latter, amounts to the same – and similarly surely for (n−Cat); on the
other hand it has been kind of clear from the very beginning of this
reflection that at any finite level, groupoids and n-groupoids (n finite)
will only yield truncated homotopy types.

A related intriguing question is when exactly does a modelizer (M , W )
give rise to a Dold-Puppe theorem – namely when do we get an actual
equivalence between the category of abelian group objects of M , and the
category of chain complexes of abelian groups? The original statement
was in case M = ˆ = semisimplicial complexes, and doubtlessly it was
one main impetus for the sudden invasion of homotopy and cohomology
by semisimplicial calculus – so much so it seems that for many people,
“homotopy” has become synonymous to “semisimplicial algebra”. The
impression that semi-simplicial complexes is the God-given ground for
doing homotopy and even cohomology, comes out rather strong also in
Quillen’s foundational notes, and in Illusie’s thesis. Still, there are too
some cubical theory chaps I heard, who surely must have noticed long
ago that the Dold-Puppe theorem is valid equally for cubical complexes
(I could hardly imagine that it possibly couldn’t). Now it turns out that
semisimplicial and cubical complexes are part of a trilogy, together with
so-called “hemispherical complexes”, which look at lot simpler still, with

[I guess today we call these “globu-
lar sets”]

just two boundary operators and one degeneracy in each dimension.
They can be viewed as embodying the “primitive structure” of an ∞-
groupoid, the boundary operators being the “source” and “target” maps,
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and the degeneracy the map associating to any i-object the correspond-
ing “identity”. I hit upon this structure among the first examples of
test categories and elementary modelizers, and have been told since
by Ronnie Brown that he has already known for a while these models,
under the similar name of “globular complexes”). Roughly speaking, [p. 209]
it can be said that the three types of complexes correspond to three
“series” of regular cellular subdivisions of all spheres Sn where the two-
dimensional pieces are respectively (by increasing order of “intricacy”)
bigons, triangles, and squares. It shouldn’t be hard to show these are
the only series of regular cellular subdivisions of all spheres (one in
each dimension) such that for any cell of such subdivision, the induced
subdivision of the bounding sphere should still be in the series (up to
isomorphism). The existence moreover of suitable “degeneracy” maps,
which merit a careful general definition in this context of cellular subdi-
visions of spheres, is an important common extra feature of the three
basic contexts, whose exact significance I have not quite understood
still. To come back to Dold-Puppe, sure enough it is still valid in the
hemispherical context. Writing down the equivalence of categories in
explicit terms comes out with baffling simplicity. I wrote it down without
even looking for it, in a letter to Ronnie Brown, while explaining in a
PS the “yoga” of associating to a chain complex of abelian groups an∞-groupoid with additive structure (a so-called “Picard category” but
within the context of ∞-categories or ∞-groupoids, rather than usual
categories).

On the other hand, taking multicomplexes instead of simple ones,
which still can be interpreted as working in a category Aˆ for a suitable
test category A (namely, a product category of categories of the types

, , and ), it is clear that Dold-Puppe’s theorem as originally stated
is no longer true in these: in such case the category of abelian group
objects of Aˆ is equivalent to a category of multiple chain complexes.
This shows that definitely, among all possible elementary modelizers,
the three in our trilogy are distinguished indeed, as giving rise to a
Dold-Puppe theorem. A thorough understanding of this theorem would
imply, I feel, an understanding of which exactly are the modelizers,
or elementary modelizers at any rate giving rise to such a theorem. I
wouldn’t be too surprised if it turned out that the three we got are the
only ones, up to equivalence.

Another common feature of these modelizers, is that they allow for
a sweeping computational description of cohomology (or homology)
invariants in terms of the so-called “boundary operations”. This is visibly
connected to the (strongly intuitive) tie between these kinds of models,
and cellular subdivisions of spheres. However, at this level (unlike the
Dold-Puppe story) the regularity feature of the cellular subdivisions
we got, and the fact that we allow for just one (up to isomorphism)
in each dimension, seems to be irrelevant. It might be worth while [p. 210]
to write down with care what exactly is needed, in order to define, in
terms of a bunch of cellular structures of spheres, a corresponding test-
category (hopefully even a strict one), and a way of computing in terms
of boundary operators the cohomology of the corresponding models.
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The more delicate point here may be that if we really want to get an
actual test category, not just a weak one, we should have “enough”
degeneracy maps between our cellular structures, which might well
prove an extremely stringent requirement. Again, it will be interesting
if we can meet it otherwise than just sticking to our trilogy.

D) “Back to topoi”. They have been my main intuitive leading thread
in the reflections so far, but have remained somewhat implicit most
times. When working with categories X as models for homotopy types,
we have been thinking in reality of the associated topos Xˆ. In the same
way, when relativizing over an object I of (Cat) the construction of (Hot)
as a derived category, namely working with categories over I as models
for a derived category D(I), the leading intuition again has been to look
at X over I as the topos Xˆ over Iˆ. This gives strong suggestions as to
defining D(I) not only in terms of a given category I , but also in terms
of an arbitrary topos T as well, standing for Iˆ, and look to what extent
the f ∗, f!, f ∗ formalism of derivators extends to the case when f is a
“map” between topoi. The definition of some D(T ) for a topos T can be
given in a number of ways it seems. As far as I know, the only one which
has been written and used so far consists in taking a suitable derived
category of the category of semisimplicial objects of T . this is done in
Illusie’s thesis, where there is no mention though of f! and f∗ functors
– which, maybe, should rather be written L f! and Rf∗, suggesting they
are respectively left and right derived functors of the more familiar f!
and f∗ functors for sheaves (the left and right adjoints of the inverse
image functor f ∗ for sheaves of sets). One would expect, at best, L f1 to
exist when f! itself does, namely when f ∗ commutes not only with finite
inverse limits, but with infinite products as well. As for Rf∗, whereas
there is no problem for the existence of f∗ itself, already in the case of
a morphism of topoi coming from a map in (Cat), a map say between
finite ordered sets, the existence of Rf∗ has still to be established. Thus,
presumably I’ll content myself with writing down and comparing a few
tentative definitions of D(T ) and make some reasonable guesses as to
its variances. Intuitively, the objects of D(T ) may be viewed as “sheaves
of homotopy types over T”, or “relative homotopy types over T”, or
“non-commutative chain complexes over T up to quasi-isomorphism”.
As in the case when T is the final (one point) topos, D(T) is just the [p. 211]
homotopy category (Hot), there must be of course a vast variety of ways
of defining D(T ) in terms of model categories, and I would like to review
some which seem significant. In fact, one cannot help but looking at
two mutually dual groups of models categories, giving rise to (at least)
two definitely non-equivalent derived categories D(T) and D′(T) say,
which, in case T = Iˆ, would correspond to D(I) and D(Iop). A typical
model category for the former is made up with Illusie’s semisimplicial
sheaves; a typical model category for D′(T ), on the other hand, should
be made up with 1-stacks on T (in Giraud’s sense), for a suitable notion
of weak equivalence between these.

Maybe the most natural models of all, in this context, for “relative
homotopy types over the topos T”, should be topoi X over T (general-
izing the categories over an “indexing category” I). The only trouble



§71 Working program and rambling questions (group objects . . . 204

with this point of view though is that the best we can hope for, in term’s
of Illusie’s D(T ) say, is that a topos X over T gives rise to a pro-object
of D(T), which needs not come from an object of D(T) itself, i.e., is
not necessarily “essentially constant”. This brings us back to the sim-
pler and still more basic question of associating a pro-homotopy type,
namely a pro-object of (Hot), to any topos X – namely back to the Čech-
Verdier-Artin-Mazur construction. This has been handled so far using
the semisimplicial models for (Hot), I suspect though that using (Cat)
as a modelizer will give a more elegant treatment, as already suggested
earlier. Whichever way we choose to get the basic functor

Topoi→ Pro (Hot),

this functor will allow us, given a basic localizer W, to define W-
equivalences between topoi as maps which become isomorphisms under
the composition of the basic functor above, and the canonical functor

Pro (Hot)→ Pro(Hot(W))

deduced from the localization functor

(Hot)→ (Hot(W)).

(It turns out, using Quillen’s theory, that usual weak equivalences is
indeed the finest of all possible basic localizers W, hence Hot(W) is
indeed a localization of (Hot).)

Maybe it is not too unreasonable to expect that all, or most homotopy
constructions, involving a topos T , can be expressed replacing T by its
image in Pro (Hot), or in Pro(Hot(W)) if the construction are relative to
a given basic localizer W. The very first example one would like to look [p. 212]
up in this respect, is surely D(T ), defined say à la Illusie.

In the present context, the main point of the property of local aspheric-
ity for a topos (cf. section 35) is that the corresponding prohomotopy
type is essentially constant, i.e., the topos defines an actual homotopy
type. Thus, locally aspheric topoi and weak equivalences between these
should be eligible models for homotopy types (more accurately, make
up a modelizer), just as the basic modelizer (Cat) contained in it. The
corresponding statements, when introducing a basic localizer W, should
be equally valid. One might expect, too, a relative variant for the notion
of local asphericity or W-asphericity, in case of a topos X over a given
base topos T (which we may have to suppose already locally aspheric),
with the implication that the corresponding object of Pro(D(T )) should
be again essentially constant.

A last question I would like to mention here is about the meaning of
the notion of a so-called “modelizing topos”, introduced in a somewhat
formal way in section 35, as a locally aspheric and aspheric topos T
such that the Lawvere element LT of T is aspheric over the final object.
(We assumed at first, moreover, that T be even totally aspheric, but soon
after the point of view and terminology shifted a little and the totally
aspheric case was referred to as a strictly modelizing topos, cf. page 68.
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As made clear there, the expectation suggested by the terminology is of
course that such a topos should indeed be a modelizer, when endowed
with the usual notion of weak equivalence. This sill makes sense and
seem plausible enough, when usual weak equivalence is replaced by
the weaker notion defined in terms of an arbitrary basic localizer W. A
related question is to get a feeling for how restrictive the conditions put
on a modelizing topos are. It is clear that nearly all topoi met with in
practice, including those associated to the more common topological
spaces (such as locally contractible ones) are locally aspheric – but what
about the condition on the Lawvere element? For instance, taking a
topological space admitting a finite triangulation and which is aspheric,
i.e., contractible, is the corresponding topos modelizing?

10.6. [p. 213]

72 In the long last, we’ll come back now to the “asphericity game”! Let’s Back to asphericity: criteria for a
map in (Cat).take up the exposition at the point where we stopped two months ago

(section 67, p. 188). We were then about to reformulate in various ways
the property of asphericity, more specifically W-asphericity, for a given
map

i : A→ B

in (Cat). To this end, we introduced the corresponding diagram of maps
in (Cat) with “commutation morphism” λi:

Bˆ Aˆ

(Cat)

i∗

iB iA

λi

.

As already stated, the asphericity condition on i can be expressed in a
variety of ways, as a condition on either of the three “aspects”

λi , i∗, iAi∗

of the situation created by i, with respect to the localizing sets W, WA,
WB in the three categories under consideration, or with respect to the
notion of W-aspheric objects in these. As WA, and aspheric objects
in Aˆ, are defined respectively in terms of W and aspheric objects in
(Cat) via the functor iA, it turns out that the formulations in terms of
properties of iAi∗ reduce trivially to the corresponding formulations in
terms of i∗, which will be the most directly useful for our purpose for
later work – hence well’s omit them, and focus attention instead on λi
and i∗. Notations are those of loc. sit., in particular, we are working
with the categories

HotWA or HotA
def
= WA

−1Aˆ

and
Hot(W) =W−1(Cat),
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where W is a given “basic localizer”, namely a set of arrows in (Cat)
satisfying certain conditions.

It seems worthwhile here to be careful to state which exactly are the
properties of W we are going to use in the “asphericity game” – therefore
I’m going to list them again here, using a labelling which, hopefully, will
not have to be changed again:
Loc 1) “Mild saturation” (cf. page 59),

Loc 2) “Homotopy condition”: 1 × X → X is in W for any X in (Cat),

Loc 3) “Localization condition”: If X , Y are objects in (Cat) over an [p. 214]
object A, and u : X → Y an A-morphism such that for any a in A,

[AG seems to have replaced A with
S here, but it’s not clear. . . ]

the induced u/a : X/a → Y/a is in W, then so is u.
It should be noted that the “mild saturation” condition is slightly

weaker than the saturation condition introduced later (p. 101, conditions
a’)b’)c’)), namely in condition c’) (if f : X → Y and g : Y → X are
such that g f , f g ∈ W, then f , g ∈ W) we restrict to the case when
g f is the identity, namely f an inclusion and g a retraction upon the
corresponding subobject. On the other hand, in what follows we are
going to use Loc 3) only in case Y = A and Y → A is the identity. I stated
the condition in greater generality than needed for the time being, in
view of later convenience – as later it will have to be used in full strength.
It is not clear whether the weaker form of Loc 3) (plus of course Loc 1)
and Loc 2)) implies already the stronger. We’ll see later a number of
nice further properties of W implied by these we are going to work with
for the time being – including strong saturation of W, namely that W is
the set of arrows made invertible by the localization functor

(Cat)→W−1(Cat) = Hot(W).

Proposition 1. Let as above i : A→ B be a map in (Cat). Consider the
following conditions on i:

(i) For any F in Bˆ, λi(F) : A/F → B/F is in W.

(i’) For any F as above, λi(F) is W-aspheric (i.e., satisfies the assumption
on u in Loc 3) above, when Y → A is an identity).

(i”) Same as (i), but restricting to F = b in B.

(ii) For any F in Bˆ, F W-aspheric⇒ i∗(F)W-aspheric.

(ii’) For any F in Bˆ, F W-aspheric⇔ i∗(F)W-aspheric.

(iii) For any b in B, A/b(
def
= A/i∗(b)) is W-aspheric, i.e., i is W-aspheric.

(iv) For any map f in Bˆ, f ∈WB ⇒ i∗( f ) ∈WA.

(iv’) For any map f as above, f ∈WB ⇔ i∗( f ) ∈WA.

(v) Condition (iv) holds, i.e., i∗ induces a functor

i∗ : HotB → HotA,

and moreover the latter is an equivalence.



§72 Back to asphericity: criteria for a map in (Cat). 207

The conditions (i) up to (iii) are all equivalent, call this set of condi-
tions (As) (W-asphericity). We moreover have the following implications
between (As) and the remaining conditions (iv) to (v):

(*)

(As) (v)

(iv’)

(iv)

if A,B ps.test

if A,B

W-asph.

,

where the implication (iv) ⇒ (As) is subject to A, B begin W-aspheric, [p. 215]
and (As)⇒ (v) to A, B being “pseudo-test categories” (for W), namely the
canonical functors

iA : HotA→ Hot(W), iB : HotB → Hot(W)

being equivalence.

Corollary. Assume that A and B are pseudo-test categories, and are W-
aspheric. Then all conditions (i) to (v) of the proposition above are equiv-
alent.

Remark 1. If we admit strong saturation of W (which will be proved
later), it follows at once that a pseudo-test category is necessarily W-
aspheric – hence the conclusion of the corollary holds assuming only A
and B are pseudo-test categories. Of course, it holds a fortiori if A and B
are weak test categories, or even test categories. Also, strong saturation
implies that in (*) above, we have even the implication: (v) ⇒ (iv’),
stronger than (v)⇒ (iv).

Proof of proposition. It is purely formal – for the first part, it follows
from the diagram of tautological implications

(i’)

(i)

(ii’) (i”)

(ii) (iii) (i’) ,

where the implication (i’)⇒ (i) is contained in the assumption Loc 3
on W. The implications of the diagram (*) are about as formal – there
is no point I guess writing it out here.
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Remark 2. Using the canonical functors

ϕA : Aˆ→ Hot(W), ϕB : Bˆ→ Hot(W),

there are two other amusing versions still of (i), which look a lot weaker
still, and are equivalent however to (i), i.e., to W-asphericity of i,
namely:
(vi) For any F in Bˆ, ϕB(F) = γ(B/F and ϕA(i∗(F)) = γ(A/F ) are

isomorphic objects of Hot(W).

(vi’) Same as (vi), with F restricted to be object b in B. [p. 216]
Indeed, we have of course (i)⇒ (vi)⇒ (vi’), but also (vi’)⇒ (iii) if we
admit strong saturation of W, which implies that an object X of (Cat) is
W-aspheric iff its image in Hot(W) is a final object.

Remark 3. If we don’t assume A and B to beW-aspheric, the implications

(As)⇒ (iv’)⇒ (iv)

are both strict. As an illustration of this point, take for B a discrete
category (defined in terms of a set of indices I = Ob B), thus a cate-
gory A over B is essentially the same as a family (Ab)b∈I of objects of
(Cat) indexed by I . In terms of this family, we see at once that the
three conditions above on i : A → B mean respectively (a) that all
categories Ab are W-aspheric, (b) that all categories Ab are non-empty,
and (c) condition vacuous. This example brings to mind that condition
(iv) is a Serre-fibration type condition, we’ll come back upon this condi-
tion when studying homotopy properties of maps in (Cat), with special
emphasis on base change questions. Likewise, condition (iv’) appears
as a strengthening of such Serre-type condition, to the effect that the
restriction of A over any connected component of B should be moreover
non-empty. As an example, we may take the projection B × C → C ,
where C is any non-empty object in (Cat).

I would like now to dwell still a little on the case, of special interest
of course for the modelizing story, when A and B are test categories
or something of the kind. The formulation (i) of the asphericity con-
dition for the functor i can be expressed by stating that the functor i∗

between the localizations HotB and HotA exists, and gives rise (via λi)
to a commutation morphism which is an isomorphism

HotB HotA

(Cat)

i∗

iB iA

λi∼

.

This shows, when A and B are pseudo-test categories for W, i.e., the
functors iA and iB are equivalences, that the functor i∗ deduced from
the W-aspheric map i : A→ B, does not depend (up to canonical isomor-
phism) on the choice of i, and can be described as the composition of iB
followed by a quasi-inverse for iA. This of course is very much in keeping
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with the “inspiring assumption” (section 28), which just means that up
to unique isomorphism, there is indeed but one equivalence from HotB [p. 217]
to HotA (both categories being equivalent to Hot(W)). Here we are
thinking of course of the extension of the “assumption” contemplated
earlier, when usual weak equivalence is replaced by a basic localizer
W as above. It seems plausible that the assumption holds true in all
cases – anyhow we didn’t have at any moment to make explicit use of it
(besides at a moment drawing inspiration from it. . . ).

Proposition 2. Let i : A→ B be a map in (Cat).
a) If i is W-aspheric, and Aˆ is totally W-aspheric, then Bˆ is totally

W-aspheric too.

b) Assume A W-aspheric, and that B is a W-test category, admitting
the separating WB-homotopy interval I= (I ,δ0,δ1), satisfying the
homotopy condition (T H 1) of page 50. Consider the following
conditions:

1) i∗(I) is W-aspheric over eAˆ ,

2) i is W-aspheric,

3) i∗(I) is W-aspheric.

We have the implications

1)⇒ 2)⇒ 3),

hence, if A is totally W-aspheric (hence 3)⇒ 1)), all three conditions
are equivalent.

Proof. a) We have to prove that if b, b′ are in B, then their product in
Bˆ is W-aspheric, but by assumption on i we know that the images of
b, b′ by i∗ are W-aspheric, hence (as Aˆ is totally aspheric) their product

i∗(b)× i∗(b′) = i∗(b× b′)

is W-aspheric too, hence so is b× b′ by criterion (ii’) of prop. above.
b) The homotopy condition (T H 1) referred to means that all objects

of B are I-contractible. As i∗ commutes with finite products, it follows
that the objects i∗(b) of Aˆ, for b in B, are i∗(I)-contractible. When
i∗(I) is W-aspheric over eAˆ , this implies that so are the objects i∗(b), a
fortiori they are W-aspheric (as by assumption eAˆ is W-aspheric). Thus
1)⇒ 2), and 2)⇒ 3) is trivial.

Corollary. Let i : A→ B be a W-aspheric map in (Cat), assume that A is
totally W-aspheric, and B is a local W-test category. Then both A and B
are strict W-test categories.

Indeed, by a) above we see that B is totally W-aspheric, hence B is a
strict W-test category. In order to prove that so is A, we only have to show
that Aˆ admits a separating homotopy interval for WA. By assumption on [p. 218]
B, there is a separating WB-homotopy interval I = (I ,δ0,δ1) in Bˆ. The
exactness properties of i∗ imply that i∗(I) is a separating interval in Aˆ,
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the asphericity condition on i implies that moreover i∗(I) is W-aspheric,
hence W-aspheric over eAˆ as Aˆ is totally W-aspheric, qed.

To finish with the more formal properties of the notion of W-aspheric
maps in (Cat), let’s give a list of the standard stability conditions for this
notion, with respect notably to composition, base change, and cartesian
products:

Proposition 3. a) Consider two maps

A
i
−→ B

j
−→ C

in (Cat). Then if i and j are W-aspheric, so is ji. If ji and i are W-aspheric,
so is j. Any isomorphism in (Cat) is W-aspheric.

b) Let

A A′

B B′
i

f

i′

g

be a cartesian square in (Cat), assume i is W-aspheric and g is fibering
(for instance an induction functor B/F → B, with F in Bˆ). Then i′ is
W-aspheric (and, of course, f is equally fibering).

c) Let
i : A→ B, i′ : A′→ B′

be two W-aspheric maps in (Cat), then

i × i′ : A× A′→ B × B′

is W-aspheric.

Proof. Property a) is formal, in terms of criterion (ii’) of prop. 1. Property
c) follows formally from the criterion (iii), and the canonical isomor-
phism

(A× A′)/b×b′ ' (A/b)× (A′/b′),

and the fact that a product of two W-aspheric objects of (Cat) is again W-
aspheric (cf. prop. of page 167, making use of the localization condition
Loc 3) on W in its full generality). Another proof goes via a) and b), by
reducing first (using a)) to the case when either i or i′ are identities, and
using the fact that a projection map C × B→ B in (Cat) is a fibration.

We are left with proving property b). For this, we note that the
asphericity condition (iii) on a map i : A→ B just means that for any [p. 219]
base change of the type

B/b → B,

where b is in B, the corresponding map

i/b : A×B B/b ' A/b → B/b
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is in W. Applying this to the case of i′ : A′→ B′, and an object b′ in B′,
and denoting by b its image in B, using transitivity of base change, we
get a cartesian square

A/b A′
/b′

B/b B′
/b′

i/b i′
/b′

,

and we got to prove i′
/b′ is in W, i.e., A′

/b′ is W-aspheric, using the fact
that we know the same holds for i/b, i.e., A/b is W-aspheric. Thus, all we
have to prove is that the first horizontal arrow is in W. But we check at
once that the condition that B′→ B is fibering implies that the induced
functor

B′/b′ → B/b

is fibering too, and moreover has fibers which have final objects. Hence
by base change, the same properties hold for

A′/b′ → A/b.

This reminds us of the “fibration condition” L 5 (page 164), which should
ensure that a fibration with W-aspheric fibers is in W. We did not include
this axiom among the assumptions (recalled above) we want to make
on W. However, it turns out that the assumptions we do make here
imply already the fibration condition, as well as the dual condition on
cofibrations. We’ll give a proof later – in order not to diverge at present
from our main purpose. There will not be any vicious circle, as all we’re
going to use of prop. 3 for the formalism of asphericity structures and
canonical modelizers is the first part a). I included b) and b) for the
sake of completeness, and because c) is useful for dealing with products
of two categories, notably of two test categories – a theme which has
been long pending, and on which I would like to digress next, before
getting involved with asphericity structures.

Remark 4. In part a) of the proposition, if j and ji are W-aspheric, we
cannot conclude that i is. If C is the final object of (Cat), this means that
a map between W-aspheric objects in (Cat) need not be W-aspheric.

11.6. [p. 220]

73 I am not quite through yet with generalities on asphericity criteria for Asphericity criteria (continued).
a map in (Cat), it turns out – it was just getting prohibitively late last
night to go on!

From now on, I’ll drop the qualifying W when speaking of asphericity,
test categories, modelizers and the like, as by now it is well understood,
I guess, there is a given W around in all we are doing. It’ll be enough
to be specific in those (presumably rare) instances when working with
more than one basic localizer.
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Coming back to the last remark in yesterday’s notes, a good illustration
is the case of a functor i : A→ B of aspheric objects of (Cat), when A
is a final object in (Cat), i.e., a one-point discrete category. Then i is
aspheric iff i(a) is an initial object of B – an extremely stringent extra
condition indeed!

In part a) of proposition 3 above, stating that isomorphisms in (Cat)
are aspheric, it would have been timely to be more generous – indeed,
any equivalence of categories in (Cat) is aspheric. This associates immedi-
ately with a map of topoi which is an equivalence being (trivially so)
aspheric (in the case, say, when W is the usual notion of weak equiva-
lence, the only one for the time being when the notion is extended from
maps in (Cat) to maps between topoi). In the context of (Cat), the basic
modelizer, we can give a still more general case of aspheric maps, both
instructive and useful:

Proposition 4. Let

A BB
f

g

be a pair of adjoint functors between the objects A, B in (Cat), with f left
and g right adjoint. Then f is aspheric.

Indeed, by the adjunction formula we immediately get

A/b ' A/g(b)

(as a matter of fact, f ∗(b) = g(b)), hence this category has a final object
and hence is aspheric, qed.

Remark 5. The conclusion of prop. 4 is mute about g, which will rightly
strike as unfair. Dualizing, we could say that (gop, f op) is a pair of
adjoint functors between Aop and Bop, and therefore gop is aspheric. We
will express this fact (by lack of a more suggestive name) by saying that
g is a coaspheric map. For a functor i : A→ B, in terms of the usual
criterion for iop, it just means that for any b in B, the category [p. 221]

b\A
def
= A×B (b\B) = category of pairs (x , p), with x in A

and p : b→ i(x)

is aspheric. (NB In the case of the functor g from B to A, the correspond-
ing categories a\B even have initial objects.) This conditions comes in
here rather formally, we’ll see later though that it has a quite remarkable
interpretation, in terms of a very strong property of cohomological “co-
finality” of the functor i, implying the usual notion of i being a “cofinal”
functor, or A being “cofinal” in B (namely i giving rise to isomorphisms
lim−→A

→ lim−→B
for any direct system B → M with values in a category

M admitting direct limits), as the “dimension zero” shadow of this “all
dimensions” property. To make an analogy which will acquire more
precise meaning later, the asphericity property for a map i in (Cat) can
be viewed as a (slightly weakened) version of a proper map with aspheric
fibers, whereas the coasphericity property appears as the corresponding
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version of a smooth map with aspheric fibers. The qualification “slightly
weakened” reflects notably in the fact that the notions of asphericity and
coasphericity are not stable under arbitrary base change – but rather,
asphericity for a map is stable under base change by fibration functors
(more generally, by smooth maps in (Cat)), whereas coasphericity is
stable under base change by cofibration functors (more generally, by
proper maps in (Cat)). Thus, whereas a functor i : A → B which is
an equivalence of categories is clearly both aspheric and coaspheric,
this property is not preserved by arbitrary base change, e.g., passage
to fibers: e.g., some fibers may be empty, and therefore are neither
aspheric nor coaspheric!

The most comprehensive property for a map in (Cat), implying both
asphericity and coasphericity, is to be in UW , i.e., a “universal weak
equivalence” – namely it is in W and remains so after any base change.
These maps deserve the name of “trivial Serre fibrations”. They include
all maps with aspheric fibers which are either “proper” or “smooth”, for
instance those which are either cofibering or fibering functors (in the
usual sense of category theory). We’ll come back upon these notions in
a systematic way in the next part of the reflections.

74 As announced yesterday, I would like still to make an overdue digres- Application to products of test cate-
gories.sion on products of test categories, before embarking on the notion of

asphericity structure. It will be useful to begin with some generalities
[p. 222]on presheaves on a product category A× B, where for the time begin

A, B are any two objects of (Cat). The following notation is often useful,
for a pair of presheaves

F ∈ Ob Aˆ, G ∈ Ob Bˆ,

introducing an “external product”

F � G ∈ Ob(A× B)ˆ

by the formula
F � G(a, b) = F(a)× G(b).

Introducing the two projections

p1 : A× B→ A, p2 : A× B→ B,

and the corresponding inverse image functors p∗i , we have

F � G = p∗1(F)× p∗2(G).

Of course, F�G depends bifunctorially on the pair (F, G), and it is easily
checked, by the way, that the corresponding functor

Aˆ × Bˆ→ (A× B)ˆ, (F, G) 7→ F � G,

is fully faithful.
We have a tautological canonical isomorphism

(A× B)/F�G
∼−→ A/F × B/G ,

and hence the
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Proposition 1. a) If F and G are aspheric objects in Aˆ and Bˆ respec-
tively, then F � G is an aspheric object of (A× B)ˆ.

b) If u : F → F ′ and v : G → G′ are aspheric maps in Aˆ and Bˆ
respectively, then

u� v : F � G→ F ′ � G′

is an aspheric map in (A× B)ˆ.

Indeed, this follows respectively from the fact that a product of two
aspheric objects (resp. aspheric maps) in (Cat) is again aspheric.

Corollary 1. Let F in Aˆ be aspheric over the final object eAˆ , then
F � eBˆ = p∗1(F) is aspheric over the final object of (A× B)ˆ.

Corollary 2. Assume A and B are totally aspheric, then so is A× B.

We have to check that the product elements

(a, b)× (a′, b′) = (a× a′)� (b× b′)

are aspheric, which follows from the assumption (namely a × a′ and
b× b′ aspheric) and part a) of the proposition.

Assume now A is a local test category, i.e., Aˆ admits a separating [p. 223]
interval

I= (I ,δ0,δ1)

such that I is aspheric over the final object of Aˆ. Then p∗1(I) is of course
a separating interval in (A× B)ˆ, which by cor. 1 is aspheric over the
final object. Hence

Proposition 2. If A is a local test category, so is A× B for any B in (Cat).
If A is a test category, then so is A× B for any aspheric B.

The second assertion follows, remembering that a test category is just
an aspheric local test category. Using cor. 2, we get:

Corollary. If A is a strict test category, and B totally aspheric, then A× B
is a strict test category. In particular, if A and B are strict test categories,
so is their product.

We need only remember that strict test categories are just test cate-
gories that are totally aspheric.

As an illustration, we get the fact that the categories of multicom-
plexes of various kinds, which we can even take mixed (semisimplicial
in some variables, cubical in others, and hemispherical say in others
still) are strict modelizers (as generally granted), which corresponds
to the fact that a finite product of standard semisimplicial, cubical and
hemispherical (strict) test categories , and , is again a strict test
category.

I would like now to dwell a little upon the comparison of “homotopy
models”, using respectively two test categories A and B, namely working
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in Aˆ and Bˆ respectively. More specifically, we have two description of
Hot (short for Hot(W) here), namely as

HotA =WA
−1Aˆ and HotB =WA

−1Bˆ,

and we want to describe conveniently the tautological equivalence
between these two categories (this equivalence being defined up to
unique isomorphism). The most “tautological” way indeed is to use the
basic modelizer (Cat) and its localization (Hot) as the intermediary, i.e.,
using the diagram of equivalences of categories

(1)

HotA HotB

(Hot)

≈

iA iB

≈

.

Remember we have a handy quasi-inverse jB to iB, using the canonical [p. 224]
functor

[In this display, AG originally put
the definition of iB instead jB, cf.,
e.g., (1) and (2) in §65 to recall the
definitions.]

jB = i∗B : (Cat)→ Bˆ, X 7→ (b 7→ Hom(B/b, X )).

Thus, we get a description of an equivalence

(1’) jB iA : HotA
≈−→ HotB,

whose quasi-inverse of course is just the similar jA iB. We can vary a
little this description, admittedly cumbersome in practice, by replacing
jB by the isomorphic functor i∗, where i : B→ (Cat) is any test functor
from B to (Cat) (while we have to keep however iA as it is, without the
possibility of replacing iA by a more amenable test functor).

Another way for comparing HotA and HotB arises, as we saw yesterday,
whenever we have an aspheric functor

(2) i : A→ B,

by just taking

(2’) i∗ : HotB
≈−→ HotA.

This of course is about the simplest way imaginable, all the more as the
functor i∗ : Bˆ → Aˆ commutes to arbitrary direct and inverse limits,
just perfect for comparing constructions in Bˆ and constructions in Aˆ –
whereas the functor jB iA : Aˆ→ Bˆ, giving rise to (1) above commutes
just to sums and fibered products, not to amalgamated sums nor to
products, sadly enough! We could add here that if we got two aspheric
functors from A to B, namely i plus

i′ : A→ B,

then (as immediately checked) any map between these functors

u : i→ i′
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gives rise to an isomorphism between the corresponding equivalences

HotB HotA

i∗

(i′)∗

u ,

which is nothing but the canonical isomorphism referred to yesterday
(both functors being canonically isomorphic to (1’)), and yields the most
evident way for “computing” the latter. Thus, it turns out that the iso-
morphism u does not depend upon the choice of u. If we want to ignore
this fact and look at the situation sternly, in a wholly computational
spirit, we could present things by stating that we get a contravariant
functor, from aspheric maps i : A→ B to equivalences HotB → HotA: [p. 225]

Asph(A, B)op→ Hom(HotB,HotA), i 7→ i∗,

where Asph denotes the full subcategory of the functor category Hom
made up with aspheric functors. This functor transforms arbitrary
arrows from the left hand side into isomorphisms on the right, and
therefore, it factors through the fundamental groupoid (i.e., localization
of the left hand category with respect to the set of all its arrows):

�

Π1(Asph(A, B))
�op→ Hom(HotB,HotA).

If we now remember that we had assumed A and B to be test categories
(otherwise the functors just written would be still defined, but their
values would not necessarily be equivalences between HotB and HotA,
but merely functors between these), we may hope that this might imply
that the category Asph(A, B) of aspheric functors from A to B, whenever
non-empty, to be 1-connected. Whenever this is so, in any case, we get “a
priori” (namely without any reference to (Hot) itself) a transitive system
of isomorphisms between the functors i∗, for i in Asph(A, B), hence a
canonical functor HotB → HotA, defined up to unique isomorphism (and
which, in case A and B are test categories, or more generally pseudo-test
categories, is an equivalence, and the one precisely stemming from the
diagram (1)).

Remark. Here the reflection slipped, almost against will, into a related
one, about comparison of HotA and HotB for arbitrary A and B (not
necessarily test categories nor even pseudo test categories), using as-
pheric functors i : A→ B to get i∗ : HotB → HotA (not necessarily an
equivalence). As seen above, this functor depends rather loosely on
the choice of i, and we could develop comprehensive conditions on A
and B, not at all of a test-condition nature, implying that just using
the isomorphisms u between these functors, we get a canonical transi-
tive system of isomorphisms between them, hence a canonical functor
HotB → HotA, not depending on the particular choice of any aspheric
functor i : A→ B. As we are mainly interested in the modelizing case
though, I don’t think I should dwell on this much longer here. Anyhow,
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in case both A and B are pseudo-test categories, and provided only
Asph(A, B) is 0-connected (not necessarily 1-connected), it follows from
comparison with the diagram (1) above that the isomorphisms u do
give rise indeed to a transitive system of isomorphisms between the
equivalences i∗.

In most cases though, such as A= and B = say (the test categories [p. 226]
of standard simplices and standard cubes respectively), we do not have
any aspheric functor A→ B at hand, and presumably we may well have
that Asph(A, B) is empty, poor it! We now assume again that A and B
are test categories, hence A× B is a test category, and the natural idea
for comparison of HotA and HotB is to use the diagram

A× B

A B

p1 p2

,

where now p1 and p2 are aspheric (because B and A are aspheric). Thus,
we get a corresponding diagram on the corresponding modelizers

[in the typescript this equation is
tagged (2)]

(3)

HotA×B

HotA HotB

p∗1
≈

p∗2
≈

.

These equivalences are compatible with the canonical equivalences with
Hot itself, and hence they give rise to an equivalence HotA

≈−→ HotB
which (up to canonical isomorphism) is indeed the canonical one. This
way for comparing HotA and HotB looks a lot more convenient than
the first one, as the functors p∗1 and p∗2 which serve as intermediaries
have all desirable exactness properties, and their very description is the
simplest imaginable.

We are very close here to an Eilenberg-Zilber situation, which will
arise more specifically when A and B are both strict test categories, i.e., in
the corresponding modelizers Aˆ, Bˆ products of models do correspond
to products of the corresponding homotopy types. As seen above, this
implies the same for A×B. Thus, if F is in Aˆ, G in Bˆ, the objects F �G
in (A× B)ˆ is just a (A× B)-model for the homotopy type described
respectively by F (in terms of A) and G (in terms of B). As a matter of
fact, the relation

(A× B)/F�G ' A/F × B/G ,

already noticed before, implies that this interpretation holds, indepen-
dently of strictness. In the classical statement of Eilenberg-Zilber (as I
recall it), we got A= B (both categories being just ); on the one hand [p. 227]
the A×B-model is used in order to get readily the Künneth type relations
for homology and cohomology, whereas we are interested really in the
A-model F × G. Using the diagonal map

δ : A→ A× A,
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we have of course
F × G ' δ∗(F � G),

more generally it is expected that the functor

δ∗ : (A× A)ˆ→ Aˆ,

is modelizing, i.e., gives a means of passing from (A× A)-models to
A-models. This essentially translates into δ being an aspheric map –
something which will not be true for arbitrary A in (Cat). We get in this
respect:

Proposition 3. Let A be an object in (Cat). Then the diagonal map
δ : A→ A× A is aspheric iff A is totally aspheric.

This is just a tautology – one among many which tell us that the
conceptual set-up is OK indeed! A related tautology:

Corollary. Let i : A→ B, i′ : A→ B′ be two aspheric functors with same
source A, then the corresponding functor

(i, i′) : A→ B × B′

is aspheric, provided A is totally aspheric.

This can be seen either directly, or as a corollary of the proposition,
by viewing (i, i′) as a composition

A
δ
−→ A× A

i×i′
−−→ B × B′.

To sum up: when we got a bunch of strict test categories, and a
(possibly empty) bunch of aspheric functors between some of these,
using finite products we get a (substantially larger!) bunch of strict test
categories, giving rise to corresponding strict modelizers for homotopy
types; and using projections, diagonal maps, and the given aspheric
functors, we get an impressive lot of aspheric maps between all these,
namely as many ways to “commute” from one type of “homotopy models”
to others. The simplest example: start with just one strict test category
A, taking products

AI

where I is any finite set, and the “simplicial” maps between these, ex-
pressing contravariance of AI with respect to I . The case most commonly
used is A= , giving rise to the formalism of semisimplicial multicom-
plexes.

To finish these generalities on aspheric functors, I would like still to [p. 228]
make some comments on Asph(A, B), in case B admits binary products,
with A and B otherwise arbitrary in (Cat). We are interested, for two
functors

i, i′ : A⇒ B,

in the functor
i × i′ : a 7→ i(a)× i′(a) : A→ B,
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which can be viewed indeed as a product object in Hom(A, B) of i and
i′. Our interest here is mainly to give conditions ensuring that i × i′ is
aspheric. It turns out that there is no point to this end assume both i
and i′ to be aspheric, what counts is that one, say i, should be aspheric.
The point is made very clearly in the following

Proposition 4. Let i : A→ B be an aspheric map in (Cat), we assume for
simplicity that in B binary products exist.

a) Let b0 ∈ Ob B, ib0
: A→ B be the constant functor with value b0,

consider the product functor

i × ib0
: a 7→ i(a)× b0 : A→ B.

In order for this functor to be aspheric, it is necessary and sufficient
that for any object y in B, the object Hom(b0, y) in Bˆ be aspheric
(a condition which depends only on b0, not upon i nor even upon
A).

b) Assume this condition satisfied for any b0 in B, assume moreover A
totally aspheric. Then for any functor i′ : A→ B, i × i′ is aspheric.

Proof. a) Asphericity of i × ib0
means that for any object y in B, the

corresponding presheaf on A

(i × ib0
)∗(y) = (a 7→ Hom(i(a)× b0, y))

is aspheric. Now the formula defining the presheaf Hom(b0, y) on B
yields

Hom(i(a)× b0, y)' Hom(i(a),Hom(b0, y)),

hence the presheaf we get on A is nothing but

i∗(Hom(b0, y)).

As i is aspheric, the criterion (ii’) of prop. 1 (page 214) implies that this
presheaf is aspheric iff Hom(b0, y) is, qed.

b) We may view i × i′ as a composition

A
δ
−→ A× A

i�i′
−−→ B,

where the “external product” i � i′ : A× A→ B is defined by [p. 229]

i � i′(a, a′)
def
= i(a)× i′(a′).

By prop. 3 we know that the diagonal map for A is aspheric, thus we
are left with proving that i � i′ is aspheric. More generally, we get:

Corollary 1. Let B in (Cat) satisfy the conditions of a) and b) above, and
let A, A′ be two objects in (Cat), and

i : A→ B, i′ : A′→ B

two maps with target B, hence a map

i � i′ : (a, a′) 7→ i(a)× i′(a′) : A× A′→ B.

If i is aspheric, then i � i′ is aspheric iff A′ is aspheric.
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We have to express that for any object b in B, the presheaf

(a, a′) 7→ Hom(i(a)× i′(a′), b)' Hom(i(a),Hom(i′(a′), b))

on A× A′ is aspheric. For a′ fixed in A′, the corresponding presheaf on
A is aspheric, as we saw in a). The conclusion now follows from the
useful

Lemma. Let F be a presheaf on a product category A×A′, with A, A′ in (Cat).
Assume that for any a′ in A′, the corresponding presheaf a 7→ F(a, a′) on
A be aspheric. Then the composition

(A× A′)/F → A× A′
pr2−→ A′

is in W, and hence F is aspheric iff A′ is aspheric.

Proof of lemma. The composition is fibering, as both factors are. This
reminds us of the “fibration condition” L 5 on W (page 164), as yester-
day (page 219), where we stated that this condition follows from the
conditions Loc 1) to Loc 3) reviewed yesterday. This condition asserts
that a fibration with aspheric fibers is in W – hence the lemma.

Remarks. The results stated in prop. 4 and its corollary give a lot
of elbow freedom for getting new aspheric functors in terms of old
ones, with target category B – provided B satisfies the two assumptions:
stability under binary products (a property frequently met with, although
the standard test categories , and lack it. . . ), and the asphericity
of the presheaves Hom(b, y), for any two objects b, y in B. A slightly
stronger condition (indeed an equivalent one, for fixed b, when b admits
already a section over eBˆ and if Bˆ is totally aspheric, hence an aspheric
object is even aspheric over eBˆ . . . ) is contractibility of the objects b of B,
for the homotopy interval structure on Bˆ defined by WB (i.e., in terms
of homotopy intervals aspheric over eBˆ). (Compare with propositions [p. 230]
on pages 121 and 143.) Whereas this latter assumption admittedly is
quite a stringent one, it is however of a type which has become familiar
to us in relation with test categories, where it seems a rather common
lot.

If B satisfies these conditions (as in prop. 4 and if A is totally aspheric,
we see from prop. 4 that the category Asph(A, B) of aspheric functors
from A to B is stable under binary products. Now, a non-empty object C
of (Cat) stable under binary products gives rise to a category Cˆ which
is clearly totally aspheric for any basic localizer W, and in particular for
the usual one W0 corresponding to usual weak equivalence. A fortiori,

[later, we’ll write W∞ for this in-
stead. . . ]

such a category C is 1-connected (which is easily checked too by down-
to-earth direct arguments). Thus, the reflections of page 225 apply,
and imply that if Asph(A, B) is non-empty, i.e., if there is at least one
aspheric functor i : A→ B, then there is a canonical transitive system of
isomorphisms between all functors

(*) HotB → HotA

of the type i∗, and hence there is a canonical functor (*), defined up to
unique isomorphism, as announced in the remark on page 225.
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13.6.

75 The generalities on aspheric maps of the last three sections should be Asphericity structures: a bunch of
useful tautologies.more than what is needed to develop now the notion of asphericity struc-

ture – which, together with the closely related notion of contractibility
structure, tentatively dealt with before, and the various “test-notions”
(e.g., test categories and test functors) seems to me the main pay-off so
far of our effort to come to a grasp of a general formalism of “homotopy
models”.

In the case of asphericity structures, just as for the kindred notion of
a contractibility structure, in all instances I could think of a present, the
underlying category M of an asphericity structure is not an object in
(Cat) nor even a “small category”, but is “large” – namely the cardinality
of Ob M and Fl(M) are not in the “universe” we are working in, still
less is M an object of U – all we need instead, as usual, is that M be
a U-category, namely that for any two objects of M , Hom(x , y) be an
element of U. Till now, the universe U has been present in our reflections
in a very much implicit way, in keeping with the informal nature of the
reflections, which however by and by have become more formal (as
I finally let myself become involved in a minimum of technical work, [p. 231]
needed for keeping out of the uneasiness of “thin air conjecturing”). An
attentive reader will have felt occasionally this implicit presence of U,
for instance in the definition of the basic modelizer (Cat) (which is, as
all modelizers, a “large” category), and in our occasional reference to
various categories as being “small” or “large”. He will have noticed that

[or she]whereas modelizers are by necessity large categories (just as (Hot) itself,
whose set of isomorphism classes of objects is large), test categories
are supposed to be small (and often even to be in (Cat)) – with the
effect that Aˆ, the category of presheaves on A, is automatically a U-
category (which would not be the case if A was merely assumed to be a
U-category).

An asphericity structure (with respect to the basic localizer W) on the
U-category M consists of a subset

(1) Mas ⊂ Ob M ,

whose elements will be called the aspheric objects of M (more specifi-
cally, the W-aspheric objects, if confusion may arise), this subset being
submitted to the following condition:
(Asstr) There exists an object A in (Cat), and a functor i : A → M ,

satisfying the following two conditions:

(i) For any a in A, i(a) ∈ Mas, i.e., i factors through the full
subcategory (also denoted by Mas) of M defined by Mas.

(ii) Let

i∗ : M → Aˆ, x 7→ i∗(x) = (a 7→ Hom(i(a), x)),

then we have

(2) Mas = (i
∗)−1(Aâs),
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where Aâs is the subset of Ob Aˆ of all (W-)aspheric objects
of Aˆ, i.e., the presheaves F on A such that the object A/F of
(Cat) is W-aspheric.

In other words, for x in M , we have the equivalence

(2 bis) x ∈ Mas⇔ i∗(x) ∈ Aâs, i.e., A/x(
def
= A/i∗(x)) ∈ (Cat)as,

where (Cat)as is the subset of Ob (Cat) made up with all W-aspheric
objects of (Cat) – i.e., objects X such that X → 0 (= final object) be in
W.

Thus, an asphericity structure on M can always be defined by a functor

i : A→ M ,

with A in (Cat), by the formula (2); and conversely, any such functor [p. 232]
defined an asphericity structure Mas on M , admitting i as a “testing
functor” (i.e., a functor satisfying (i) and (ii) above), provided only we
assume that

(3) For any a in A, i∗(i(a)) is an aspheric object of Aˆ.

This latter condition is automatically satisfied if i is fully faithful, for
instance, if it is the inclusion functor of a full subcategory A of M . Thus,
any small full subcategory A of M defines an asphericity structure on M ,
and we’ll see in a minute that any asphericity structure on M can be
defined this way.

Proposition 1. Let Mas be an asphericity structure on M, and A, B objects
in (Cat), and

A
f
−→ B

j
−→ M

be functors, with j factoring through Mas.
a) If f is aspheric, then j is a testing functor iff i = j f is.

b) If j is fully faithful, and if i = j f is a testing functor, then f is
aspheric, and j is a testing functor too.

Proof. a) follows trivially from

Bâs = ( f
∗)−1(Aâs),

which is one of the ways of expressing that f is aspheric (criterion (ii’)
of prop. 1, 214). And the first assertion in b) is a trivial consequence of
the definition of testing functors, and of asphericity of f (by criterion
(iii) on p. 214) – and the second assertion of b) now follows from a).

Corollary. Let i : A→ M be a testing functor for (M , Mas), and let B any
small full subcategory of Mas containing i(A). Then the induced functor
A→ B is aspheric, and the inclusion functor B ,→ M is a testing functor.



§75 Asphericity structures: a bunch of useful tautologies. 223

Remarks. This shows, as announced above, that any asphericity struc-
ture on M can be defined by a small full subcategory of M (for instance,
the smallest full subcategory of M containing i(A)). We have been
slightly floppy though, while we defined testing functors by insisting
that the source should be in Cat (which at times will be convenient),
whereas the B we got here is merely small, namely isomorphic to an
object of (Cat), but not necessarily in (Cat) itself. This visibly is an
“inessential floppiness”, which could be straightened out trivially, either
by enlarging accordingly the notion of testing functor, or by submitted
M to the (somewhat artificial, admittedly) restriction that all its small [p. 233]
subcategories should be in (Cat). This presumably will be satisfied by
most large categories we are going to consider, and it shouldn’t be hard
moreover to show that any U-category is isomorphic to a category M ′

satisfying the above extra condition.

A little more serious maybe is the use we are making here of the name
of a “testing functor”, which seems to be conflicting with an earlier use
(def. 5, p. 175 and def. 6, p. 176), where we insisted for instance that
the source A should be a test category. That’s why I have been using
here the name “testing functor” rather than “test functor”, to be on the
safe side formally speaking – but this is still playing on words, namely
cheating a little. Maybe the name “aspherical functor” instead of “testing
functor” would be less misleading, thinking of the case when M is small
itself, and endowing M with the canonical asphericity structure, for
which

Mas = M ,

(admitting the identity functor as a testing functor) – in which case the
“testing functors” A→ M are indeed just the aspherical functors. The
drawback is that when M is small, it may well be endowed with an
asphericity structure Mas different from the previous one, in which case
the proposed extension of the name “aspheric functor” again leads to
an ambiguity, unless specified by “Mas-aspheric” (where, after all, Mas
could be any full subcategory of M) – but then the notion reduces to the
one of an aspheric functor A→ Mas. But the same after all holds even
for large M – the notion of a “testing functor” A→ M (with respect to
an asphericity structure Mas on M) does not really depend on the pair
(M , Mas), but rather on the (possibly large) category Mas itself – namely
it is no more no less than a functor

A→ Mas

which satisfies the usual asphericity condition (iii) (of prop. 1, p. 214),
with the only difference that Mas may not be small, and therefore Mâs
may not be a U-category (and we are therefore reluctant to work with
this latter category at all, unless we first pass to the next larger universe
U′. . . ).

This short reflection rather convinces us that the designation of “test-
ing functors” as introduced on the page before, by the alternative name
of Mas-aspheric functors, or just aspheric functors when no confusion is
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likely to arise as to existence and choice of Mas, is satisfactory indeed.
I’ll use it tentatively, as a synonym to “testing functor”, and it will appear
soon enough if this terminology is a good one or not – namely if it is [p. 234]
suggestive, and not too conducive to misunderstandings.

Proposition 2. Let (M , Mas) be an asphericity structure, and let

i : A→ M

be an Mas-aspheric functor, hence i∗ : M → Aˆ. Let

(4) W = (i∗)−1(WA) ⊂ Fl(M).

Then W is a mildly saturated subset of Fl(M), independent of the choice of
(A, i).

Mild saturation of W follows from mild saturation of WA, the set of
W-weak equivalences in Aˆ (which follows from mild saturation of W
and the definition

WA = i−1
A (W) ).

To prove that Wi for (A, i) is the same as Wi′ for (A′, i′), choose a small full
subcategory B of Mas such that i and i′ factor through B, let j : B→ M
be the inclusion, we only have to check Wi =Wj (and similarly for Wi′),
which follows from i∗ = f ∗ j∗ (where f : A→ B is the induced functor)
and the relation

WA = ( f
∗)−1(WA),

which follows from f being aspheric by prop. 1 b), and the known
property (iv) (prop. 1, p. 214) of asphericity, qed.

Remark. Once we prove that W is even strongly saturated, it will follow
of course that the sets WA, and hence W above, are strongly saturated
too.

We’ll call W the set of weak equivalences in M , for the given asphericity
structure Mas in M . We are interested now in giving a condition on Mas
ensuring that conversely, Mas is known when the corresponding set W
of weak equivalences is. We’ll assume for this that M has a final object
eM , and we’ll call the asphericity structure (M , Mas) “aspheric” if eM is
aspheric, i.e., eM ∈ Mas (which does not depend of course on the choice
of eM ). Now we get the tautology:

Proposition 3. Let (M , Mas) be an asphericity structure, and u : x → y a
map in M. If y is aspheric, then x is aspheric iff u is aspheric.

Corollary. Assume M admits a final object eM , and that eM is aspheric
(i.e., (M , Mas) is aspheric). Then an object x in M is aspheric iff the map
x → eM is aspheric.

Next question then is to state the conditions on a pair (M , W ), with
W ⊂ Fl(M), for the existence of an aspheric asphericity structure on M , [p. 235]
admitting W as its set of weak equivalences. We assume beforehand
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M admits a final object eM . A n.s. condition is the existence of a small
category A and a functor

i : A→ M

satisfying the following two conditions:
(i) for x in M of the form i(a) (a ∈ Ob A) or eM , i∗(x) ∈ Aâs,

(ii) W = (i∗)−1(WA).
Another n.s. condition, which looks more pleasant I guess, is that there
exist a small full subcategory B of M , containing eM , with inclusion
functor j : B→ M , such that

(5) W = ( j∗)−1(WB).

In any case, if we want a n.s. condition on W for it to be the set of weak
equivalences for some asphericity structure on M (not necessarily an
aspheric one, and therefore maybe not unique), we get: there should
exist a small full subcategory B of M , with inclusion functor j, such
that (5) above holds. (Here we do not assume eM to exist, still less B
to contain it.) Similarly, the corollary of prop. 1 implies that a subset
Mas of Ob M is an asphericity structure on M , iff there exists a small full
subcategory B in M , such that

(6) Mas = ( j
∗)−1(Bâs);

moreover, if M admits a final object eM , the asphericity structure Mas is
aspheric iff B can be chosen to contain eM .

Remarks 2. The relationship between aspheric asphericity structures
Mas on M , and sets W ⊂ Fl(M) of “weak equivalences” in M satisfy-
ing the condition above (and which we may call “weak equivalence
structures” on M), in case M admits a final object eM , is reminiscent
of the relationship between “contractibility structures” Mc ⊂ Ob M on
M , and those “homotopism structures” hM ⊂ Fl(M) on M which can be
described in terms of such a contractibility structure (cf. sections 51 and
52). Both pairs can be viewed as giving two equivalent ways of express-
ing one and the same kind of structure – the structure concerned by the
first pair being centered on asphericity notions, whereas the second is
concerned with typical homotopy notions rather. We’ll see later that
any contractibility structure defines in an evident way an asphericity
structure, and in the most interesting cases (e.g., canonical modelizers),
it is uniquely determined by the latter.

To sum up some of the main relationships between the three aspheric- [p. 236]
ity notions just introduced (Mas, W , Mas-aspheric functors), let’s state
one more tautological proposition, which is very much a paraphrase of
the display given earlier (prop. on p. 214) of the manifold aspects of
the notion of an aspheric map between small categories:

Proposition 4. Let (M , Mas) be an asphericity structure, A a small category,
i : A → M a functor, factoring through Mas. Consider the following
conditions on i:
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(i) i is Mas-aspheric (or “testing functor” for Mas), i.e.,

Mas = (i
∗)−1(Aâs).

(i’) For x in Mas, i∗(x) is aspheric, i.e.,

Mas ⊂ (i∗)−1(Aâs).

(i”) (Here, B is a given small full subcategory of Mas containing i(A)
and which “generates” the asphericity structure Mas, namely such
that the inclusion functor j : B ,→ M is Mas-aspheric, i.e., Mas =
( j∗)−1(Bâs).) For any x in B, i∗(x) is aspheric, i.e.,

B ⊂ (i∗)−1(Aâs).

(ii) For any map u in M, u is a weak equivalence iff i∗(u) is, i.e.,

W = (i∗)−1(WA).

(ii’) If the map u in M is a weak equivalence, so is i∗(u), i.e.,

W ⊂ (i∗)−1(WA).

(ii”) (Here, B is given as in (i”) above) For any map u in M, i∗(u) is a
weak equivalence, i.e.,

Fl(B) ⊂ (i∗)−1(WA).

The conditions (i)(i’)(i”) are equivalent and imply all others, and we have
the tautological implications (ii)⇒ (ii’)⇒ (ii”). If M admits a final object
eM and if A and the asphericity structure Mas are aspheric, then all six
conditions (except the last) are equivalent; and all six are equivalent if
moreover eM ∈ Ob B.

Proof. The implications (i)⇒ (i’)⇒ (i”) are tautological, on the other
hand (i”) just means that the induced functor f : A→ B is aspheric,
which by prop. 1 a) implies that i is aspheric. On the other hand (i)
⇒ (ii) by the definition of W (cf. prop. 2). If eM exists and A and the
asphericity structure Mas are aspheric, and if B contains eM , then (ii”)
implies that the maps x → eM for x in B are transformed by i∗ into a
weak equivalence, and as eAˆ is aspheric, this implies i∗(x) is aspheric,
i.e., (i”), which proves the last statement of the proposition – all six [p. 237]
conditions are equivalent in this case. If no B is given, but still assuming
A and (M , Mas) aspheric, we can choose a generating subcategory for
(M , Mas) large enough in order to contain i(A) and eM , and we get that
conditions (i) to (ii’) are equivalent, qed.
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76 It’s time to give some examples. Examples. Totally aspheric aspheric-
ity structures.1) Take M = (Cat), Mas = set of W-aspheric objects in (Cat). We then

got an asphericity structure, as we see by taking any weak test category
A in (Cat) (def. 2 on page 172), and the functor

iA : a 7→ A/a : A→ (Cat),

which satisfies indeed (i) and (ii) of p. 231 above.
We may call

(7) ((Cat), (Cat)W−as
def
= (Cat)as)

the “basic asphericity structure”, giving rise (by taking the correspond-
ing set W of “weak equivalences”) to the “basic modelizer” ((Cat),W).
Turning attention towards the former corresponds to a shift in emphasis;
whereas previously, our main emphasis has been dwelling consistently
with the notion of “weak equivalence”, namely with giving on a category
M a bunch of arrows W , here we are working rather with notion of
“aspheric objects” as the basic notion. One hint in this direction comes
from prop. 1 on p. 214, when we saw that for a functor f : A → B
between small categories, giving rise to f ∗ : Bˆ→ Aˆ (a map between
asphericity structures, as a matter of fact), asphericity of f can always
be expressed in manifold ways as a property of f relative to the notion
of aspheric objects in Aˆ and Bˆ, but not as a property relative to the
notion of weak equivalences, unless A and B are assumed to be aspheric.

Coming back to the case of the “basic asphericity structures” (7), we
get more general types of “aspheric” functors A→ (Cat) than functors
iA, by taking any weak test category A and any weak test functor i : A→
(Cat) (cf. def. 5, p. 175), provided however the objects i(a) are aspheric.
It would seem though that, for a given A, even assuming A to be a strict
test category say (and even a “contractor” moreover), and restricting
to functors i : A→ (Cat) which factor through (Cat)as (to make them
eligible for being “aspheric functors”), the condition for i to be a weak
test functor, namely for i∗ to be “model preserving”, is substantially
stronger than mere “asphericity”: indeed, the latter just means that i∗

transforms weak equivalences into weak equivalences, i.e., gives rise to [p. 238]
a functor

Hot =W−1(Cat)→ HotA =WA
−1Aˆ,

whereas the latter insists that this functor moreover should be an equiva-
lence of categories. Theorem 1 (p. 176) gives a hint though that the two
conditions may well be equivalent – this being so at any rate provided
the objects i(a) in (Cat) are, not only aspheric, but even contractible.
This reminds us at once of the “silly question” of section 46 (p. 95),
which was the starting point for the subsequent reflections leading up to
the theorem 1 recalled above; and, beyond this still somewhat technical
result, the ultimate motivation for the present reflections on asphericity
structures. The main purpose for these, I feel, is to lead up to a compre-
hensive answer to the “silly question”. We’ll have to come back to this
very soon!
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2) Take M = (Spaces), the category of topological spaces, and Mas
the spaces which are weakly equivalent to a point. We get an asphericity
structure, indeed an aspheric asphericity structure (I forgot to make this
evident specification in the case 1) above), as we see by taking A=
for instance, and

i : → (Spaces)

the “geometric realization functor” for simplices, which satisfies condi-
tions (i) and (ii) of page 231, as is well known (cf. the book of Gabriel-
Zisman); as a matter of fact, i is even a test functor for the modelizer

[Gabriel and Zisman 1967](M , W ) (which is one way of stating the main content of GZ’s book).
3) The two examples above are aspheric asphericity structures, and

such moreover that (M , W ) is (W-)modelizing. These extra features
however are not always present in the next example

(8) M = Aˆ, Mas = Aâs, A a small category,

which is indeed tautologically an asphericity structure, by taking the
canonical inclusion functor (which is fully faithful)

A→ Aˆ,

satisfying the conditions (i)(ii) above (p. 231). This shows moreover
that the corresponding notion of weak equivalence is the usual one, (I
forgot to state the similar fact in example 2), sorry):

W =WA.

The asphericity structure is aspheric iff A is aspheric. A functor

A′→ A

where A′ is another small category, is Mas-aspheric as a functor from A′ [p. 239]
to Aˆ, iff it is aspheric.

This last example suggests to call an asphericity structure (M , Mas)
“totally aspheric” if M is stable under finite products, and if the final
object of M , as well as the product of any two aspheric objects of M , is
again aspheric; in other words, if any finite product in M whose factors
are aspheric is aspheric. We have, in this respect:

Proposition 5. Let (M , Mas) be an asphericity structure, where M is stable
under finite products. The following conditions are equivalent:

(i) M is totally aspheric, i.e., eM and the product of any two aspheric
objects of M are aspheric.

(ii) There exists a small subcategory B of M, stable under finite products
(i.e., containing a final object eM of M and, with any two objects x
and y, a product x × y in M), and which generates the asphericity
structure (i.e., j : B ,→ M is Mas-aspheric).

(iii) There exists a small category A such that Aˆ is totally aspheric (def.
1, p. 170), and a Mas-aspheric functor A→ M.
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The proof is immediate. Of course, the asphericity structure in ex-
ample 3) is totally aspheric iff Aˆ is totally aspheric in the usual sense
referred to above.

77 Let The canonical functor (HotM ) →
(Hot).

(9) M= (M , Mas)

be an asphericity structure, which will be referred to also as merely M ,
when no ambiguity concerning Mas is feared. We’ll write

(10) HotM (or simply HotM ) =W−1M ,

where W of course is the set of weak equivalences in M . We are now
going to define a canonical functor

(11) HotM→ (Hot)W (or simply (Hot)
def
= W−1(Cat)),

defined at any rate up to canonical isomorphism. For this, take any
aspheric (namely, Mas-aspheric) functor

i : A→ M ,

and consider the composition

(12) M
i∗
−→ Aˆ

iA−→ (Cat).

The three categories in (12) are endowed respectively with sets of arrows [p. 240]
W , WA, W, and the two functors satisfy the conditions

(13) W = (i∗)−1(WA) and WA = (iA)
−1(W),

hence W = (iM ,i)−1(W), where

iM ,i : M → (Cat)

is the composition iAi∗. Therefore, we get a functor

(14) iM ,i : HotM → (Hot),

which a priori depends upon the choice of (A, i). If we admit strong
saturation of W, it follows that this functor is “conservative”, namely an
arrow in HotM is an isomorphism, provided its image in (Hot) is.

To define (11) in terms of (14), we have to describe merely a transitive
system of isomorphisms between the functors (14), for varying pair
(A, i). Therefore, consider two such (A, i) and (A′, i′), choose a small full
subcategory B of Mas containing both i(A) and i′(A′) (therefore, B is a
generating subcategory for the asphericity structure Mas), and consider
the inclusion functor j : B ,→ M . From prop. 1 b) it follows that the
functors

f : A→ B, f ′ : A′→ B
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induced by i, i′ are aspheric. Using this, and the criterion (i) of aspheric-
ity (prop. 1 on p. 214) we immediately get two isomorphisms

iM , j

iM ,i iM ,i′

' '

,

and hence an isomorphism

iM ,i
∼−→ iM ,i′ ,

depending only on the choice of B. As a matter of fact, it doesn’t
depend on this choice. To see this, we are reduced to comparing the
two isomorphisms arising from a B and a B′ such that B ⊂ B′, in which
case the inclusion functor g : B→ B′ is aspheric (prop. 1). We leave the
details of the verification (consisting mainly of some diagram chasing
and some compatibilities between the λi(F)-isomorphisms of prop. 1
on page 214) to the skeptical reader. As for transitivity for a triple
(A, i), (A′, i′), (A′′, i′′), it now follows at once, by using a B suitable
simultaneously for all three. [p. 241]

Having thus well in hand the basic functor (11) (which in case of
example 3) above with M = Aˆ, reduces to the all-important functor
HotA → (Hot)), we cannot but define an asphericity structure to be
modelizing, as meaning that this canonical functor is an equivalence
of categories. In the case of M = Aˆ above, this means that A is a
pseudo-test category – a relatively weak test notion still. It appears
as just as small bit stronger than merely assuming the pair (M , W ) to
be modelizing, i.e., to be a “modelizer”, namely assuming HotM to be
equivalent (in some way or other. . . ) to (Hot). Maybe we should be a
little more cautious with the use of the word “modelizing” though, and
devise a terminology which should reflect very closely the hierarchy of
progressively stronger test notions

(pseudo-test cat.) ⊃ (weak test cat.) ⊃
(test cat.) ⊃ (strict test cat.) ⊃ (contractors)

which gradually has peeled out of our earlier reflections, by pinpoint-
ing corresponding qualifications for an asphericity structure, as being
“pseudo-modelizing”, “weakly modelizing”, “modelizing”, “strictly mod-
elizing”, and ???. It now appears that a little extra reflection is needed
here – for today it’s getting a little late though!
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18.6 and 19.6.

78 It is about time now to get a comprehensive treatment, in the context Test functors and modelizing as-
phericity structures: the outcome (at
last!) of an easy “observation”.

of asphericity structures, of the relationships suggested time ago in the
“observation” and the “silly question” of section 46 (pages 94 and 95).
The former is concerned with test-functors from test categories to mod-
elizers, the second more generally with model-preserving maps between
modelizers, having properties similar to the map M → Aˆ stemming
from a test-functor. For the time being, as I found but little time for the
“extra reflection” which seems needed, only the first situation is by now
reasonably clear in my mind.

As no evident series of “asphericity structure”-notions has appeared,
paralleling the series of test-notions recalled by the end of last Monday’s
reflections (see above), I’m going to keep (provisionally only, maybe)
the name of a modelizing asphericity structure (M , Mas) as one for which
the canonical functor

(1) HotM =W−1M → (Hot)

(cf. (14), p. 240) is an equivalence. This notion at any rate is satisfactory [p. 242]
for formulating the following statement, which comes out here rather
tautologically, and which however appears to me as exactly what I had
been looking for in the “observation” recalled above:

Theorem 1. Let (M , Mas) be a modelizing asphericity structure, A a
pseudo-test category, and

i : A→ M

a functor, factoring through Mas (i.e., i(a) is aspheric for any a in A). We
assume moreover M has a final object eM . Then the six conditions (i) to
(ii”) of prop. 4 (p. 236) (the first of which expresses that i is Mas-aspheric)
are equivalent, and they are equivalent to the following condition:
(iii) The functor i∗ : M → Aˆ gives rise to a functor

HotM =W−1M → HotA =WA
−1Aˆ

(i.e., (ii’) of prop. 4 holds, namely i∗(W ) ⊂WA), and this functor
moreover is an equivalence of categories.

Proof. For the first statement (equivalence of conditions (i) to (ii”)),
by prop. 4 we need only show that the asphericity structure and A as
aspheric. But this follows from the assumptions and from the

Lemma. Let (M , Mas) be any modelizing asphericity structure, then a
final object of M is aspheric (i.e., the structure is “aspheric”). In particular,
if A is a pseudo-test category (i.e., (Aˆ, Aâs) is a modelizing asphericity
structure), then A is aspheric.

We only have to prove the first statement. It is immediate that eM
is a final object of W−1M = HotM (this is valid whenever we got a
localization W−1M of a category M with final object eM ), hence its
image in (Hot) =W−1(Cat) is a final object. Thus, we are reduced to
proving the following
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Corollary. Let (M , Mas) be any asphericity structure, consider the compo-
sition

ϕM : M → HotM =W−1 can.
−−→ (Hot),

then we get

Mas =
¦

x ∈ Ob M
�

�

� ϕM (x) is a final object of (Hot)
©

.

Indeed, using the construction of HotM → (Hot) in terms of a given
Mas-aspheric functor B → M , we are reduced to the same statement,
with (M , Mas) replaced by (Bˆ, Bâs). The statement then reduced to: the
object B in (Cat) is aspheric iff its image in (Hot) is a final object (this can
be viewed also as the particular case of the corollary, when M = (Cat), [p. 243]
Mas = (Cat)as). Now, this follows at once from strong saturation of W,
which (as we announced earlier) followed from Loc 1) to Loc 3) (and
will be proved in part V of the notes). The reader who fears a vicious
circle may till then restrict use of the theorem to the case when we
assume beforehand that eM and eAˆ are aspheric.

It is now clear that the six conditions of prop. 4 are equivalent, and
they are of course implied by (iii). Conversely, they imply (iii), as
follows from the fact that in the canonical diagram (commutative up to
canonical isomorphism)

HotM HotA

(Hot) ,

the two downwards arrows are equivalences, qed.
The theorem above seems to me to be exactly the “something very

simple-minded surely” which I was feeling to get burningly close, by
the end of March, nearly three months ago (p. 89); at least, to be “just
it” as far as the case of test-functors is concerned. We may equally view
this theorem as giving the precise relationship between the notion of a
weak test functor or a test functor (the latest version of which (in the
context of W-notions) appears in section 65 (def. 5 and 6, pp. 175 and
176)), and the notion of aspheric functors, more precisely of Mas-aspheric
functors, introduced lately (p. 233). This now is the moment surely
to check if the terminology of test functors and weak ones introduced
earlier, before the relevant notion of asphericity structures was at hand,
is really satisfactory indeed, and if needed, adjust it slightly.

So let again
i : A→ M

be a functor, with A small, and (M , Mas) an asphericity structure. We
don’t assume beforehand, neither that A is a test-category or the like,
nor that (M , Mas) be modelizing. We now paraphrase def. 5 (p. 175) of
weak test functors as follows:

[it looks like there are only two con-
ditions, but see 1)–3) below. . . ]Definition 1. The functor i above is called a pseudo-test functor, if it

satisfies the following three conditions:
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a) The corresponding functor i∗ : M → Aˆ is “model-preserving”, by [p. 244]
which is meant here that

W = (i∗)−1(WA),

and the induced functor

HotM =W−1M → HotA =WA
−1Aˆ

is an equivalence.

b) The functor iA : Aˆ → (Cat) is model preserving (for WA,W),
which reduces to the canonical functor

HotA =WA
−1Aˆ→ (Hot) =W−1(Cat)

being an equivalence (as we know already that WA = (iA)−1(W),
by definition of WA).

Condition b) just means that A is a pseudo-test category, i.e., that the
asphericity structure (Aˆ, Aâs) it defines is modelizing. By the corollary
of lemma above, it implies that A is aspheric (which corresponds to
condition c) of def. 5 in loc. cit.). Condition a) comes in two parts,
the first just meaning that i is Mas-aspheric – this translation being
valid, at any rate, in case we assume already A aspheric, and the given
asphericity structure is aspheric, i.e., M admits a final object eM , and
eM is aspheric. We certainly do want a pseudo-test functor to be (at the
very least) Mas-aspheric, so we should either strengthen condition a) to
this effect (which however doesn’t look as nice), or assume beforehand
(M , Mas) aspheric. At any rate, if we use the first variant of the definition,
condition a) in full then is equivalent (granting b)) to:

a’) The functor i is Mas-aspheric, and (M , Mas) is modelizing,
which in turn implies that (M , Mas) is aspheric. So we may as well
assume asphericity of (M , Mas) beforehand! At any rate, we see that the
notion we are after can be decomposed into three conditions, namely:

1) A is a pseudo-test category, i.e., (Aˆ, Aâs) is modelizing.

2) (M , Mas) is modelizing.

3) The functor i is Mas-aspheric.
The two first conditions are just conditions on A and on (M , Mas)

respectively, the third is just the familiar asphericity condition on i.
To get the notion of a weak test-functor (def. 5, p. 175) we have to be

just one step more specific in 1), by demanding that A be even a weak [p. 245]
test category, namely that the functor

i∗A = jA : (Cat)→ Aˆ

be model-preserving (which implies that iA is too).
Following def. 6 (p. 176), we’ll say that i is a test functor if i and the

induced functors i/a : A/a → A→ M are weak test functors. Using the
definition of a test category (def. 3, p. 173), we see that this just means
that the following conditions hold:
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1’) A is a test category.

2’) (M , Mas) is modelizing (i.e., same as 2) above).

3’) The functor i and the induced functors i/a : A/a → M are Mas-
aspheric.

This last condition merits a name by itself, independently of other
assumptions:

Definition 2. Let (M , Mas) be any asphericity structure, A a small cate-
gory, and i : A→ M a functor. We’ll say that i is totally Mas-aspheric (or
simply totally aspheric, if no confusion is feared), if i and the induced
functors i/a : A/a → M are Mas-aspheric (for any a in A). We’ll say that
i is locally Mas-aspheric (or simply locally aspheric) if for any a in A, the
induced functor i/a : A/a → M is Mas-aspheric.

Thus, i is totally aspheric iff it is aspheric and locally aspheric. On
the other hand, i is a test functor iff A is a test category, (M , Mas) is
modelizing, and i is totally aspheric.

In order for i to be locally aspheric, it is n.s. that i factor through Mas
and for any x in Mas, i∗(x) be aspheric over eAˆ ; if B is any subcategory of
M containing i(A) and generating the asphericity structure, it is enough
in this latter condition to take x in B.

Remarks. Thus, we see that the three gradations for the test-functor
notion, as suggested by the definitions 5 and 6 of section 65 and now by
the present context of asphericity structures, just amount to gradations
for the test conditions on the category A itself (namely, to be a pseudo-
test, a weak test or just a plain test -category), and a two-step gradation
on the asphericity condition for i (namely, that i be either just aspheric
in the two first cases, or totally aspheric in the third), while these two
asphericity conditions on i are of significance, independently of any
specific assumption which we may make on either A or (M , Mas). This [p. 246]
seems to diminish somewhat the emphasis I had put formerly upon the
notion of a test functor and its weak variant, and enhance accordingly
the notion of an aspheric functor (with respect to a given asphericity
structure) and the two related asphericity notions for i which spring
from it (namely, the notions of locally and of totally aspheric functors),
which now seem to come out as the more relevant and the more general
ones.

To be wholly happy, we still need the relevant reformulation, in
terms of asphericity structures, of the main result of section 65, namely
theorem 1 (p. 177) characterizing test functors with values in (Cat),
under the assumption that the objects i(a) be contractible. This theorem,
I recall, has been the main outcome of the “grinding” reflections taking
their start with the “observation” on p. 94 about ten days earlier. The
appreach then followed, as well as the contractibility assumption for
the objects i(a) made in the theorem, retrospectively look awkward
– it is clear that the relevant notions of asphericity structures, and of
aspheric functors into these, had been lacking. The theorem stated last
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(p. 242) looks indeed a lot more satisfactory than the former, except
however in one respect – namely that the asphericity condition on i, in
theorem 1 of p. 177, can be expressed by asphericity over eAˆ of just
i∗( 1) alone, rather than having to take i∗(x) for all x in some fixed
generating subcategory of (M , Mas) containing i(A). To recover such
kind of minimal criterion in a more general case than (Cat), we’ll have
to relate the notion of an asphericity structure with the earlier one of a
contractibility structure; the latter in our present reflections has faded
somewhat into the background, while at an earlier stage the homotopy
and contractibility notions had invaded the picture to an extent as to
overshadow and nearly bring to oblivion the magic of the “asphericity
game”.
[The rest of this page is unreadable in my scan of the typescript.]

20.6. [p. 247]

79 I would like now to write out the relationship between asphericity Asphericity structure generated by
a contractibility structure: the final
shape of the “awkward main result”
on test functors.

structures, and contractibility structures as defined in section 51 D)
(pages 117–119). First we’ll need to rid ourselves of the smallness
assumption for a generating category of an asphericity structure:

Proposition 1. Let M be a U-category (U being our basic universe), and
N any full subcategory. The following conditions are equivalent:

(i) There exists an asphericity structure Mas in M such that (a) Mas ⊃
N and (b) N admits a small full subcategory N0 generating the
asphericity structure, i.e., such that the inclusion functor i0 from N0
to M be Mas-aspheric.

(ii) There exists a small full subcategory N0 of N, such that for any x
in N, i∗0(x) in N0̂ be aspheric, where i0 : N0→ M is the inclusion
functor.

(iii) The couple (N , N) is an asphericity structure.
Moreover, when these conditions are satisfied, the asphericity structure
Mas in (i) is unique.

Of course, we’ll say it is the asphericity structure on M generated by
the full subcategory N of M , and the latter will be called a generating
subcategory for the given asphericity structure.

The proposition is a tautology, in view of the definitions and of prop.
1 (p. 232) and its corollary. The form (ii) or (iii) of the condition shows
that it depends only upon the category N , not upon the way in which N
is embedded in a larger category M . We may call a category N satisfying
condition (iii) above an aspherator, by which we would like to express
that this category represents a standard way of generating asphericity
structures, through any full embedding of N into a category M . This
condition is automatically satisfied if N is small, more generally it holds
if N is equivalent to a small category. It should be kept in mind that the
condition depends both on the choice of the basic universe U and on
the choice of the basic localizer W in the corresponding large category
(Cat). It looks pretty sure that the condition is not always satisfied (I
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doubt it is for N = (Sets) say), but I confess I didn’t sit down to make
an explicit example.

Let now (M , Mc) be a contractibility structure, such that there exists [p. 248]
a small full subcategory C of M which generates the contractibility
structure, i.e., such that (a) the objects of C are “contractible”, i.e., are
in Mc and (b) any object of Mc is C-contractible (i.e., contractible for
the homotopy interval structure admitting the intervals made up with
objects of C as a generating family). Independently of any smallness
assumption upon C , we gave in section 51 D) (p. 118), under the name
of “basic assumption” (Bas 4), the n.s. condition on a full subcategory
C of a given category M , in order that C can be viewed as a generating
set of contractible objects, for a suitable contractibility structure

Mc ⊂ Ob M

in M (which is uniquely defined by C). It turns out that in case C
contains a final object of M , and is stable under binary products in M ,
the condition (Bas 4) depends only upon the category structure of C ,
and not upon the particular way this category is embedded in another
one M .

In loc. sit. we did not impose, when defining a contractibility structure,
a condition that there should exist a small set of generators for the struc-
ture. From now on, we’ll assume that the (possibly large) categories M
we are working with are U-categories, and that “contractibility structure”
means “U-contractibility structure”, namely one such that M admit a
small full subcategory C , generating the structure.

We recall too that in the definition of a contractibility structure
(M , Mc), it has always been understood that M is stable under finite
products.

Proposition 2. With the conventions above, let (M , Mc) be any con-
tractibility structure. Then:

a) The full subcategory Mc of M generates an asphericity structure Mas
in M (cf. prop. 1).

b) Any small full subcategory C of M which generates the contractibil-
ity structure and such that Cˆ be totally aspheric, generates the
asphericity structure Mas, i.e., the inclusion functor i : C → M is
Mas-aspheric.

c) The asphericity structure Mas is totally aspheric (cf. prop. 5, p. 239).

The first statement a) can be rephrased, by saying that the category [p. 249]
Mc of contractible objects of M is an aspherator. To prove this, we use
the fact that Mc is stable under finite products, which implies that we
can find a small full subcategory C of Mc, stable under such products,
and which generates the contractibility structure. The stability condition
upon C implies that Cˆ is totally aspheric. Therefore, a) and b) will be
proved, if we prove that any small full subcategory C of Mc, such that
Cˆ is totally aspheric, satisfies the conditions of prof. 1 (with N = Mc),
namely that for any x in Mc, i∗(x) is an aspheric object of Cˆ, where
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i : C → M (or C → Mc, equivalently) is the inclusion functor. But from
the fact that i∗ commutes with finite products, it follows that i∗(x) is
contractible in Cˆ, for the homotopy interval structure admitting as
a generating family of homotopy intervals the intervals in Cˆ made
up with objects of C . The assumption of total asphericity upon Cˆ
implies that these homotopy intervals are aspheric over eCˆ , and from
this follows (as already used a number of times earlier) that i∗(x) too
is aspheric over eCˆ , and hence aspheric as eCˆ is aspheric (because
of the assumption of total asphericity). This proves a) and b), and c)
follows via prop. 5 (p. 239).

We’ll call of course the asphericity structure described in prop. 2 the
asphericity structure generated by the given contractibility structure.

Remark 1. Clearly, not every asphericity structure can be generated by
a contractibility structure, as a necessary condition (presumably not a
sufficient one) is total asphericity. We don’t expect either, in case it can,
that the generating contractibility structure is uniquely defined; however,
we do expect in this case that there should exist a canonical (largest)
choice – we’ll have to come back upon this in due course. For the time
being, let’s only remark that all modelizing asphericity structures met
with so far, it seems, do come from contractibility structures.

It occurs to me that the last statement was a little hasty – after all we
have met with test categories which are not strict ones, hence (Aˆ, Aâs)
is a modelizing asphericity structure (it would be enough even that A
be a pseudo-test category), which isn’t totally aspheric, and a fortiori
does not come from a contractibility structure. Thus, I better correct [p. 250]
the statement, to the effect that, it seems, all modelizing totally as-
pheric asphericity structures met with so far are generated by suitable
contractibility structures.

Let M be a category endowed with a contractibility structure Mc,
hence also with an asphericity structure Mas, and let

i : A→ M

be a functor from a small category A to M . We want to give n.s. condi-
tions for i to be a test functor, in terms of homotopy notions in M and
in Aˆ. To this end, it seems necessary to refresh memory somewhat and
recall some relevant notions which were developed in part III of our
notes (sections 54 and 55).

It will be convenient to call an object F of Aˆ locally aspheric (resp.
totally aspheric), if its product in Aˆ by any object of A, and hence also its
product by any aspheric object of Aˆ, is aspheric (resp. and if moreover
F itself is aspheric). With this terminology, Aˆ is totally aspheric iff every
aspheric object of Aˆ is totally aspheric, and if moreover A is aspheric,
i.e., eAˆ is aspheric. Note that F is locally aspheric iff the map F → eAˆ
is aspheric, or what amounts to the same, if this map is universally in
WA, or equivalently, if the corresponding functor A/F → A is aspheric. If
A itself is aspheric, and in this case only, this condition implies already
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that F is aspheric, i.e., that F is totally aspheric. We’ll denote by

At̂ot.as (resp. Al̂oc.as)

the full subcategory of Aˆ made up with the totally aspheric (resp. locally
aspheric) objects of Aˆ. Thus we get

At̂ot.as = Al̂oc.as ∩ Aâs

Al̂oc.as Aâs .

Now recall that (section 54) in terms of the set WA of weak equiva-
lences in Aˆ, we constructed a homotopy structure on Aˆ, more specifi-
cally a homotopy interval structure, admitting as a generating family of
homotopy intervals

I= (I ,δ0,δ1)

the set of intervals such that I be a locally aspheric object of Aˆ, i.e.,

I ∈ Ob Al̂oc.as.

Let [p. 251]
h= hWA

be this homotopy structure, hence a corresponding notion of h-equivalence
or h-homotopy∼

h
for arrows in Aˆ, a corresponding notion of h-homotopisms,

i.e., a set of arrows

W h ⊂ Fl Aˆ, such that W h ⊂WA,

a notion of h-homotopy interval (namely an interval such that δ0 and
δ1 be h-homotopic, for which it is sufficient, but not necessary, that I be
locally aspheric. . . ), and last not least, a notion of contractible objects,
making up a full subcategory

Aĉ ⊂ Aˆ, such that Aĉ ⊂ Al̂oc.as.

The latter inclusion, in case A is aspheric, can be equally written

Aĉ ⊂ At̂ot.as (if A aspheric).

Coming back now to the contractibility structure (M , Mc), and a
functor i : A→ M , we are interested in the corresponding functor

u= i∗ : M → M ′ = Aˆ,

where both members will be viewed as being endowed with their respec-
tive homotopy structures – the one of M being of the most restrictive
type envisioned in section 51, namely it is defined in terms of a con-
tractibility structure, whereas the one of M ′ is a priori defined in terms
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of a homotopy interval structure, but not necessarily in terms of a con-
tractibility structure. Now this situation has been described in section
53, as far as compatibility conditions with homotopy structures are
concerned, independently by the way of any special assumption on M ′

(such as being a category of presheaves on some small category A), or
on the functor u, except for commuting to finite products. Compatibility
of u with the homotopy structures on M , M ′ can be expressed by either
one of the following six conditions, which are all equivalent:
H 1) u transforms homotopic arrows of M into homotopic arrows in

M ′.

H 2) u transforms homotopisms in M into homotopisms in M ′.

H 3) u transforms any homotopy interval I = (I ,δ0,δ1) in M into a
homotopy interval in M ′ (i.e., if two sections of an object I over
eM are homotopic, so are u(δ0) and u(δ1)).

H 3’) Same as H 3), but I being restricted to be in a given family of
homotopy intervals, generating for the homotopy structure in M .

H 4) u transforms any contractible object x of M into a contractible [p. 252]
object of M ′.

H 4’) Same as H 4), with x being restricted to be in a given subcategory
C of M , generating for the contractibility structure of M .

Remark 2. It should be noted that the condition upon C stated in H 4’),
namely that the (given) C should be generating for the contractibility
structure Mc of M , means exactly two things: (a) C ⊂ Mc, and (b) the
family of all intervals I = (I ,δ0,δ1) made up with objects of C (these
intervals are necessarily homotopy intervals for the homotopy structure
of M) generates the homotopy structure of M , i.e., two arrows in M are
homotopic iff they can be joined by a chain of arrows, two consecutive
among which being related by an elementary homotopy involving an
interval of that family. This reminder being made, it follows that C is
equally eligible for applying criterion H 3’), which means that we get
still another equivalent formulation of H 4’), by demanding merely that
for any two sections δ0,δ1 of x over eM , the corresponding sections of
u(x) should be homotopic.

After these preliminaries, we can state at last the following general-
ization of the main result of section 65 (th, 1, p. 176), concerning test
functors with values in (Cat):

Theorem 1. Let (M , Mc) be a contractibility structure (cf. p. 248), C a
small full subcategory of M generating the contractibility structure (cf.
remark 2 above), A a small category, and i : A→ M a functor, factoring
through Mc. We consider M as endowed equally with the asphericity
structure Mas generated by Mc (cf. prop. 2). Then the following conditions
on i are equivalent:

(i) The functor i∗ : M → Aˆ deduced from i is compatible with the
homotopy structures on M and on Aˆ (cf. pages 250–251 for the
latter), i.e., i∗ satisfies either one of the six equivalent conditions
H 1) to H 4’) above.
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(ii) The functor i∗ is locally Mas-aspheric (def. 2, p. 245), i.e., for any x
in Mas, i∗(x) is a locally aspheric object of Aˆ (cf. p. 250), i.e., i∗(x)
is aspheric over eAˆ .

(iii) Same as (ii), but with x restricted to be in C.

Corollary 1. In order for i to be totally Mas-aspheric (def. 2, p. 245) it [p. 253]
is n.s. that A be aspheric, and that the equivalent conditions of th. 1 be
satisfied.

Indeed, it follows at once from the definitions and from the fact that
the asphericity structure (M , Mas) is aspheric, i.e., that eM is aspheric,
that i is totally Mas-aspheric iff it is locally Mas-aspheric (i.e., condition
(ii)), and if moreover A is aspheric, hence the corollary.

Corollary 2. In order for i to be a test functor, it is n.s. that A be a test
category, that (M , Mas) be modelizing, and that the equivalent conditions
of theorem 1 be satisfied.

This follows from cor. 1 and the reformulation of the notion of a
test-functor, given p. 245.

This corollary contains the main result of section 65 as a particular
case, when taking M = (Cat)with the usual contractibility structure, and
C = { 1}, except that in loc. sit. we did not have to assume beforehand
that A be a test category, but only that A is aspheric: this condition, plus
condition (iii) above (namely, i∗( 1) locally aspheric) implies already
that A is a test category. In order to get also this extra result, we state
still another corollary:

Corollary 3. Assume

I= (I ,δ0,δ1,µ), with I ∈ Ob C ,

is a multiplicative interval in M, i.e., an interval endowed with a multi-
plication µ, admitting δ0 as a left unit and δ1 as a left zero element (cf.
section 49, p. 108 and section 51, p. 120 – where such an interval was
provisionally called a “contractor”). Assume moreover that for any x in

Mc, the two compositions x → eM I
δ0,δ1

are distinct (which is the case
for instance if Ker(δ0,δ1) exists in M and is a strict initial object ∅M of M
(i.e., an initial object such that any map x →∅M in M is an isomorphism),
and moreover ∅M /∈ Mc). Then the conditions of th. 1 imply that A is a
local test category, and hence a test category provided A is aspheric.

Indeed, i∗(I) is a multiplicative interval in Aˆ which is locally aspheric,
and (as follows immediately from the assumptions on I) separating –
hence Aˆ is a local test category.

This array of immediate corollaries of th. 1 do convince me that this [p. 254]
statement is indeed “the” natural generalization of the “awkward” main
result of section 51. All we have to do is to prove theorem 1 then.

The three conditions of theorem 1 can be rewritten simply as
(i) i∗(C) ⊂ Aĉ (using H 4’),
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(ii) i∗(Mas) ⊂ Al̂oc.as,

(iii) i∗(C) ⊂ Al̂oc.as,
and because of

C ⊂ Mas, Aĉ ⊂ Al̂oc.as,

it follows tautologically that (i) and (ii) both imply (iii). On the other
hand, (iii)⇒ (i) by criterion H 3’), and the definition of the homotopy
interval structure of Aˆ in terms of Al̂oc.as. Thus, we are left with proving
(i)⇒ (ii). But (i) can be rewritten as

i∗(Mc) ⊂ Aĉ ,

which implies

(*) i∗(Mc) ⊂ Al̂oc.as.

That the latter condition implies (ii) now follows from the corollary to
the following tautology (with N = Mc), which should have been stated
as a corollary to prop. 1 above (p. 247):

Lemma. Let (M , Mas) be an asphericity structure, generated by the full
subcategory N of M, let A be a small category, and i : A→ M a functor
factoring through N. Then i is Mas-aspheric iff for any x in N, i∗(x) is
an aspheric object of Aˆ.

Corollary. The functor i is locally Mas-aspheric (resp. totally Mas-aspheric)
iff i∗(N) ⊂ Al̂oc.as (resp. i∗(N) ⊂ At̂ot.as).

Remark 3. Assume in theorem 1 that A is totally aspheric. Then condi- [p. 255]
tion (ii) just means that i is Mas-aspheric, and condition (iii) that i∗(x)
is aspheric for any x in C (as we got Al̂oc.as = Aâs = At̂ot.as). If moreover
C satisfies the condition of cor. 2 above, then these conditions imply
that A is a strict test category, and if (M , Mas) is modelizing, that i is
a test functor as stated in corollary 2. These observations sum up the
substance of the restatement of the main result of section 51, given in
theorem 2 of p. 178, in the present general context.

80 In the preceding section, we associated to any contractibility structure Reminders and questions around
canonical modelizers.Mc on a category M , an asphericity structure Mas “generated” by the

former in a natural sense. It is this possibility of associating (in a topolog-
ically meaningful way) an asphericity structure to a given contractibility
structure, which singles out the latter structure type, among the three
essential distinct “homotopy flavored” kind of structures developed at
length in sections 51 and 52, in preference to the two weaker notions
of a homotopy interval structure, and of a homotopism structure (or,
equivalently, or a “homotopy relation”). The association
(*)
Mc 7→ Mas (↔ corresponding notion of weak equivalence Wa in M)

finally carried through in the last section, had been foreshadowed earlier
(cf. p. 110 and p. 142), but was pushed off for quite a while, in order to
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“give precedence” to the other approach in view by then towards more
general test functors than before, leading up finally to the “awkward
main result” of section 65. In (*), as the asphericity structure Mas is
totally aspheric and a fortiori aspheric, Mas and the corresponding notion
of weak equivalence Wa =WMc

(which of course should not be confused
with the notion of homotopism associated to Mc, giving a considerably
smaller set of arrows Wc) determine each other mutually. Till the writing
up of section 51, it was the aspect “weak equivalence” Wa which was
in the fore, whereas the conceptually more relevant aspect of “aspheric
objects” did not appear in full light before I was through with grinding
out the “awkward approach” (cf. p. 188).

It is time now to remember the opposite association

(**) Wa 7→ homotopy structure hWa
,

associating to a notion of weak equivalence in M , i.e., to any saturated [p. 256]
subset

Wa ⊂ Fl(M),

a corresponding homotopy structure hWa
, a homotopy interval structure

as a matter of fact (section 54, p. 131). Here we are primarily interested
of course in the case when Wa is associated to a given asphericity struc-
ture Mas in M , which we may as well assume to be aspheric, so to be sure
that Wa and Mas determine each other. I recall that the weak interval
structure hWa

can be described by the generating family of homotopy
intervals, consisting of all intervals

I= (I ,δ0,δ1)

such that I → eM be universally in Wa, i.e., such that for any object x in
M , the projection

x × I → x

be in Wa. For pinning down further the exact relationship between
contractibility structures (which may be viewed as just special types of
homotopy interval structures) and asphericity structures, we are thinking
of course more specifically of totally aspheric asphericity structures, in
view of prop. 2 c) of the preceding section (p. 248). It is immediate in
this case that for an object I of M , I → eM is in UWa (i.e., is universally
in Wa) if (and only if, of course) I is aspheric, i.e., I → eM is in Wa.
The most relevant questions which come up here, now seem to me the
following:

1) If Mas is generated by a contractibility structure Mc, is the ho-
motopy structure hWa

associated to Mas (indeed, a homotopy interval
structure as recalled above) also the one defined by Mc, using intervals
in Mc as a generating family of homotopy intervals?

2) Conversely, what extra conditions on a given asphericity structure
Mas on M are needed (besides total asphericity) to ensure that the
corresponding homotopy structure hWa

on M comes from a contractibility
structure Mc (i.e., admits a generating family of homotopy intervals
which are contractible), and that moreover Mc generates Mas? [p. 257]
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Before looking up a little these questions, I would like however to
carry through at once the “idyllic picture” of canonical modelizers,
foreshadowed in section 50 (p. 110), as I feel that this should be possible
at present at no costs. Taking into account the reflections of the later
sections 57 and 59, we get the following set-up.

Let M be a U-category, stable under finite products, endowed with a
functor

(1) πM
0 or π0 : M → (Sets),

on which we make no assumptions for the time being. We are thinking
of the example when M is a totally 0-connected category (cf. prop. on
page 142 for this notion) and π0 is the “connected components” functor,
or when M = (Spaces) and π0 corresponds to taking sets of arc-wise
connected components. According to section 54 (p. 131), we introduce
a corresponding homotopy interval structure h on M , admitting the
generating family of homotopy intervals made up with those intervals
I= (I ,δ0,δ1) for which I → eM is “universally in Wπ0

”, namly

π0(x × I)→ π0(x) bijective for any x in M .

(Under suitable conditions on π0, this homotopy interval structure h
on M is the widest one “compatible with π0” in the sense of page 130,
namely such that π0 transforms homotopisms into isomorphisms – cf.
proposition p. 133.) We are interested in the case when this homotopy
structure on M can be described by a contractibility structure Mc on
M , which is then unique of course, hence well-defined in terms of π0.
Therefore, the asphericity structure generated by Mc is equally well
defined in terms of π0, and likewise the corresponding notion Wa of
“weak equivalence”. We then get a canonical functor

(2) HotM =W−1
a M → (Hot)

(section 77, p. 239). We’ll have to find still a suitable extra condition
on the functor π0, implying that this functor is canonically isomorphic
deduced from (2) by composing with the canonical functor [p. 258]

(3) (Hot)
π0−→ (Sets),

which can be defined using a very mild extra condition on the basic
localizer W (namely, f ∈W implies π0( f ) bijective, cf. condition L a)
on page 165). Thus, there seems to be a little work ahead after all –
in order to deduce something like a one to one correspondence, say,
between pairs (M ,π0) satisfying suitable conditions, and certain types
of asphericity structures (M , Mas) (which will have to be assumed totally
aspheric, and presumably a little more still).

The case of special interest to us is the one when the asphericity
structure we get on M in terms of the functor πM

0 is modelizing, hence
even strictly modelizing (i.e., (M , Wa) is a strict modelizer), as (M , Mas)
is totally aspheric. If we assume moreover that the category M is totally
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0-connected and that π0 is just the “connected components” functor,
then the modelizing asphericity structure we got on M is canonically
determined by the mere category structure of M , and deserves therefore
to be called the canonical (modelizing) asphericity structure on M . A
canonical modelizer (M , W ) is a modelizer which can be obtained from
a canonical asphericity structure (M , Mas) by W =Wa = corresponding
set of weak equivalences (for Mas).

Remark. The slight sketchy definition we just gave for the canonical
modelizing asphericity structures, and accordingly for the canonical
modelizers, is essentially complete. The point however which requires
clarification is the relationship between the “connected components”
functor on the corresponding (totally 0-connected) category M , and the
composition of the canonical functors (2) and (3).

25.6. [p. 259]

81 I didn’t find much time since Monday for mathematical pondering – Contractibility as the common ex-
pression of homotopy, asphericity
and 0-connectedness notions. (An
overall review of the notions met
with so far.)

the little I got nonetheless has been enough for convincing myself that
things came out more nicely still than I expected by then. One main
point being that, provided the basic localizer satisfies the mild extra
assumption Loc 4) below, any contractibility structure Mc on a category
M with finite products can be recovered, in the simplest imaginable
way, in terms of the associated asphericity structure Ma, or equivalently,
in terms of the corresponding set Wa of “weak equivalences”; namely,
Mc is the set of contractible objects in M , for the homotopy interval
structure defined in terms of all intervals made up with objects of Ma.
This implies that the canonical map

(1) Homtp4(M) = Cont(M) ,→W-Asph(M),

from the set of contractibility structures on M to the set of asphericity
structures on M relative to the basic localizer W (or “W-asphericity
structures”), is injective. In other words, we may view a contractibility
structure (on a category M stable under finite products), which is an
absolute notion (namely independent of the choice of a basic localizer
W), as a “particular case” of a W-asphericity structure (depending on
the choice of W), namely as “equivalent” to a W-asphericity structure,
satisfying some extra conditions which we’ll have to write down below.

This pleasant fact associates immediately with two related ones. The
first is just a reminder of our reflections of sections 51 and 52, namely
that the set of contractibility structures on M can be viewed as one
among four similar sets of “homotopy structures” on M

(2) Homtp4(M) ,→ Homtp3(M) ,→ Homtp2(M)
∼−→ Homtp1(M),

corresponding to the four basic “homotopy notions” met with so far,
namely (besides contractibility structure Homtp4) the homotopy inter-
val structures (Homtp3), the homotopism structures (Homtp2), and the
homotopy relations between maps (Homtp1). In the sequel, if

(3) Mc ⊂ Ob M
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is a given contractibility structure on M , we’ll denote by

(4) Jc ⊂ Int(M), Wc ⊂ Fl(M), Rc ⊂ Fl(M)× Fl(M)

the corresponding other three homotopy structures on M , where Int(M)
denotes the set of all “intervals” I= (I ,δ0,δ1) in M , i.e., objects of M
endowed with two sections δ0,δ1 over the final object eM of M .

The second fact alluded to above is concerned with behavior of the [p. 260]
W-asphericity notions, for varying W, more specifically for a pair

(5) W ⊂W′ ⊂ Fl((Cat))

of two basic localizers, W and W’, such that W “refines” W’. It then
follows that for any small category A, we have

(6) WA ⊂W′A,

and accordingly, that for any W-asphericity structure

(7) MW ⊂ Ob M

on M, there exists a unique W′-asphericity structure MW′ on M,

(8) MW ⊂ MW′ ,

such that for any small category A, a functor A→ M which is MW-aspheric
(with respect to W) is also MW′ -aspheric (with respect to W′). This is
merely a tautology, which we didn’t state earlier, because there was no
compelling reason before to look at what happens when W is allowed
to vary. Thus, we get a canonical map

(9) W-Asph(M)→W’-Asph(M),

with the evident transitivity property for a triple

W ⊂W′ ⊂W′′,

in other words we get a functor

W 7→W-Asph(M)

from the category of all basic localizers (the arrows between localizers
being inclusions (5)) to the category of sets. The relation of the canonical
inclusion (1) with this functorial dependence of W-Asph(M) on W is
expressed in the commutativity of

Homtp4(M) = Cont(M)

W-Asph(M) W’-Asph(M) .

It is time to write down the “mild extra assumption” on W needed to
ensure injectivity of (1), namely the familiar enough condition:
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Loc 4) The set W ⊂ Fl((Cat)) of weak equivalences in (Cat) is “compat-
ible” with the functor π0 : (Cat)→ (Sets), i.e.,

(10) f ∈W⇒ π0( f ) bijective.

(Cf. pages 213–214 for the conditions Loc 1) to Loc 3).) [p. 261]
Among all basic localizers satisfying this extra condition, there is one

coarsest of all, which we’ll call W0, defined by the condition

(11) f ∈W0⇔ π0( f ) bijective.

for any map f in (Cat). It is clear too that among all basic localizers
there is a finest, which we’ll call W∞, and which can be described as

(12) W∞ =⋂W, intersection of the set of all basic
localizers in (Cat).

We’ll see in part V of the notes that W∞ is none else than just the usual
[see also Cisinski 2004]notion of weak equivalence we started with, at the very beginning of

our reflections (cf. section 17). Thus, functoriality of (1) with respect
to W implies that (1) for arbitrary W can be described in terms of the
particular case W∞, as the composition

(13) Cont(M) ,→W∞-Asph(M)→W-Asph(M).

On the other hand, the strongest version of injectivity of (1), for different
W’s, is obtained for W0, i.e., taking the map

(14) Cont(M) ,→W0-Asph(M).

This last map seems to me of special significance, because the two
sets it relates correspond to “absolute” notions (not depending on the
choice of some W), and which moreover are both “elementary”, in the
sense that they do not depend on anything like consideration of non-
trivial homotopy or (co)homology invariants of objects of (Cat). As a
matter of fact, the notion of a contractibility structure corresponds to
the algebraic translation of one of the most elementary and intuitive
topological notions, namely contractibility; whereas the notion of a W0-
asphericity structure can be expressed just as “elementarily” in terms of
the functor

(15) π0 : (Cat)→ (Sets),

which we may call the “basic” connected components-functor, which is
nothing but the algebraic counterpart of the basic intuitive notion of
connected components of a space. We’ll denote by

(16) M0 = MW0
⊂ Ob M , W0 ⊂ Fl(M)

the set of W0-aspheric objects and the set of W0-weak equivalences,
associated to a given contractibility structure Mc on M . The objects of
M0 merit the name of 0-connected objects of M (with respect to Mc), and [p. 262]
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the arrows of M in W0 merit the name of 0-connected maps (with respect
26.6. This name for maps is improper
though, as it rather suggests the property of
being “universally in W0”.

to Mc). These two notions of 0-connectedness determine each other in
an evident way (valid for any W-aspheric W-asphericity structure, for
any basic localizer W. . . ). Explicitly, this can be expressed by

(17)

¨

x ∈ M0⇔
�

(x → eM ) ∈W0

�

( f : x → y) ∈W0⇔
�

π0(M0/x)→ π0(M0/y) bijective
�

.

The injectivity of (1) can be restated by saying that any contractibility
structure Mc on a category M (with finite products) can be recovered in
terms of the corresponding notion of 0-connected objected objects of M ,
or, equivalently, in terms of the corresponding notion of 0-connected
maps in M . Still another way of phrasing this result, is in terms of the
canonical functor

M →W−1
0 M = Hot(M ,M0),W0

→ HotW0
=W0

−1(Cat) ≈−→ (Sets),

which is a functor

(18) π0 : M → (Sets)

canonically associated to the contractibility structure. We may say that
the contractibility structure Mc can be recovered in terms of the correspond-
ing functor π0, more accurately still, in terms of the isomorphism class
of the latter. Indeed, in terms of this functor π0, we recover M0 and W0
by the relations:

M0 =
�

x ∈ Ob M
�

� π0(x) is a one-point set
	

,

W0 =
�

f ∈ Fl(M)
�

� π0( f ) is bijective
	

.
(19)

This shows that the “nice” main fact mentioned at the beginning of
today’s notes, namely (essentially) injectivity of (1) (and, moreover
an explicit description of a way how to recover an Mc in terms of the
corresponding W-asphericity structure) is not really dependent on rela-
tively sophisticated notions such as “basic localizers” and corresponding
“asphericity structures”, but can be viewed as an “elementary” result
(namely independent of any consideration of “higher” homotopy or
homology invariants, apart from π0) about the relationship between
contractibility structures, and corresponding 0-connectedness notions;
the latter may at will be expressed in terms of either one of the three
structural data

(20) M0, W0, or π0.

This relationship has been “in the air” since section 50 (p. 109–110), [p. 263]
and I kind of turned around it consistently up to section 60, without
really getting to the core. One reason for this “turning around” has
been, I guess, that I let myself be distracted, not to say hypnotized, by
the “canonical” π0 functor on a category M (which makes really good
sense only when M is “totally 0-connected” as a category, a condition
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which should mean, more or less I suppose, that the 0-connected objects
of M , defined in terms of the mere category structure of M , define a
W0-asphericity structure on M). Even after realizing (in section 59) that
one should generalize the description of a contractibility structure in
terms of a “connected components functor” π0, to the case of a functor
π0 : M → (Sets) given beforehand, and satisfying suitable restrictions
(which I did not try to elucidate), I still was under the impression that the
contractibility structures one could get this way must be of an extremely
special nature. In order to become aware of the fact that this is by no
means so, namely that any contractibility structure could be obtained
from a suitable functor π0, it would have been necessary to notice that
such a structure Mc defines in a natural way a functor π0. There was
indeed the realization that Mc should allow to define a notion of weak
equivalence (cf. page 136), but it wasn’t clearly realized by then that at
the same time as a notion of weak equivalence W in M , we should also
get a canonical functor

M →W−1M → (Hot),

namely something a lot more precise still than a functor with values
in (Sets) merely! But rather than push ahead in this direction, I then
decided (p. 138) that it would be “unreasonable” to go on still longer
pushing of investigation of test functors with values in (Cat), following
the approach which had been on my mind for quite a while by then, and
finally sketched (with the promise of a corresponding generalization
of the former “key result” on test functors) in section 47. Retrospec-
tively, the whole “grinding” part III of these notes now looks as a rather
heavy and long-winded digression, prompted by this approach to still a
particular case of test functors (namely with values in (Cat), and more
stringently still, factoring through (Cat)as).

This particular case has been of no use in the present part IV of
the notes, developing the really relevant notions in terms of asphericity
structures. Technically speaking, it now appears that most of the reflections
of part III are superseded by part IV – the main exception being the
development of the various homotopy notions in sections 51 and 52. [p. 264]
On the other hand, it is clear that the main ideas which are coming to
fruition in part IV all originated during the awkward grinding process
in part III!

The “modelizing story” so far has turned out as the interplay of three
main sets of notions. One is made up with the “test-notions”, centering
around the notion of a test-category, as one giving rise to the most elemen-
tary type of “modelizers”, namely the so-called “elementary modelizers”
(Aˆ,WA). This was developed in part II (while part I was concerned
with the initial motivation of the reflections, namely stacks, forgotten
for the time being!). The second set of notions concerns the so-called
“homotopy notions”, developed at some length in sections 51 to 55, sum-
marized in the diagram (2) above. They constitute the main technical
content of part III of the notes, with however one major shortcoming:
the relationship between these notions, and 0-connectedness notions
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(20), was only partially understood in part III, namely as a one-way
relationship merely, associating to suitable 0-connectedness notions in
a category M , a corresponding homotopy structure in M . The third set
of notions may be called “asphericity notions”, they center around the
notions of aspheric objects and aspheric maps (in a category endowed
with a so-called asphericity structure), and more specifically around the
notion of an aspheric map in (Cat), whose formal properties turn out to
be the key for the development of a theory of asphericity structures. The
first and the third set of notions (namely test notions and asphericity
notions) depend on the choice of a “basic localizer” W in (Cat), whereas
the second set, namely homotopy notions, is “absolute”, i.e., does not
depend on any such choice, nor on any knowledge of homotopy or
(co)homology invariants.

Whereas the test notions are essentially concerned with modelizers,
namely getting descriptions of the category of homotopy types (Hot)
in terms of elementary modelizers Aˆ (as being WA

−1Aˆ), it appears
that the homotopy notions, as well as the asphericity notions, are in-
dependent of any modelizing notions and assumptions. In a deductive
presentation of the theory, the test notions would come last, whereas
they came first in these notes – as an illustration of the general fact that
the deductive approach will present things roughly in opposite order in
which they have been discovered! The test notions, as an outcome of
the attempt to get a picture of modelizers, have kept acting as a constant
guideline in the whole reflection, even though technically speaking they
are “irrelevant” for the development of the main properties of homotopy [p. 265]
and asphericity notions and their interplay.

By the end of part IV, there has been some floating in my mind as
to whether which among the two structures, namely contractibility
structures or asphericity structures, should be considered as “the” key
structure for an understanding of the modelizing story. There was a
(justified) feeling, expressed first at the beginning of section 67, that
in some sense, asphericity structures were “more general” than con-
tractibility structures, which caused me for a while to view them as
the more “basic” ones. I would be more tempted at present to hold
the opposite view. The notion of a contractibility structure now appears
as a kind of hinge between the two main sets of notions besides the test
notions, namely between homotopy notions and asphericity notions. On
the one hand, as displayed in diagram (2), the notion of a contractibility
structure appears as the most stringent one among the four main types
of homotopy structures. On the other hand, by (1) it can be equally
viewed as being a special case of an asphericity structure, and as such it
gives rise to (and can be expressed by) either one of the following four
asphericity-flavored data on a category M (for any given basic localizer
W satisfying Loc 4)):

[also listed, but scratched out in the
typescript, was π0 : M → (Sets)]

(21)

¨

MW ⊂ Ob M , WMc
or simply WM ⊂ Fl(M)

ϕW
M or ϕM : M → HotW.
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Restricting to the case when W is either W0 or W∞, we get the corre-
sponding structures on M , namely the three structures M0, W0, π0 of
(20) plus the three extra structures:

(22)
M∞ = MW∞ ⊂ Ob M , W∞ = (W∞)M ⊂ Fl(M),

ϕM : M → (Hot) =W∞−1(Cat),

which can be referred to as ∞-connected objects of M , ∞-connected
arrows of M , and the “canonical functor” from M to (Hot). Putting
together (4), (20), (22), we see that a contractibility structure Mc gives
rise to ten different structures (including Mc itself) and is determined
by each one of these, [p. 266]
(23)






Mc ⊂ Ob M , Jc ⊂ Int(M), Wc ⊂ Fl(M), Rc ⊂ Fl(M)× Fl(M)
M0 ⊂ Ob M , W0 ⊂ Fl(M), π0 : M → (Sets)
M∞ ⊂ Ob M , W∞ ⊂ Fl(M), ϕM : M → (Hot),

namely: contractible objects, homotopy intervals, homotopisms, homotopy
relation for maps, 0-connected objects, 0-connected maps,† the connected †This name is inadequate, cf. note p. 262.

components functor, ∞-connected (or “aspheric”, more accurately W∞-
aspheric) objects, W∞-equivalences (or simply “weak equivalences”),
and the (would-be “modelizing”) canonical functor from M to homotopy
types. Moreover, it should be remembered that, just as the structures
Jc, Wc, Rc are by no means unrestricted (the fact that they stem from
a contractibility structure being a substantial restriction), the two as-
phericity structures (namely, the 0-asphericity structure M0 and the∞-asphericity structure M∞) are subject to extra conditions which will
be written down below, implying among others that they are totally
aspheric (hence π0 and ϕM are compatible with finite products).

We may complement the ten structure data (23) above, by the follow-
ing two

(24) R0, R∞ ⊂ Fl(M)× Fl(M),

defined by

( f , g) ∈ R0⇔
�

π0( f ) = π0(g)
�

, ( f , g) ∈ R∞⇔ �

ϕM ( f ) = ϕM (g)
�

.

More generally, for any basic localizer W, we may define

(25) RW ⊂ Fl(M)× Fl(M), ( f , g) ∈ RW⇔
�

ϕW
M ( f ) = ϕ

W
M (g)

�

.

It is not clear however that Mc, or equivalently MW or WM , can be
recovered in terms of the equivalence relation RW among maps of M .

Among the three series of structures appearing in (23), we have the
tautological relations

(26)



























Mc ⊂ M∞ ⊂ M0

Wc ⊂W∞ ⊂W0

Rc ⊂ R∞ ⊂ R0

M (Hot) (Sets)
ϕM

π0

π0 (commutative).
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Finally, we may also display some of the main functors defined in terms
of a given contractibility structure Mc:

(27)
M M HotM (Hot) HotW (Sets)

W−1
c M W−1∞ M HotW∞ HotW0

≈ .

26.6. [p. 267]

82 Yesterday I have been busy mainly with the readjustment of the overall Proof of injectivity of α :
Contr(M) ,→W-Asph(M). Applica-
tion to Hom objects and to products
of aspheric functors A→ M.

perspective on the main notions developed so far, which has sprung
from the new fact stated at the beginning of yesterday’s notes: namely
that an arbitrary contractibility structure Mc (on a category M stable
under finite products) can be recovered in terms of the associated W-
asphericity structure, where W is any basic localizer satisfying (besides
the condition Loc 1) to Loc 3) of p. 213–214) the extra assumption
Loc 4) of p. 260. It seems about time now to enter into a little more
technical specifications along the same lines – and to start with, give a
proof of the “new fact”! Let’s state it again in full:

Theorem 1. Let M be a U-category stable under finite products, Mc ⊂
Ob M a contractibility structure on M, admitting a small full subcategory
C which generates the structure. Let moreover W be any basic localizer
satisfying Loc 4) (compatibility with the π0-functor (Cat)→ (Sets)), and
let MW ⊂ Ob M the W-asphericity structure generated by Mc , W =WMc

the corresponding set of “W-equivalences” or “weak equivalences” in Fl(M).
Consider the homotopy structure hW associated to W, i.e. (cf. section 54),
the homotopy structure associated to the homotopy interval structure J
generated by the set J0 of all intervals

I= (I ,δ0,δ1)

in M such that
I ∈ MW.

Then hW is the homotopy structure on M associated to the contractibility
structure Mc , and hence Mc can be described in terms of MW (or of WMc

=
W ) as the set of objects which are contractible for hW , i.e., such that the
map x → eM is an hW -homotopism.

Proof. Let M ′c be the set of hW -contractible objects of M , clearly we have

Mc ⊂ M ′c ⊂ MW

def
= Ma.

The theorem amounts to saying that Mc generates the homotopy interval
structure J (by which we mean that the set of intervals of M made
up with objects of Mc generates the structure J). Indeed, because of
Mc ⊂ M ′c, this will imply that J is associated to a contractibility structure,
namely to M ′c. But for an object x of M to be in M ′c, i.e., to be contractible
for the structure J , amounts to be contractible for Mc, and hence by
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saturation of Mc, to be in Mc, hence M ′c = Mc – which yields what we [p. 268]
want. By the description of J in terms of J0, we are now reduced to
proving the following

Lemma 1. Let I be an object of Ma = MW. Then any two sections of I
(over eM ) are Mc-homotopic.

Let, as in the previous section, W0 ⊃ W be the largest of all basic
localizers satisfying Loc 4), i.e.,

W0 =
�

f ∈ Fl((Cat))
�

� π0( f ) a bijection
	

,

therefore, we have

MW ⊂ MW0

def
= M0,

and we are reduced to proving the lemma for W0 instead of W, i.e.,
for M0 instead of MW. We’ll use the small full subcategory C of Mc
generating the contractibility structure Mc, we may assume that C is
stable under finite products. Hence Cˆ is totally W0-connected, i.e.,
totally 0-connected. Moreover, as C ⊂ Mc, and eM is in C , it follows
that every object of C has a section (over eM = eC ) – which implies that
every non-empty object of Cˆ has a section, i.e., Cˆ is “strictly totally
0-connected” (cf. p. 144 and 149). Note that (by prop. 2 b) of p. 248)
we have

M0 =
�

x ∈ Ob M
�

� i∗(x) is 0-connected in Cˆ
	

,

where i is the inclusion functor:

i : C → M .

We have to prove that any two sections δ0,δ1 of an object I of M0 are Mc-
homotopic, or what amounts to the same, C-homotopic. This translates
readily into the statement that i∗(δ0) and i∗(δ1) are C-homotopic in
Cˆ. Thus, we are reduced to the following lemma (in the case of the
topos Cˆ):

Lemma 2. Let C be a totally 0-connected topos such that any non-empty
object of C has a section, and let C be a small full generating subcategory,
whose elements are 0-connected. Then for any 0-connected object I of C,
and any two sections δ0,δ1 of I , these are C-homotopic, i.e., they can be
joined by a finite chain of sections, any two consecutive among which can
be obtained as the images of two sections si , t i of an objects x i of C, by
means of a map hi : x i → I .

This lemma is essentially a restatement (cleaned from extraneous
assumptions due to an awkward conceptual background) of the propo-
sition of page 149 (section 60), and the proof will be left to the reader.
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Application to relation between contractibility and objects
Hom(X , Y ). I would like to review here a few things along these lines, [p. 269]
which were somewhat scattered in the notes before (section 51 E) p.
121 and section 57 p. 143 notably), and at times came out awkwardly
because of inadequate conceptual background. We assume M endowed
with a contractibility structure Mc, and use the notations of the previous
section, especially concerning the subsets of Ob M and of Fl(M)

(1) Mc ⊂ M∞ ⊂ MW ⊂ M0, Wc ⊂W∞ ⊂WM ⊂W0.

Let X be an object of M , such that the object

(2) I = Hom(X , X )

exists in M (NB a priori it is an object in Mˆ, we assume it to be
representable). We assume that X is endowed with a section c, hence
a section δ1 of I , corresponding to the constant endomorphism of X
with value c. We’ll denote by δ0 the section of I corresponding to the
identity of X . Thus,

(3) I= (I ,δ0,δ1)

becomes an interval of M , and the composition law of I = Hom(X , X )
turns it into a multiplicative interval, admitting respectively δ0 and δ1
as left unit and left zero element. Then the following conditions are

[in the typescript we have π0 and
π1 as the elements; I assume this is
a typo?]

equivalent:
(i) X is contractible.

(ii) Hom(X , X ) is contractible, i.e., I ∈ Mc.

(ii’) Hom(X , X ) is 0-connected, i.e., I ∈ M0.

(ii”) The two sections δ0,δ1 of I = Hom(X , X ) are homotopic.

(iii) For any object Y in M such that Hom(Y, X ) exists in M , Hom(Y, X )
is contractible.

(iii’) For any Y as in (iii), Hom(Y, X ) is 0-connected.

(iv) For any Y in M such that Hom(X , Y ) exists in M , the canonical
map

(4) Y → Hom(X , Y )

is a homotopism (more accurately still, Y as a subobject of Hom(X , Y )
is a deformation retract). Moreover, X is 0-connected.

(iv’) For any Y in M as in (iv), the map (4) induces a bijection

π0(Y )→ π0(Hom(X , Y )),

moreover X is 0-connected.
NB Of course, the 0-connectedness notion and the functor π0 used here [p. 270]
are those associated to the given structure Mc. The case dealt with in
section 57 (p. 143) is essentially (it seems) the one when these notions



§82 Proof of injectivity of α : Contr(M) ,→W-Asph(M). . . . 254

are the ones canonically defined in terms of the category structure of M
alone. In view of the inclusions (1), we could throw in a handful more
obviously equivalent conditions, using M∞, MW or W∞, WM , instead of
Mc, etc. but it seems this would confuse the picture rather than complete
it.

Next thing is to look at the canonical map

(5) Γ (X )→ π0(X )

defined for any object X of M , where Γ (X ) denotes the set of sections
of X , and Γ (X ) denotes the set of corresponding homotopy classes of
sections. (This map was considered in a slightly different case on page.
144) The map (5) can be viewed as the particular case of

Hom(Y, X )→ HomSets(π0(Y ),π0(X )),

obtained when Y = eM , hence π0(Y ) = one-point set. By the standard
description

(6) π0(X )' π0(C/X ) (= π0(i
∗(X )))

we immediately get that (5) is always surjective, as any element in
π0(X ) is induced by an element x → X of C/X , hence by a section

eM → x → X ,

where eM → x is a section of the (contractible) object x in C . But (5) is
in fact bijective. To see this, let’s note that the map (5) is isomorphic
to the corresponding map in (Sets), with M replaced by Cˆ and X by
i∗(X ), C remaining the same, as follows from (6) and the formula

Γ (X )' Γ (i∗(X )).

The latter is a particular case of the

Lemma 3. Let Y, X be two objects of M, with Y in C. Then the natural
map

(7) Hom(Y, X )→ Hom(i∗(Y ), i∗(X ))

between sets of homotopy classes of maps (in M and in Cˆ respectively,
the latter being endowed with the contractibility structure generated by C)
is bijective.

The verification is tautological, due to the fact that for any object I of C
(which is going to play the role of a homotopy interval for deformations),
we got

HomM (I × Y, X ) ∼−→ HomCˆ(I × Y, i∗(X )).

Now, the map (5) in case of a strictly totally 0-connected category [p. 271]
(here Cˆ) has been dealt with in section 58 (p. 114), it follows easily
that the map is bijective – hence the
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Proposition 1. Let (M , Mc) be any contractibility structure,

π0 : M → (Sets), π0(X )' π0(Mc/X )

the corresponding “connected components functor”, X any object of M.
Then the canonical map (5) above is bijective.

Corollary. Let X , Y be two objects of M, such that Hom(X , Y ) exists in
M. Then the natural map

(8) Hom(X , Y )→ π0(Hom(X , Y ))

is bijective.

To finish these generalities on Hom’s, I would like to generalize to
the context of contractibility structures the results of prop. 4 p. 228
(section 74) on products of aspheric functors. We start within a context
of asphericity structures:

Proposition 2. Let (M , Ma) be a W-asphericity structure (for a basic
localizer W), C a full subcategory of M generating this structure, i.e., such
that C → M is Ma-W-aspheric, A a small category,

i : A→ M

a Ma-W-aspheric functor. We assume M stable under binary products.
a) Let b0 in M be such that for any y in C, Hom(b0, y) exists in M,

and for any x in Ma, x× b0 is in Ma. Let ib0
: A→ M be the constant

functor with value b0, and consider the product functor

i × ib0
: a 7→ i(a)× b0 : A→ M .

This functor is Ma-W-aspheric iff for any y in C, Hom(b0, y) is in
Ma (a condition which does not depend on i nor even on A).

b) Let B be a full subcategory of M, such that for any b0 in B, x in Ma,
and y in C, we have x × b0 ∈ Ma and Hom(b0, y) exists in M, and
is in Ma. Assume A totally W-aspheric, let i′ : A→ M be any functor
factoring through B, then the product functor

i × i′ : a 7→ i(a)× i′(a) : A→ M

is Ma-W-aspheric.

The proof is word by word the same as for the analogous statements
p. 228–229, and therefore left to the reader. (The analogous statement
to cor. 1 p. 229 is equally valid.)

The case I’ve in mind is when Ma is generated by a contractibility [p. 272]
structure Mc, and C = B = Mc. The condition in b) boils down to
existence of Hom(b0, y) in M , when b0 and y are both contractible
objects of M – as a matter of fact, in all cases I’m having in mind, the
Hom exists even without any contractibility assumption. Thus we get:
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Corollary. Let (M , Mc) be a contractibility structure, such that for any
two contractible objects x , y, Hom(x , y) exists in M (a condition which
presumably is even superfluous. . . ). Consider the W-asphericity structure
MW on M generated by Mc. Then the product of a MW-W-aspheric functor
i : A→ M with a functor i′ : A→ M factoring through Mc is again MW-
W-aspheric. In particular, the category of all aspheric functors from A to
M which factor through Mc is stable under binary products.

From this one can deduce as on p. 230 that if the latter category is
non-empty, i.e, if there does exist an aspheric functor A→ M through
Mc, then one can define a canonical functor

(9) HotM ,W→ HotA,W,

defined up to unique isomorphism, via a transitive system of isomor-
phisms between the functors deduced from aspheric functors A→ M
factoring through Mc.

83 After stating and proving theorem 1 of the previous section, I forgot to Tautologies on Imα, and related
questions.give an answer to the most natural question arising from it – namely

how to characterize those W-asphericity structures on a category M
stable under finite products, which can be generated by a contractibility
structure. The reason for this is surely that I have nothing better to offer
than a tautology: let

Ma ⊂ Ob M

be the given W-asphericity structure, we assume beforehand that this
structure is totally aspheric (which is a necessary condition for Ma to
come from a contractibility structure Mc). If Wa is the corresponding
set of W-equivalences, it follows that the homotopy structure hWa

is also
the one defined by the homotopy interval structure J generated by the
set J0 of intervals of M made up with objects of Ma. Let [p. 273]

Mc ⊂ Ob M

be the corresponding set of contractible objects (which may not be a
contractibility structure on M). The conditions now are the following:

a) Mc generates the homotopy interval structure J , or equivalently,
any two sections of an object of Ma are Mc-homotopic.

This condition is clearly equivalent to saying that J is indeed generated
by a contractibility structure, and the latter is necessarily Mc.

b) Mc generates the W-asphericity structure Ma, i.e., there exists a
small full subcategory B of Mc such that the inclusion functor
i : B→ M be Ma-W-aspheric, i.e., for any x in Ma, i∗(x) in Bˆ is
W-aspheric (i.e., B/x is W-aspheric in (Cat)).

One would like too a n.s. condition on a functor

ϕ : M → HotW,
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for this functor to be isomorphic to the one associated to a contractibility
structure on M – with special interest in the case when W =W0, i.e.,
when the functor reduces to a functor

π0 : M → (Sets).

Here again, I have nothing to offer except a tautological statement,
which isn’t worth the trouble writing down. Nor do I have at present a
compelling feeling that there should exist such a characterization, under
suitable exactness assumptions on M say, and possibly assuming too
that M is stable under the operation Hom. Here also arises the question
whether a functor ϕ : M → HotW stemming from a contractibility struc-
ture Mc on M can have non-trivial automorphisms – a question closely
connected to the “inspiring assumption” of section 28.

29.6. [p. 274]

84 Two days have passed without writing any notes. Much of the time I A silly (provisional) answer to the
“silly question” – and the new perplex-
ity f!(Mas) ⊂ M ′as?

spent on writing mathematical letters – one pretty long one to Gerd
Faltings, who (on my request) had sent me preprints of his recent work,

[Grothendieck (June 27, 1983)]
notably on the Tate conjectures for abelian varieties and on the Mordell
conjecture, and had expressed interest hearing about some ideas and
conjectures on “anabelian algebraic geometry”. I had been impressed,
from a glance upon the last of his manuscripts, to see three key conjec-
tures proved in about forty pages, while they were being considered as
quite out of reach by the people supposed to know. Some “anabelian”
conjectures of mine are closely related to the Tate and Mordell conjec-
tures just proved by Faltings – Deligne had pointed out to me about
two years ago that a certain fixed-point conjecture (which I like to view
as the basic conjecture at present in the anabelian program) implied
Mordell’s, so why loose one’s time on it! I have the feeling Faltings is the
kind of chap who may become interested in things which are supposed
to be too far off to be worth looking at, that’s why I had written him a
few words, under the moment’s inspiration. – Another letter, not quite
as long, was an answer to a very long and patient letter of Tim Porter,
telling me about a number of things which have been done by homotopy
people, and which I was of course wholly ignorant of! His letter has
been the first echo I got from someone who read part of the notes on
“Pursuing stacks”, and I was glad he could make some sense of what he
read so far, and conversely – that not all he was telling me was going
wholly “above my head”!

Apart from this and the (not unpleasant!) daily routine, I spent a fair
bunch of hours on scratchwork, centering around trying to figure out the
right notion of morphism for asphericity structures. It was a surprise that
the notion should be so reticent for revealing itself – as a matter of fact,
I am not quite sure yet if I got the right notion, in sufficient generality
I mean. Time will tell – for the time being, the notion of morphism I
have to offer, while maybe too restrictive, looks really seducing, because
it parallels so perfectly the formalism of aspheric functors i : A→ M
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and the corresponding (would-be modelizing) functor i∗ : M → Aˆ.
Again, it has been a surprise, right now, that after uncounted hours of
unconvincing efforts today and yesterday, and almost wholly unrelated
to these, this pretty set-up would come out within ten minutes reflection!

Proposition. Let (M , Ma), (M ′, M ′a) be two W-asphericity structures (W a [p. 275]
basic localizer), B ⊂ Ma a full subcategory of M generating the asphericity
structure Ma, and

f ∗ : M → M ′

a functor, admitting a left adjoint f! (hence f ∗ commutes to inverse limits).
We consider the following six conditions, paralleling those of prop. 4 of
section 75 (p. 236):

(i) Ma = ( f ∗)−1(M ′a),

(i’) Ma ⊂ ( f ∗)−1(M ′a), i.e., f ∗(Ma) ⊂ M ′a,

(i”) Ba ⊂ ( f ∗)−1(M ′a), i.e., f ∗(B) ⊂ M ′a,

(ii) Wa = ( f ∗)−1(W ′
a),

(ii’) Wa ⊂ ( f ∗)−1(W ′
a), i.e., f ∗(Wa) ⊂W ′

a ,

(ii”) Fl(B)a ⊂ ( f ∗)−1(W ′
a), i.e., f ∗(Fl(B)) ⊂W ′

a ,
where Wa, W ′

a are the sets of W-equivalences in M and M ′ respectively.
We’ll make the extra assumption (I nearly forgot, sorry!):
(Awk) There exists a M ′a-W-aspheric functor

i′ : A→ M ′

(A a small category), such that i = f!i
′ : A→ M factors through B.

Under these conditions and with these notations, the following holds: The
conditions (i), (i’), (i”) are equivalent and imply the three others, which
satisfy the tautological implications (ii) ⇒ (ii’) ⇒ (ii”). If M and M ′

admit final objects and their asphericity structures are aspheric, then the
fiver first conditions (i) to (ii’) are equivalent, and if moreover eM ∈ Ob B,
all six are equivalent.

Proof: reduction to loc. sit., using the commutative diagram

(1)
M M ′

Aˆ

f ∗

i∗ i′∗

(up to isomorphism), and the relations

M ′a = (i
′∗)−1(Aâ ), W ′

a = (i
′∗)−1(WA).

This proof shows moreover that the conditions (i), (i’), (i”) are equivalent
each to i being Ma-W-aspheric. Thus, if these conditions are satisfied
(let’s say then that f ∗ is a morphism for the asphericity structures), we [I can’t read this footnote]
may use i∗ and i′∗ for describing the canonical functors from the local-

[p. 276]
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izations of M , M ′ to HotW, and therefore from (1) get a commutative
diagram (up to canonical isomorphism)

(2)

HotM ,W HotM ′,W

HotW

f ∗

.

From this follows:

Corollary. Let f ∗ be a morphism for the given asphericity structure, and
assume these to be modelizing. Then the induced functor for the localiza-
tions

f ∗ : W−1
a M = HotM ,W→W ′

a
−1M ′ = HotM ′,W

is an equivalence of categories.

This is the answer, at last, of the “silly question” of section 45 (p. 95)!
We have still to comment though on the restrictive conditions we had

to make, for getting the equivalences stated in the proposition, and the
result stated in the corollary. These conditions are twofold: a) existence
of a left adjoint f!, which presumably, in most circumstances we are
going to meet, will be equivalent with f ∗ commuting to inverse limits.
It’s a pretty restrictive condition, but of a rather natural kind, often met
with in the modelizing situations; b) this is the “awkward” condition
(Awk), which can be equally stated as follows: there exists a small full
subcategory B′ of M ′ (NB we may take the full subcategory defined by
i′(Ob A)), generating the asphericity structure M ′a, and such moreover
that

f!(B
′) ⊂ Ma,

(so that we can choose C , a full subcategory of M generating the as-
phericity structure, such that C contains f!(B′). Another way of phrasing
this condition on f ∗ (preliminary to the choice of C) is that the full
subcategory of M ′

(3) ( f!)
−1(Ma)∩M ′a generates the asphericity structure of M ′.

If this condition, plus the condition (i) say, which we express jointly
by saying that f ∗ is a “morphism of asphericity structures”, did imply
the condition (stronger than (3)) [p. 277]

(4) f!(M
′
a) ⊂ Ma,

we would replace (Awk) by this condition (4), which doesn’t look awk-
ward any longer, and does not refer to any A or i′ whatsoever (and the
six conditions (i) to (ii”), with the exception of (i”) and (ii”), do not
make any reference to any given aspheric functor). In any case, one
might think of defining a morphism f ∗ of asphericity structures as a
functor admitting a left adjoint satisfying (4), and such moreover that
(i) above, or equivalently (i’), namely the nice symmetric relation to (4)

(5) f ∗(Ma) ⊂ M ′a,
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is satisfied. This notion for a morphism, stricter than the one we adopted
provisionally, looks a lot nicer indeed – the trouble is that I could not
make up my mind if the restriction (4) is not an unreasonable one.
It would be reasonable indeed, if for those cases which are the most
interesting for us, and primarily for any functor

f ∗ = i∗ : M → Aˆ

associated to an Ma-W-aspheric functor

i : A→ M

for any given “nice” asphericity structure (M , Ma), this condition is
satisfied. Of course, in this case, i∗ does admit a left adjoint

i! : Aˆ→ M ,

provided only M is stable under (small) direct limits, which we’ll assume
without any reluctance! Thus, we are led to the following

Question 1. Under which conditions is it true, for an Ma-W-aspheric
functor i : A→ M (where M is endowed with an asphericity structure
Ma) that

(6) i!(Aâ ) ⊂ Ma,

i.e., i! (the canonical extension of i to Aˆ, commuting with direct limits)
takes aspheric objects into aspheric objects?

Yesterday and today I pondered mainly about the typical case when
M = Bˆ, endowed with its canonical asphericity structure, where B is a [p. 278]
small category, and moreover i is a functor i : A→ B ⊂ Bˆ. This then
brings us to the related

Question 1’. Let i : A→ B be an aspherical map in (Cat), under which
restrictive conditions on A, B, i (if any) does

i! : Aˆ→ Bˆ

take aspheric objects into aspheric ones, i.e., do we have
[here in the typescript, AG reverts
to putting an extra “s” in the sub-
script for asphericity structures, but
I’m sticking to just “a” from now on]

(7) i!(Aâ ) ⊂ Bâ ?

The question makes sense even without assuming i to be aspheric. If
we drop this asphericity assumption on i, we are reduced, for a given
B, (by replacing A by A/F , where F is a given aspheric object of Aˆ) to
the case when A is aspheric and F = eAˆ , i.e., to looking at whether the
element

(8) i!(eAˆ) = lim−→
A
(Bˆ)i(a)

in Bˆ is aspheric. This element appears as the direct limit in Bˆ of
aspheric elements i(a), the indexing category A being itself aspheric.
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Thus, it is rather tempting to hope that the limit might well be aspheric
too. Let’s assume W = W∞ = usual weak equivalence, it turns out
that when A is 1-connected, so is (8), which would seem to give some
support to the hope that (8) is aspheric if A is. However, this is definitely
not so, unless at the very least we assume B to be equally aspheric
(which is however a rather natural assumption, as it follows from A
aspheric if we assume moreover i to be aspheric). To see this, we take i
to be cofibering with 0-connected fibers – the cofibration assumption
implies that the direct limit over A can be computed first fiberwise and
then take a limit over B (the most general version of associativity for
direct limits!), whereas the 0-connectedness assumption on the fibers
implies that the limit taken over the fiber Ab is just b itself, hence (8) is
isomorphic to

lim−→
b
(Bˆ)b = eBˆ ,

which isn’t aspheric except precisely when B is; now for topological
reasons it is easy to find an aspheric A cofibered with 0-connected fibers
over a non-aspheric B.

Thus, in the question of asphericity of (8) we’ll better assume both A
and B aspheric. If either A has a final object or B has an initial object,
asphericity of (8) is more or less trivial in any case. For certain categories
B even without initial object, (8) is always aspheric when A is, this I
checked at any rate for the ordered category

B =
α

γ

β

,

giving rise to a rather interesting computation. This suggested, for
arbitrary B again, to look at the dual of the category above as A:

(9) A=
α

γ

β

.

Here the question then amounts to whether for a diagram

a
c

b

in B, the amalgamated sum

(10) aqc b

in Bˆ is aspheric. This I know to be true if either c → a or c → b are
monomorphisms (as stated in section 70). Now, I don’t really expect this
to be true in general, even if B is such an excellent category as say,
however, I didn’t push through and make a counterexample. If we now
want to remember the asphericity condition on i which we dropped, this
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condition, when A has an initial object γ, just means that c = i(γ) is an
initial object of B. Even with this extra condition, I do not really expect
(10) to be necessarily aspheric. Therefore, I do not expect the inclusion
(7) to hold for any aspheric functor i, even when A (and hence B) are
assumed to be aspheric, without some extra condition, on A or B say.

The condition that Aˆ be totally aspheric seems in this context a rather
natural one – for instance, when reducing the question whether (7) holds
to the question of asphericity of an object (8) (where A stands for A/F ),
and if we do not want to loose the asphericity assumption for i when

taking the composition A/F → A
i
−→ B, we would like that asphericity of

F imply asphericity of A/F → A – which means precisely that A is totally
aspheric. The trouble is that in the would-be counterexample above
with A given by (9), A is stable under Inf, i.e., under binary products,
hence Aˆ is totally aspheric indeed – thus it is doubtful that this extra
condition in the “question 1’” above is quite enough. If it does fail
indeed, the next best would be to try the stronger condition “A is a strict
test category” (NB the category (9) isn’t a test category!), which leads
to the question whether (8) is aspheric when A is a test category (no
longer a strict one though!) and i : A→ B an aspheric functor. But I
confess I have no idea at present how to handle this question, and I am
dubious there will come out any positive result along these lines, even
when assuming A and B to be both stable under binary products say,
and to be contractors and what-not!

Another typical case for “Question 1” (p. 277) is the case when [p. 280]

M = (Cat),

endowed with the usual asphericity structure, giving rise to the notion
of “test functor”

i : A→ (Cat)

we have been working with almost from the very start. The most impor-
tant case of all is of course the canonical functor

iA : a 7→ A/a : A→ (Cat),

and we well know that this functor is aspheric (for the natural asphericity
structure of (Cat)) if A is a weak test category, and in this case it is true
indeed that not only i∗A, but equally iA! is modelizing, and transforms
aspheric objects into aspheric objects. But we know too that for more
general test functors, for instance the standard inclusion

(11) i : ,→ (Cat),

it is no longer true in general that i! be modelizing – so is it at all
reasonable to expect

(12) i!(Aâ ) ⊂ (Cat)a?

Definitely, I’ll have to find out the answer in the typical case (11),
whether I like it or not!
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30.6.

85 Just got an impressive heap of reprints and preprints by Tim Porter Digression on left exactness proper-
ties of f! functors, application to the
inclusion i : ,→ (Cat).

(announced in his letter two days ago). Many titles have to do with
“shape theory”, “coherence” and “homotopy limits” (corresponding to
proobjects in various modelizers, as I understand it from his letter). The
one which most attracts my attention though is “Cat as a closed model
category” by R.W. Thomason – the title comes quite as a surprise, as

[Thomason (1980)]my ponderings on the homotopy structure of (Cat) had left me with the
definite feeling that there wasn’t a closed model structure on (Cat), with
the usual notion of weak equivalence. I’ll have to have a closer look at
this paper definitely, before starting on part V of these notes!

It was getting prohibitively late yesterday, so I had to stop. It then
occurred to me that the (admittedly provisional) notion of morphism
of asphericity structures I had proposed yesterday (p. 275) is definitely
stupid, because there is no reason whatever that it should be stable under
composition! This surely was the reason for the feeling of uneasiness [p. 281]
caused by the condition (Awk), which surely deserves its name! This
flaw of course disappears, if we strengthen the condition, as suggested
on p. 277, by condition 4 – that f! should take aspheric objects into
aspheric ones. This makes all the more imperative the task of finding
out whether this condition is reasonable, and otherwise, what to put in
as a substitute. The test case now seems to be really the one when f ∗ is
the usual nerve functor

f ∗ = i∗ : (Cat)→ ˆ,

associated to the standard inclusion

i : → (Cat).

I never before had a closer look upon the corresponding functor

i! : ˆ→ (Cat),

left adjoint to the nerve functor, except just rectifying a big blunder (p.
22), and convincing myself that i! did not take weak equivalences into
weak equivalences. But why not aspheric objects into aspheric ones?

Pondering a bit over this matter today, and trying to see whether i!
takes contractible objects into contractible ones, this brought up the
question whether i! commutes with finite products – which will allow
then to make use of the generalities on morphisms of contractibility
structures, and will imply that i! is indeed such a morphism (as it
transforms , which generates the contractibility structure of ˆ, into
contractible elements of (Cat)). As a matter of fact, a number of times in
my scratchwork during the last four months I’ve met with the question
of when a functor of the type f! commutes to various types of finite
inverse limits, and this now is the occasion for writing down some useful
general facts in this respect, which had remained somewhat in the air
so far. It seems that the relevant facts can be summed up in two steps.
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Proposition 1. Let M be a category stable under (small) direct limits, A
a small category, f : A→ M a functor, and

f! : Aˆ→ M , f ∗ : M → Aˆ

the corresponding pair of adjoint functors.
a) Assume M stable under binary products, and that for any x in M,

the product functor y 7→ y × x commutes to arbitrary direct limits
(with small categories of indices of course). Then, in order for f! to
commute with binary products, is it n.s. that for any two objects a, b [p. 282]
of A, the map

(*) f!(a× b)→ f (a)× f (b)

in M be an isomorphism.

b) Assume M stable under fibered products, and that base change in M
commutes to arbitrary direct limits (with small indexing categories
of course). Then, in order for f! to commute with fibered products,
it is n.s. that it does so for any diagram

b c

F ,

with b, c objects in A, F in Aˆ.

Corollary. Assume M stable under finite inverse limits, and that base
change in M commutes with arbitrary direct limits. The f! is left exact iff
it satisfies the conditions a) and b) above, and moreover transforms eAˆ
into a final object of M (which also means, if A has a final object eA, that
f (eA) is a final object of M).

Proof of proposition. a) As we have, by definition of f!, for any F and G
in Aˆ

f!(F) = lim−→
A/F

f (a), f!(G) = lim−→
A/G

f (b),

deduced from the corresponding relations in Aˆ

F = lim−→
A/F

a, G = lim−→
A/G

b,

the looked for bijectivity of

f!(F × G)→ f!(F)× f!(G)

will follow from the assumption (*), and from the following lemma
(applied in both categories Aˆ and M), the proof of which is immediate:
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Lemma. Let M be a category stable under direct limits and under binary [p. 283]
products, and such that the product functors y 7→ y × x commute to direct
limits. Then binary products are distributive with respect to direct limits,
i.e., if

u : I → M , v : J → M

are two functor of small categories with values in M, we have

lim−→
I×J

u(i)× v( j) ∼−→
�

lim−→
I

u(i)
�

×
�

lim−→
J

v( j)
�

.

Proof of b). Follows from a), applying it to the induced functor

f/F : A/F → M/ f!(F),

in order to prove commutation of f! with a fibered product corresponding
to a diagram

(**)
G H

F

in Aˆ.

Remark 1. Part b) does not look as nice as part a), as we would like
to be able to take F equally in A – what I first expected to get out. If
we make only this weaker assumption, it will follow at once that f!
commutes to fibered products corresponding to diagrams (**) with F
in A. It doesn’t seem finally that from this follows commutation of f!
to all fibered products, unless making some extra assumptions, such
as f! transforming monomorphisms into monomorphisms (which is a
necessary condition anyhow). We’ll have to come back upon this – for
the time being we need only to deal with products, for which a) is
adequate.

The “second step” now is a tautology:

Proposition 2. Under the preliminary assumptions of prop. 1 above,
assume moreover that f is fully faithful, and that f (A) “generates M by
strict epimorphisms”, i.e., that for any object P in M, we have

(***) P
∼
←− lim−→

A/P

f (x).

Then f! commutes to finite products in Aˆ of objects of A, and to fibered
products in Aˆ of objects of A.

Proof. That f! transforms final object into final object follows from the [p. 284]
formula (***) above, by taking P to be the final object of M . To get
commutation to binary products, we apply the formula for P = a×M b,
and notice that

A/P ' A/P ′ , with P ′ = a×Aˆ b,
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because the inclusion f : A ,→ M is full (I forgot to say we may assume
f to be the inclusion functor of a full subcategory). But we have too

f!(P
′) = lim−→

A/P′

f (x),

hence f!(P ′) ' P. The proof for fibered products is similar, or can be
reduced to the case of products by considering the induced functor

f/a : A/a → M/a.

Remark 2. The various variants of the notion of a generating sub-
category A of a category M have been dealth with in some detail in
SGA 4 vol. 1 exp. I par. 7 (p. 45–60) (Springer LN 269), cf. more specifi-

[Artin, Grothendieck, and Verdier
(SGA 4.1)]

cally prop. 7.2 on page 47, summarizing the main relationships. The
strongest of all notions considered there is generation by strict epimor-
phisms, which can be expressed by the formula (***) above, and is also
equivalent to the functor f ∗ being fully faithful.

We come back now to the case M = (Cat) – it is immediate that the
preliminary exactness conditions on M of prop. 1 are satisfied. Thus,
putting together prop. 1 and 2, we get:

Proposition 3. Let A be a full subcategory of (Cat), generating (Cat)
by strict epimorphisms, i : A ,→ (Cat) the inclusion functor. Then the
corresponding functor

i! : Aˆ→ (Cat)

commutes to finite products, and also to fibered products in Aˆ over an
object of Aˆ coming from A.

The most familiar case when this applies is indeed the case of the
canonical inclusion of into (Cat), as it is well-known that the cor-
responding i∗, namely the nerve functor, is fully faithful. From this
follows that a fortiori, for any full subcategory A of (Cat) containing hasty!

, A generates (Cat) by strict epimorphisms, and hence proposition 3
applies.

Remark 3. I doubt however, even for A = , the most typical case, [p. 285]
that i! is even left exact, because it looks unlikely to me, in view of
the explicit description of i!(K•) for a given ss complex K•, in terms of
“generators and relations” (cf. Gabriel-Zisman’s book), that i! should

[Gabriel and Zisman (1967)]transform monomorphisms into monomorphisms. For what follows, this
is irrelevant anyhow.

[there is an unreadable footnote
here]
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86 After these somewhat painful preliminaries, it seems to me that firm
Bimorphisms of contractibility struc-
ture as the ( final?) answer. Does
the notion of a map of asphericity
structures exist?

ground is in sight at last! The main feeling that finally comes out of
these reflections, is that we have a very good hold on checking whether
or not a functor f! : Aˆ→ M commutes to finite products, and moreover,
that this condition is satisfied in many “good” cases, in more cases at any
rate than I suspected. In case of the inclusion functor of into (Cat),
more generally of any subcategory A of (Cat) consisting of contractible
objects, containing 1, and large enough in order to generate (Cat) by
strict epimorphisms (or, as we’ll say, to generate strictly the category
(Cat)), it follows that we have the inclusion

(1) i!(Aĉ ) ⊂ (Cat)c,

i.e., i! transforms contractible objects into contractible objects, or, equiv-
alently, is a morphism for the homotopy structures on Aˆ and (Cat). (Note
that the two first assumptions on the subcategory A of (Cat) imply that
the homotopy structure on Aˆ generated by the “intervals” made up
with elements of A, is a contractibility structure, admitting A as a gener-
ating set of contractible objects. The situation is really nice only when
assuming that Aˆ is totally aspheric though, which will imply that A is a
test category (even a strict one) and that the W-asphericity structure on
Aˆ associated to the contractibility structure just described is the usual
one (cf. prop. 2 b) p. 248, where we take C to be A).)

The inclusion (1) of course strongly resembles the problematic inclu-
sion (4) (p. 277) of yesterday’s notes, namely, here to i! taking aspheric
objects into aspheric ones. I doubt though this latter is true even for the
standard case A= ? But before trying at all costs to see whether it
holds or not, the point I wish to make is that for the purpose we have in
view, namely defining suitable conditions, stable under composition, on
a pair ( f!, f ∗) of adjoint functors between two asphericity structures M
and M ′, – for this purpose, a relation of the type (1), namely [p. 286]

(2) f!(M
′
c) ⊂ Mc,

is just as good as the relation (4) on p. 277, provided we make the
evident assumption needed for (2) to make sense, namely the given
asphericity structures on M , M ′ to be associated to contractibility structures.
This condition (2) is (considerably!) weaker than

(2’) f!(M
′
a) ⊂ Ma,

due to the inclusion M ′c ⊂ M ′a and to the fact that (with the notations
and using the results of section 81) the inclusion (2) is implied by the
apparently weaker inclusion (under the assumption Loc 4)):

f!(M
′
c) ⊂ M0,

where Mc ⊂ Ma ⊂ M0. On the other hand, (2) is evidently stable under
composition.

To be specific about “as good as”, let’s come back to the statement of
the “pretty” proposition on p. 275, somewhat marred by the “awkward”
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condition (Awk) we had to throw in, which looks so ugly because of its
lack of stability under compositions. Let’s replace this condition by the
slightly stronger one (2), which is stable under composition. Condition
(2) does imply (Awk) indeed, as we see by taking for A a small full
subcategory of Mc, generating the asphericity structure of M , and for B
any full subcategory of M contained in Ma and big enough in order a) to
contain f!(A) and b) to generate the asphericity structure of M . We may
take for instance for A any subcategory of M ′c closed under finite products
in M ′ and generating the contractibility structure, and accordingly for
B, so that the pair (A, B) will match for any choice of the basic localizer
W. Thus, the six conditions (i) to (ii”) of the proposition are equivalent,
provided in the last (ii”) we assume moreover that B contain a final
object eM of M . Moreover, it is clear now that the conditions can be
viewed also as a property of the functor

(3) f!c : M ′c → Mc

induced by f!, which we may adequately express by saying that this
functor (3) is W-aspheric (where the two sides of (3) are categories
which need not be small, but which are at any rate W-aspherators in the
sense of section 79, p. 247).

Stated this way, the condition just obtained on the pair of adjoint [p. 287]
functors ( f!, f ∗), between the two categories M , M ′ endowed with con-
tractibility structures, namely (2) and

(4) f ∗(Ma) ⊂ M ′a,

are not quite symmetric, as the condition on f! is expressed in terms of
contractible objects, whereas the condition on f ∗ is expressed in terms
of aspheric ones. However, assuming that W satisfies Loc 4) and using
theorem 1 p. 252, we see that (4) is equivalent to the condition

(5) f ∗(Mc) ⊂ M ′c,

which does not depend any longer on the choice of W!
Finally, we are led to a notion of pure homotopy theory, in terms of

contractibility structures alone, without the intrusion of the choice of a
basic localizer W and corresponding asphericity notions. We may call
the pair a “bimorphism” of contractibility structures, and introduce it
via the following summing-up statement:

“Scholie”. Let (M , Mc) and (M ′, M ′c) be two contractibility structures, each
[a “scholium” is a critical or ex-
planatory comment extracted from
preexisting propositions]

admitting a small generating subcategory for the contractibility structure,
say C and C ′ respectively. Let ( f!, f ∗) be a pair of adjoint functors

f! : M ′→ M , f ∗ : M → M ′.

Let’s consider the following inclusion conditions
(!) f!(M ′c) ⊂ Mc,

(!’) f!(C ′) ⊂ M0,

https://en.wikipedia.org/wiki/Scholia
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(∗) f ∗(Mc) ⊂ M ′c,

(∗’) f ∗(C) ⊂ M ′0,
where M0 and M ′0 are (as in section 81) the sets of “0-connected” objects
in M and M ′ respectively, for the given contractibility structures.

a) Clearly, in view of

C ⊂ Mc ⊂ M0, C ′ ⊂ M ′c ⊂ M ′0,

condition (!) implies (!’) and condition (∗) implies (∗’). Moreover,
it is even true that conditions (∗) and (∗’) are equivalent, and the
same holds for (!) and (!’) provided f! commutes with finite products.
We’ll say that ( f!, f ∗) is a bimorphism for the given contractibility
structures, if the inclusions (!) and (∗) do hold.

b) Assume we got a bimorphism ( f!, f ∗), i.e., (!) and (∗) above hold. [p. 288]
Let W be a basic localizer, hence the sets MW and M ′

W
of W-aspheric

objects in M and M ′ respectively, and the sets WM and WM ′ of
W-equivalences in M and M ′. Then the following relations hold

(W) MW = ( f ∗)−1(M ′
W
),

(W’) WM = ( f ∗)−1(WM ′).

c) Under the assumption of b), hence (W’) holds and f ∗ gives rise to a
functor f ∗ between the localizations

HotM ,W =W−1
M M and HotM ′,W =W−1

M ′M
′,

the following diagram is commutative up to canonical isomorphism:

HotM ,W HotM ′,W

HotW

f ∗

,

where the vertical functors are the canonical functors of section
77. In particular, if the latter are equivalences (i.e., M and M ′ are
W-modelizing), then so is f ∗.

d) Assume merely that the inclusion (!) holds, and let W as in b)c)
be a basic localizer, satisfying moreover Loc 4). Then the following
conditions on the pair ( f!, f ∗) are equivalent:

(i) The pair is a bimorphism, i.e., (∗) (or equivalently, (∗’)) holds.

(ii) The inclusion ⊂ in (W) above holds.

(iii) The inclusion ⊂ in (W’) above holds.

(iv) The functor induced by f! ,

f!c : M ′c → Mc

is a W-aspheric functor between the aspherators M ′c, Mc.
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(v) ( If A is a given small category, and

i′ : A→ M ′

a given functor, factoring through M ′c, and M ′
W

-W-aspheric.)
The composition

i = f! i′ : A→ M

is MW-W-aspheric.

Comments. In terms of what is known to us since sections 81 and 82,
and notably that any two sections of a 0-connected object of M or of
M ′ are homotopic, the Scholie is just a long tautology. I have taken
great case however in stating it, so as to get as clear a view as possible
of exactly what the relevant relationships are. In a) the conditions
(∗) and (∗’) are just different ways of stating that f ∗ is a morphism of
contractibility structures, which can still be expressed in various other
ways, compare p. 251–252. Similarly, if we assume that f! commutes
with finite products, then (!) or (!’) can be viewed as expressing that f! is
a morphism of homotopy structures (in opposite direction), which again
could be expressed in various other ways, for instance in terms of the
homotopy relation for maps, or in terms of homotopisms. This implies
that in any case f ∗ induces a functor between the strict localizations

f ∗
c

: W−1
c M = M →W ′

c
−1M ′ = M ′,

and similarly for f!, when f! commutes to finite products. I doubt
however that the latter localized map is of geometric relevance, except
maybe in the cases when f! gives rise to relations similar to (W) and
(W’) in b) above, and both f! and f ∗ are model-preserving with respect
to W-equivalences, and define quasi-inverse equivalences between the
localizations HotM ,W and HotM ′,W – a rather exceptional case indeed.

After stating the Scholie, there is scarcely a doubt left in my mind about
the notion of bimorphism, which finally peeled out of reflections, being
a relevant one. This Scholie, rather than the “seducing” proposition of
section 84 (p. 275), now seems to me the adequate “answer” of the not-
so-silly-after-all question of section 46 (cf. page 95 – nearly 200 pages
ago!). The only minor uncertainty remaining in my mind is whether
or not in the notion of a bimorphism of contractibility structures, we
should insist that f! should commute to finite products. It seems that
it will be hard to check condition (!), except via an apparently weaker
form such as (!’), and using commutation of f! to finite products. But on
the other hand, the Scholie makes good sense without assuming such
commutation property. If the notion of a bimorphism is going to be
useful, time only will tell which terminology use is the best.

More puzzling however is this facit, that we still have not been able
[“facit” comes from the Latin verb
“facere”, to do, so it means the re-
sult. Or it could be a typo for
“fact”, which essentially means the
same. . . ]

to give a satisfactory definition of a morphism of asphericity structures,
independently of any restrictive assumption on these, such as being

[p. 290]

generated by a contractibility structure. Even when making such an
assumption, it is not wholly clear yet that there isn’t a good notion of
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a morphism f ∗ of contractibility structures, without having to assume
there exists a left adjoint f!. Maybe a little more pondering on the
situation would be useful. If it should become clear that (except for
the obvious notion of equivalence of asphericity structures) there was
not any reasonable notion of a morphism of asphericity structures, this
would probably mean that the notion of an asphericity structure should
not be viewed as a main structure type in homotopy theory in its own
right, but rather, mainly, as an important by-product of a contractibility
structure. At any rate, since section 81, I feel that the main emphasis
has definitely been shifting towards contractibility structures, which
seems now the main type of structure dominating in the modelizing
story, as this “story” is gradually emerging into light.



Part V

Homology and cohomology
(abelianization of homotopy
types)

1.7. [p. 291]

87 I couldn’t resist last night and had to look through Thomason’s preprint Comments on Thomason’s paper on
closed model structure on (Cat).on the closed model structure of (Cat). The paper is really pleasant

[Thomason (1980)]
reading – and it gives exactly what had been lacking me in my reflec-
tions lately on the homotopy theory of (Cat) – namely, a class of neat
monomorphisms Y → X which all have the property that cobase change
by these preserves weak equivalence, the so-called Dwyer maps. I had

[These Dwyer maps are not closed
under retracts, so Cisinski (1999)
introduced the pseudo-Dwyer maps
which are, and they are now called
Dwyer maps.]

hoped for a while that “open immersions” and their duals, the “closed
immersions” (namely sieve and cosieve maps, in Thomason’s wording),
have this property, and when it turned out they hadn’t, I had been at a
loss of what stronger property to put instead, wide enough however to
allow for the standard factorization statements for a map to go through.
The definition of a Dwyer map is an extremely pretty one – it is an open
immersion Y → X such that the induced map from Y into its closure Y
should have a right adjoint. Now this implies that Y → Y is aspheric,
and I suspect that this extra condition on an open immersion Y → X
should be sufficient to imply that it has the “cofibration property” above
with respect to weak equivalence. It would mean in a sense that the
given open immersion is very close to being a closed immersion too,
without however being a direct summand necessarily. The dual notion
is that of a closed immersion such that the corresponding interior �Y of
Y in X gives a map �Y → Y which has a left adjoint, or only which is
“coaspheric”. By Quillen’s duality principle, if one notion works well for
pushouts, so does the other. – With this notion in hands, it shouldn’t be
difficult now to get a closed model structure on (Cat) a lot simpler than
Thomason’s. Visibly, he was hampered by the standing reflex: homotopy
= semi-simplicial algebra, which caused him to pass by the detour of the
category ˆ of semi-simplicial complexes, rather than just working in
(Cat) itself. I’ll have to come back upon this in part V of the notes, where

272

http://ncatlab.org/nlab/show/Dwyer+map
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I intend to investigate the homotopy properties of (Cat) and elementary
modelizers Aˆ, including the existence of closed model structures.

Some comments of Thomason’s at the end of his preprint, about
application to algebraic K-theory, seem to indicate that the notion of
“integration” and “cointegration” of homotopy types I have been inter-
ested in, has been studied (under the name holim and hocolim) in the
context of closed model categories by Anderson (his paper appeared
in 1978). As I am going to develop some ideas along these lines in

[Anderson (1978)]part VI on derivators, I should have a look at what Anderson does, no-
tably what his assumptions on the indexing categories are. Thomason [p. 292]
seems to believe that the closed model structure of (Cat) is essential
for being able to take homotopy limits – whereas it is clear a priori to
me that the notion depends only on the notion of weak equivalence.
Indeed, he seems to consider the possibility of taking homotopy limits
in (Cat) as the main application of his theorem, and in order to apply
Anderson’s results, believes it is necessary to be able to give concrete
characterizations for “fibrations” and “cofibrations” of his closed model
structure. Now, it turns out that the case he is interested in (for proving
“Lichtenbaum’s conjecture”) is a typical case of direct homotopy limits,

[aka the Quillen–Lichtenbaum con-
jecture]

namely “integration” – which can be described directly in (Cat) in such
an amazingly simple way (as sketched in section 69, p. 198–199). Thus,
I feel for this application, the closed model structure is wholly irrele-
vant. As for cointegration, I do not expect that there is a comparably
simple construction of this operation within the modelizer (Cat), but
presumably there is when taking ∞-Gr-stacks as models (as suggested
by the “geometric” approach to cohomology invariants, via stacks, where
the operation of “direct image”, namely cohomology precisely, is the
obvious one, whereas inverse images are more delicate to define, by an
adjunction property with respect to direct images. . . ). When working
in (Cat), cointegration of homotopy types should be no more nor less
involved than in any closed model category say, and involve intensive
recourse to “fibrations” (in the sense of the closed model structure, or
more intrinsically, in the sense that base change by these should preserve
weak equivalence). Now the latter have become quite familiar to me
during my long scratchwork on cohomology properties of maps in (Cat),
and I’ll have to try to put it down nicely in part V of the notes.

88 The present “part IV” on asphericity structures (and their relations to Review of pending questions and
topics (questions 1) to 5), includ-
ing characterizing canonical mod-
elizers).

contractibility structures) turns out a lot longer than I anticipated, and
the end is not yet quite in sight! Therefore, before pursuing, I would
like to make a review of the questions along these lines which seem
to require elucidation, and then decide which I’m going to deal with,
before going over to part V.

1) Whereas the relevant notions of “morphisms” and “bimorphisms”
for contractibility structures seem to me well understood, there remains [p. 293]
a certain feeling of uneasiness with respect to asphericity structures,
which haven’t got yet a reasonable notion of morphism. Thus, I have
left unanswered the questions raised in section 84 around the inclusion

https://en.wikipedia.org/wiki/Quillen-Lichtenbaum_conjecture
https://en.wikipedia.org/wiki/Quillen-Lichtenbaum_conjecture
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condition
f!(Ma) ⊂ M ′a,

so it is not impossible that, while relying on the mere feeling that the
inclusion is just not reasonable and that the answer to the specific
questions are presumably negative, I am about to miss some unexpected
important fact! It seems I developed kind of a block against checking –
maybe the answers are well-known and Tim Porter will tell me. . . Maybe
I better leave the question for a later moment, as it will ripen by itself if
I leave it alone. . .

2) I should at last introduce contractors, and morphisms of such.
When I set out on part IV of the notes, I expected that the notion of a
contractor would be one main notion, alongside with the notion of a
canonical modelizer – it turns out that so far I didn’t have much use yet
for one or the other. Contractors can be viewed as categories generating
contractibility structures, just as aspherators are there for generating
asphericity structures. However, whereas any small category is an as-
pherator, the same is definitely not so for contractors, as we demand that
every object in C should be contractible, for the homotopy structure in
Cˆ generated by C itself. If we except the case of a contractor equivalent
to the final category (a so-called trivial contractor), a contractor is a
strict test category – thus the notion appears somewhat as a hinge notion
between the test notions, and the “pure” homotopy notions and more
specifically, contractibility structures. Writing up some scratchnotes I
got should be a pure routine matter.

3) A lot more interesting seems to me to try and resolve a persistent
feeling of uneasiness which has been floating, throughout the long-
winded reflections on homotopy and asphericity structures in parts III
and IV of the notes. This is tied up with this fact, that my treatment
of the main notions, namely contractibility and asphericity, has been
consistently non-autodual. More specifically, when a category M is en-
dowed with either a contractibility or an asphericity structure, it does
not follow that the opposite category Mop is too in a natural way. When
defining homotopy relations and homotopism structures (section 51,
A) and B)), these were autodual notions, but the notion of a homotopy
interval structure, which we used in order to pass from a contractibility [p. 294]
structure to the corresponding notions of homotopy equivalence be-
tween maps and of homotopisms, is highly non-autodual too. It breaks
down altogether when M is a “pointed” category, namely contains an
object which is both initial and final – in this case, for any homotopy
interval structure on M , any two maps in M are homotopic, and any
map is a homotopism, hence any object is contractible!

Our initial motivation, namely understanding “modelizers” for or-
dinary homotopy types, made it very natural to get involved in non-
autodual situations, as the homotopy category (Hot) itself, and the usual
model categories for it, displays strongly non-autodual features. (Thus,
whereas the usual test categories all have a final object, it is easy to see
that a test category cannot possibly have an initial object.) However, the
homotopy and asphericity notions we then came to develop make sense
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and are familiar indeed not only in the “modelizing story”, but in any
situation whatever which turns up, giving rise to anything like a “ho-
mology” or a “homotopy” theory. To give one specific example, starting
with an abelian category A, the corresponding homology theory is con-
cerned with the category of A-valued complexes, say K•(A). The most
basic notions here are the three homotopy notions and two asphericity
notions, namely: homotopy equivalence between maps, homotopism,
contractible objects, and quasi-isomorphisms (= “weak equivalences”),
and acyclic (= “aspheric”) objects. The two first homotopy notions
determine each other in the usual way, and define the third, namely
an object is contractible (or null-homotopic) iff the map 0 → X , or
equivalently X → 0, is a homotopism. On the other hand, if we use
the mapping-cylinder construction for a map, the set of contractible
objects determines the set of homotopisms, as the maps whose mapping
cylinder is contractible. Likewise, weak equivalences determine aspheric
objects, and conversely if the mapping cylinder construction is given.
The question that now comes to mind immediately is whether the two
sets of notions, the three pure homotopy notions (determining each
other), and the two “asphericity notions” (determining each other too),
mutually determine each other, as in the non-commutative set-up we
have worked in so far. We can also remark that the functor

H0 : K•(A)→ A

visibly plays the part of the functor π0 in the non-commutative set-up,
it gives rise moreover to the Hi functors (any integer i) by composing
with the iterated shift functor (where the shift of X is just the mapping [p. 295]
cylinder of 0→ X ), thus the set of aspheric objects formally from the
functor H0 (as the objects X such that Hi(X ) = 0 for all i), much as in the
non-commutative set-up the functor π0 for a contractibility structure
determines the latter, and hence also the corresponding asphericity
structure.

Thus, the question arises of formulating the basic structures, namely
contractibility and asphericity structures, in an autodual way, applying
both to the autodual situation just described, and to the non-autodual
one we have been working out in the notes – and if possible even, in
all situations met with so far where a homology or homotopy theory
of some kind of other has turned up. Of course, it is by no means
sure a priori that we can do so, by keeping first nicely apart the two
sets of notions (contractibility and asphericity), namely defining them
separately, and then showing that a contractibility structures determines
an asphericity structures, and is determined by the latter. Maybe we’ll
have to define from the outset a richer kind of structure, where both
“pure” homotopy notions and asphericity notions are involved. Also, the
familiar generalization of mapping cylinders, namely homotopy fibers
and cofibers, and the corresponding long exact sequences, will evidently
play an important role in the structure to be described. Now, this again
ties in with the corresponding structure of a derivator, as contemplated
in section 69, namely “integration” and “cointegration” of diagrams in a
given category.
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Definitely, this reflection is going to lead well beyond the scope of
the present part IV – it relates rather to part C) of the working program

[I guess it is because this question
is already growing in prominence
that AG later decided to include the
present section in part V!]

envisioned by the end of May (section 71, p. 207–210), and rather
belong to part VI of these notes, which presumably will center around
the notion of a derivator. There is however a more technical question,
and of more limited scope, which deserves some thought and goes
somewhat in the same direction, namely: how to define (for a given
contractibility or asphericity structure on M) an induced structure on a
category M/a, where a is in M? There is a little perplexity in my mind,
even when M is of the type Cˆ say, with C a contractor and a in C , taking
the canonical structure on Cˆ – because with the most evident choice of
an “induced” asphericity structure on (Cˆ)/a ' (C/a)ˆ, namely the usual
notion of aspheric objects, this structure will practically never be totally [p. 296]
aspheric (unless we take a to be a final object of C), hence will not be
associated to a contractibility structure – whereas we expect that the
contractibility structure of Cˆ should induce one on Cˆ/a. Presumably,
the “correct” notions of induced structure, in the case of asphericity
structure and the corresponding notion of weak equivalence, should be
considerably stronger than the one I just envisioned, and correspond to
the intuition of “fiberwise homotopy types” over the object a (visualized
as a space-like object). A careful description of such induced structures
seems to me to be needed, and the natural place to be the present part
IV of the notes.

4) A little reflection on semi-simplicial homotopy notions (and their
analogons when is replaced by a general test category ∆) seems
needed, in order to situate the following fact: ss homotopy notions,
namely for ss objects in any category A, behave well with respect to any
functor

(1) A→ B,

without having to assume that this functor commutes with finite prod-
ucts, whereas in the context of homotopy structures, when have a functor
between categories endowed say with homotopy interval structures (for
instance, with contractibility structures), such a functor

(2) M → N

behaves well with respect to homotopy notions only, it would seem, if
we assume beforehand it commutes with finite products (plus, of course,
that it transforms a given generating family of homotopy intervals of M
into homotopy intervals of N). In case

M = Hom(∆op, A), N = Hom(∆op, B),

and (2) comes from a functor (1) which does not commutes to finite
products, neither does (2) – and still (2) is well-behaved with respect
to ss homotopy notions! It should be noted of course that the semi-
simplicial homotopy notions in M can be defined, even without assuming
that in A finite products exist, namely in situations when M does not
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admit finite products – and hence, strictly speaking, the set-up of section
51 does not apply. All this causes a slightly awkward feeling, which
I would like to clarify and see what’s going on. I suspect it should be
simple enough to do it here and now.

First, assume that A is stable under finite products, and under direct
sums (with small indexing set say – for what we want to do with ,
finite direct sums even would be enough). We’ll use sums only with
summands equal to a chosen final object e of A, in order to get a functor [p. 297]

I 7→ IA : (Sets)→ A,

where IA is the “constant” object of A with value I , namely a sum of I
copies of e (sometimes also written I × e). Using this functor, we get a
functor

∆̂ = Hom(∆op, (Sets))→ M = Hom(∆op, A),

which I denote by
K 7→ KA,

associating to any ss set the corresponding “constant” (relative to A)
ss object of A. On the other hand, because A admits finite products,

[I think it’s a bit unclear here
whether the test category∆ is actu-
ally assumed to be after all. . . ]

so does M , which enables us to make use of the homotopy notions
developed in sections 51 etc. Thus, if

I= (I ,δ0,δ1)

is any interval in ∆̂ , considering the corresponding “A-constant” interval
IA in M , we get homotopy notions in M , which we may refer to as I-
homotopy (dropping the subscript A). They can all be deduced from the
elementary I-homotopy between maps in M , which is expressed in the
known way, in terms of a map in M

h : IA× X → Y,

where X and Y are the source and target in M of the two considered
maps, between which we want to find an elementary I-homotopy h.
This map h decomposes componentwise into

(*) hn : (In)A× Xn→ Yn,

and each hn can be interpreted, in view of the definition of In, as a map

(*’) h′n : In→ HomA(Xn, Yn),

provided we assume that taking products in A is distributive with respect
to the sums we are taking, whence

(In)A× Xn ' (In)Xn
= direct sum of In copies of Xn.

Now to give h, or equivalently a sequence of maps hn in (*) “functorial in
n for variable n”, amounts to giving a sequence of maps (*’), satisfying
a corresponding compatibility relation for variable n. The point of
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course is that (for any I in ∆̂ and X , Y in M) the set of data (*’) plus
the compatibility condition make sense, formally, independently of any
exactness assumptions on A. Thus, it can be taken as the formal ingredient [p. 298]
of a definition of “elementary I-homotopy” between two maps in M ,
without any assumptions whatever on the category A we start with. The
standard case is the one when I = 1, the “unit interval”, but never
mind. The definition works just as well, when is replaced by any (let’s
say small) category ∆ whatever. On the other hand, it is immediate
that for a functor M → N as above, induced by a functor A→ B, for
two maps in M , any elementary homotopy between them gives rise
to an elementary homotopy of their images in N – which is just the
well-known fact (in case ∆ = , I = 1) that M → N is compatible
with simplicial homotopy notions.

In order to fit this into the general framework of section 51, let’s
remark that if A is a full subcategory of a category A′, then for a pair of
maps in M , the elementary I-homotopies between these are the same
as when considering the given maps as maps in M ′ = Hom(∆op, A′), in
which M is embedded as a full subcategory. Now, any (small, say) cate-
gory A can be embedded canonically into A′ = Aˆ as a full subcategory,
and any functor

f : A→ B

embeds in the corresponding functor

f! : Aˆ→ Bˆ,

hence the functor
ϕ : M → N

embeds in the corresponding functor

ϕ′ : M ′→ N ′, M ′ = Hom(∆op, Aˆ), N ′ = Hom(∆op, Bˆ).

As Aˆ, Bˆ satisfy the required exactness properties, it follows that the
I-homotopy notions in M ′, N ′ can be interpreted in terms of the notions
of section 51, with respect to IA and IB, defined now as (componentwise)
constant objects of Aˆ and Bˆ respectively. Still, f! commutes to finite
products only if f does, so we are still left with explaining why M ′→ N ′

is well-behaved with respect to I-homotopy notions. Equivalently, we
need only see this in the case of (2) M → N , when A and B are supposed
to have the required exactness properties to allow for the interpretation
given above of the I-homotopy notions in terms of the formalism of
section 51, and when moreover f (as f! above) commutes with sums. [p. 299]
This now is readily expressed by the relations

ϕ′(IA)' IB,

ϕ′(IA× X ) ∼−→ ϕ′(IA)×ϕ′(X ),

i.e., while ϕ′ does not commute to finite products in general, however
it does commute to the products which enter in the description of ele-
mentary homotopies (as these products can be expressed in terms of
direct sums in A, B, and f commutes to these).
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These reflections suggest that the notions of homotopy interval struc-
tures and contractibility structures may be generalized, in a way that the
underlying category need no longer be stable under finite products nor
even admit a final object; and likewise, the notion of a morphism of such
structures may be generalized, without assuming that the underlying
functor should commute with finite products. The thought that this kind
of generalization may be needed had already occurred before in these
notes, in connection with the corresponding situation about twenty five
years ago, when the notion of a site was developed. But at present,
the extension doesn’t seem urgent yet, and I better stop here this long
digression!

The remaining questions possibly to deal with in part IV are all con-
cerned with modelizers. I’ll try to be brief!

5) Consider an “algebraic structure type”, and the category M of
its set-theoretic realizations. I am looking for a comprehensive set of
sufficient conditions on M to ensure that M is a “canonical modelizer”. It
seems natural to assume beforehand that in M (where at any rate small
direct and inverse limits must exist) internal Hom’s exist, and more
generally, for X , Y two objects over an object S of M , that HomS(X , Y )
– this implies that base change S′→ S in M commutes with small direct
limits and a fortiori, that direct sums are universal – we may as well
suppose them disjoint too. One feel quite willing too to throw in the
total 0-connectedness assumption (cf. section 58), and that every non-
empty object has a section over the final object. This preliminary set of
conditions on an algebraic structure species is of course highly unusual,
however it is satisfied for must “elementary” algebraic structures (by
which I mean M u Aˆ for some small category A), as well as for n-
stacks or ∞-Gr-stacks, for any n between 0 and ∞. The hope now
is, in terms of these assumptions, to give a necessary and sufficient
condition in order that a) the “canonical” homotopy structure on M
be a contractibility structure, and moreover b) the latter structure be
“modelizing”, by which we mean that the associated W∞-asphericity [p. 300]
structure (W∞ = usual weak equivalences) be modelizing, which will
imply that for any basic localizer W, the corresponding W-asphericity
structure is modelizing.

Even if I don’t look into this question now, it’ll turn up soon enough
in a similar shape, when it comes to prove modelizing properties for
categories of stacks of various kinds. The best we could hope for would
be a statement in terms of the category structure of M alone, with no
assumption that M be defined in terms of an algebraic structure type. If
I try to formulate anything by way of wishful testing conjecture, what
comes to mind is: is it enough that there should exist a separating
contractible interval? So the first I would try to get an idea, is to see
how to make a counterexample to this. . .
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3.7.

89 In connection with the left exactness properties of a f! functor, consid- Digression (continued) on left exact-
ness properties of f! functors.ered three days ago (section 85), I have been befallen by some doubts

whether any subcategory of (Cat) containing the subcategory of stan-
dard simplices is strictly generating. I wrote there (p. 284) that as this
is true for itself, it “follows a fortiori” for any subcategory A of (Cat)
containing . Assuming A to be full and denoting by i the inclusion
functor, this is known to be equivalent (cf. remark 2 same page) to
i∗ : (Cat)→ Aˆ being fully faithful, and in this form, it doesn’t look so
obvious that when this is true for one full subcategory, A0 say, it should
be true for any larger one A. This thought had been lingering for a
second while writing the “a fortiori” and I then brushed it aside, because
of the formulation of being generating in terms of strict epimorphisms.
Only the next day did it occur to me that it is by no means clear that if a
family of maps X i → X in a category M is strictly epimorphic, any larger
family with same target X should be “a fortiori” strictly epimorphic too –
the “a fortiori” is known to apply only in the case of the similar notions
of epimorphic, or universally strictly epimorphic, families of maps. After
a little perplexity, I found the situation was saved, in the case I was
interested in, through the fact that it was known from Giraud’s article
on descent (Bull. Soc. Math. France, Mémoire 2, 1964, prop. 2.5, p. 28)

[Giraud (1964)]that and even the smaller subcategory of simplices of dimension ≤ 2,
is even generating by “universally strict epimorphisms”, a notion which [p. 301]
is stable under enlargement of the family of maps, as recalled above.
Thus, the statement made on p. 284 does hold true. And I just checked
today that, while this stability property by enlargement is surely not
always true for a family of maps which is strictly epimorphic, however,
it is true that if a full subcategory A0 of a category M is generating by
strict epimorphisms (or, as we’ll say, is “strictly generating”), then so is
any larger full subcategory A. This is seen by an easy direct argument,
in terms of the initial definition, as meaning that for any object X in
M , the family of maps ai → X with target X and source in the given
subcategory (A say) should be strictly epimorphic. (For the definition of

[Artin, Grothendieck, and Verdier
(SGA 4.1)]

common variants of the notion of epimorphism, see the “Glossaire” at
the end of chapter 1, SGA 4, vol. 1.)

It occurred also to me that (as suspected in remark 3, loc. cit.) the
functor

i! : ˆ→ (Cat)

coming from the inclusion functor i : → (Cat) is not left exact (for
another reason though than first contemplated), namely because (Cat)
is known not to be a topos (for instance, an epimorphism need not be
strict (or, what amounts here to the same, effective) – as stated in the
cited result of Giraud). Indeed, we have the following

Proposition (which should belong to section 85!). Let M be a U-category
stable under small direct limits, A a small full subcategory, i : A→ M the
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inclusion functor, hence a functor

i! : Aˆ→ M .

If A is strictly generating (i.e., i∗ : M → Aˆ fully faithful), then i! is left
exact iff M is a topos.

Indeed, the inclusion functor into Aˆ of M ′, the essential image of i∗

in Aˆ, admits a left adjoint (i! essentially). By the criterion of Giraud,
left exactness of this adjoint, or equivalently of i!, means that M ′ is the
category of sheaves on A for a suitable site structure on A, qed.

Corollary. If M is not a topos, then i! does not commute to fibered products
in Aˆ of diagrams of the type

(*)
b c

F ,

with b, c in A and F in Aˆ, while it does commute to finite products, and [p. 302]
to fibered products of any two objects of Aˆ over an object of A.

The “while” comes from prop. 1 and prop. 2 of section 85, which
imply too that, if M is strictly generating and whether or not M is a
topos, left exactness of i! is equivalent with commutation to fibered
products of the diagrams (*). Hence the corollary.

This corollary answers also the perplexity raised in remark 1 (p. 283),
as to a hypothetical sharper version of part b), concerning fibered prod-
ucts. As anticipated there, it turns out that this sharper version is not
valid, – not without additional assumptions at any rate.

90 After this digression on exactness properties of f! functors, let’s come Review of questions (continued): 6)
Existence of test functors and related
questions. Digression on strictly gen-
erating subcategories.

back to the review of those questions not yet dealt with, which seem
more or less to belong to the present part IV of the notes. We had
stopped two days ago with the question 5) of finding some simple char-
acterization of canonical modelizers, comparable maybe in simplicity
to the characterization we found for test categories (in part II). This
question may well turn out to be related to the following one.

6) This is the question of finding handy existence theorems for test
functors, whereas so far our attention to test functors had been turned
towards a thorough understanding of the very notion of a test functor
and its variants. I have the feeling that, after the reflections of sections
78 and 86 notably, the notion in itself is about understood now, so that
time is getting ripe for asking for existence theorems. As all modelizers
we have been meeting so far were associated to asphericity structures,
it seems reasonable to restrict to these, namely to the case of a given
modelizing asphericity structure

(M , Ma),

and, if need be, even restrict to the case when this structure is associated
to a contractibility structure Mc. We suppose given moreover a test
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category A, which we may (if needed) assume to be strict even, or even
a contractor (i.e., the objects of A in Aˆ are moreover contractible, for
the homotopy interval structure in Aˆ defined by all intervals coming
from A). The question then is whether there exists a test functor

A→ M .

This (under the assumptions made) just reduces to the existence of a [p. 303]
functor which be Ma-W-aspheric. Here, W is a given basic localizer, with
respect to which we got an asphericity structure. The most important
case for us surely is the one when W =W∞, namely usual weak equiva-
lence. It is immediate indeed that an Ma-W-aspheric functor is equally
aspheric for the corresponding W′-asphericity structure of M , for any
basic localizer W′ ⊃ W. Thus, if we get an aspheric functor for W∞,
the finest basic localizer of all, we get ipso facto an aspheric functor
for any basic localizer W. (Note also that if an asphericity structure is
modelizing for a given W, the corresponding W′-structure is modelizing
too, for any W′ ⊃W; and the analogous fact holds for the notion of a
test category – namely a W-test category is also a W′-test category, and
similarly for total asphericity of Aˆ and hence for the condition of being
a strict test category.)

In case M is even endowed with a contractibility structure, we will
be interested, more specifically still, in aspheric functors factoring not
only through Ma, but even through Mc:

i : A→ Mc,

while replacing the asphericity requirement on this functor, by the
stronger one that for any x in Mc, the object i∗(x) in Aˆ be contractible
(for the homotopy structure in Aˆ defined by homotopy intervals coming
from objects in A, say). In other words, we are interested in the question
of existence of bimorphisms of contractibility structures (in the sense
of section 86) from (M , Mc) to (Aˆ, Aĉ ). It may be noted that in both
cases (working with asphericity structures or with the contractibility
structures instead), in this existence question, we may altogether forget
M itself, and consider it as an existence question for functors from A
into either Ma, or Mc, with the property that for any object x in the
target category Ma or Mc, the object i∗(x) in Aˆ be either aspheric, or
contractible. In the second case, we may even restrict x to be in any
given subcategory C of Mc generating the contractibility structure – and
in the cases met with so far, we can find such a C reduced to just one
object I . In the case of asphericity structures, the same holds when
taking for C a subcategory generating the asphericity structure, provided
however C contains the image of A by i (which gives little hope to have
C restricted to just one element!)

The interest of finding criteria for existence of W-aspheric or or more [p. 304]
stringently still of “c-aspheric functor” (as we may call them) is rather
evident, as it gives a way, via i∗, for any homotopy type described in
terms of a “model” x in M , to find a corresponding model i∗(x) in Aˆ.
The situation would be more satisfactory still if we could find the test
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functor i such that the corresponding functor

(1) i! : Aˆ→ M

be modelizing too (assuming M to be stable under small direct limits,
so that i! is defined as the left adjoint of

(2) i∗ : M → Aˆ .)

In this case, for a homotopy type described by a model K in Aˆ, i!(K)
gives a description of the same by a model in M .

Maybe we should remember though that even if we do not know
about any test functor from A to M , still we always can find in three
steps a modelizing functor

M → Aˆ,

namely a composition

(*) M
j∗
−→ Bˆ

iB−→ (Cat)
jA=i∗A−−→ Aˆ,

where j : B → M is an Ma-aspheric functor from an auxiliary small
category, which we may assume to be a test category, by a mild extra
assumption on M (cf. cor. 3 p. 253). The modelizing functor we thus
get has the disadvantage of not being left exact, whereas the looked-for
functor i∗ commutes to small inverse limits. Still, the composition (*) is
pretty near to being left exact, it commutes to fibered products (because
iB does) which is the next best – we can view it as a left-exact functor
from M to Aˆ/E , where E is the image in Aˆ of the final object of M
(assuming eM exists).

There is another advantage still of having a test functor i : A→ M ,
rather than merely using (*), namely it allows us to “enrich” the category
structure of M , in such a way as to get “external Hom’s” of objects of M ,
with “values in Aˆ”, by defining, for x , y in M , the object Hom(A)(x , y)
of Aˆ as

(3) Hom(A)(x , y) =
�

a 7→ HomM (i(a)× x , y)
	

.

Such enriched structure, when A= , plays an important part in the
second part of Quillen’s treatment of homotopical algebra, under the
name of (semi-)simplicial categories, especially with the notion of (semi-
)simplicial model categories, which looks quite handy indeed. We should [p. 305]
of course define composition of the Hom(A)’s, as required too in Quillen’s
set-up. This is done by relating the Hom(A)’s to the well-known internal
Hom’s in Mˆ – which will show at the same time that for formula (3) to
make sense, we do not really have to assume M be stable under binary
products, as we can interpret the products i(a)× x as being taken in
Mˆ, as well as the Hom, so as to get

HomMˆ(i(a)× x , y)' HomMˆ(i(a),HomMˆ(x , y)),
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hence

(4) Hom(A)(x , y)' i∗(HomMˆ(x , y)),

where i∗ in the right hand side is interpreted as a functor

i∗ : Mˆ→ Aˆ,

rather than M → Aˆ. (I leave to the reader the task of enlarging the basic
universe, as need may be. . . ) As i∗ commutes to products, the evident
composition of the internal Hom’s in Mˆ gives rise to the looked-for
composition of the Hom(A)’s, with the required associativity properties.
Of course, in case M is stable under binary products and Hom’s, which
apparently is going to be the case in all modelizing situations, there is
no need in the interpretation (4) to introduce the prohibitively large
Mˆ, and we can work in M throughout.

There is an important relation though on the external Hom(A)’s which
we would like to be true for a satisfactory formalism, namely

(5) ΓAˆ(Hom(A)(x , y)) ∼←− HomM (x , y),

where ΓAˆ just means HomAˆ(eAˆ , . . . ). This is equivalent to the require-
ment

(6) i!(eAˆ)' eM

(assuming a final object eM in M to exist), or equivalently

(7) i(eA)' eM

if we assume moreover eA to exist. Thus, it will be natural to ask for
test functors satisfying the extra condition (5) or (6) – and when trying
to construct test functors in various situations (even without being
aware of constructing test functors, as Mr Jourdain was “doing prose

[the reference is of course to
Molière’s comédie-ballet, Le Bour-
geois gentilhomme]

without knowing it”. . . ), the very first thing everybody has been doing
instinctively was to write down formula (7), I would bet!

[p. 306]

The motivation for wanting to find test functors being reasonably
clear by now, what kind of existence theorems may we hope for? When
A is such a beautiful test category as , or , I would expect that for
practically any M endowed with a modelizing contractibility structure
say, under mild restrictions (such as the exactness assumptions which
are natural in the modelizing story), there should exist a test functor
indeed. What I feel less definite about is whether it is reasonable to
expect we can find i even such that i! be modelizing too, in which case
we would expect of course that the pair of equivalences of categories

(8) HotA HotM

defined in terms of i! and i∗ should be quasi-inverse to each other, and
the adjunction maps deduced from those between the functors i! and i∗

themselves. This in turn is equivalent with the adjunction morphism

(9) F → i∗i!(F)

https://en.wikipedia.org/wiki/Le_Bourgeois_gentilhomme
https://en.wikipedia.org/wiki/Le_Bourgeois_gentilhomme
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being a weak equivalence, for any object F in Aˆ. A test functor satisfying
this exacting extra property merits a name of its own, we may call it a
perfect test functor (or a perfect aspheric functor, when not making any
modelizing assumptions on A or M). Thus, the existence problem of
finding test functors can be sharpened to the one of finding perfect ones.
Remember though that the most familiar test functor of all (besides the
geometric realization functor → (Spaces), namely the inclusion

(10) i : → (Cat)

giving rise to the nerve functor (introduced for the first time, I believe,
in a Bourbaki talk of mine, on passage to quotient by a preequivalence
relation in the category of schemes. . . ), is not perfect. The most natural
perfect test functor from into (Cat), more generally from any weak
test category A into (Cat), is of course iA – the functor indeed which
has been dominating the whole modelizing picture in our reflections
from the start. In the case of A = , Thomason discovered another
perfect test functor, conceptually less simple surely, namely i! Sd2, where
Sd is the “barycentric subdivision functor”. I suspect there must be an
impressive bunch of perfect test functors from with values in more or
less any given modelizer, not only the basic one – and the question here
is to get a clear picture of how to get them, and the same of course for [p. 307]
test functors which need not be perfect, including (10).

Next question then would be to see whether the existence theorems
we may get for , or its siblings and and the like, still hold true for
a more or less arbitrary test category, or contractor. If so, this would be
a very strong confirmation of the feeling which has been prompting the
reflections in part II, namely that for the purpose of having “all-purpose”-
models for homotopy types (insofar as this is feasible), any strict test
category, or any contractor at any rate, is just as good as simplices or
cubes, which people have kept working with for the last twenty-five
years. If not, it will be quite interesting indeed to come a grasp of what
the relevant extra features of and the like are, and how restrictive
they are.

I doubt I will dive into these questions, still less come to a clear
picture, in the present part of the notes. Still, before leaving the topic
now, I would like to write down some hints I came upon while doing my
scratchwork on homotopy properties of Aˆ categories. When looking
for functors

A→ M

having some specified properties (such as being a test functor, or a
perfect one, etc.), we may view this question as meaning that we are
looking for an object with specified properties in the category

MA = Hom(A, M).

Presumably, this category is endowed with an asphericity or contractibil-
ity structure if M is (as we assume), presumably even a modelizing one.
This reminds me that as far as the notion of weak equivalence goes,
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there may be even several non-equivalent ways of finding such structure
on MA, one being modelizing, whereas another, more useful one in
some respects, is not. Thus, if M is of the type Bˆ, we may rewrite MA

as
MA u (Aop × B)ˆ u Pˆ;

hence we get the weak equivalence notion coming from Pˆ, disregarding
its product structure, which is modelizing indeed if B is a test category
and A aspheric, hence Aop×B a test category. The structure which should
be of more relevance though for our purpose should be a considerably
finer one (namely with a smaller set of weak equivalences), which we
may visualize best maybe by writing [p. 308]

MA = (Hom(Aop, Mop))op,

i.e., interpreting the dual of MA as the category of A-objects of Mop, for
instance (if A= ) as the dual of the category of ss objects of Mop. Now,
Quillen has given handy conditions, in terms of projectives of Mop =
N , namely in terms of injectives of M , for the category Hom( op, N)
of ss objects of N to be a closed model category – hence the dual
category MA will turn out as a closed model category too, under suitable
conditions involving existence of injective objects in M . These conditions
are satisfied for instance when M is a topos, and notably when M is
of the type Bˆ – quite an interesting particular case indeed! Assuming
that M is stable under both types of limits, so is MA, hence there is an
initial and final object, and according to Quillen’s factorization axiom,
the map from the former to the latter can be factored through an object

F in MA, i.e., F : A→ M ,

which is cofibering, and such that F → e is a trivial fibration. The idea is
that these conditions mean more or less, at any rate imply, that F is a
test functor.

I hit upon this “way out” while trying to construct test functors from
to any elementary modelizer Bˆ, in order to try and check that Bˆ is

a (semi)simplicial model category in the sense of Quillen. The intuitive
idea of constructing inductively the components Fn of F was simple
enough, still I got stuck in some messiness and did not try to push
through this way, all the less as this naive approach had no chance of
generalizing to the case of a more or less general test category A. Of
course, for the time being Quillen’s theorems, about certain categories
Hom(Aop, N) being closed model categories, is equally restricted to the
case when A= , which looks as usual like a rather arbitrary assumption.
Thus, to “test” whether the feeling about any test category more or less
being “just as good” as , a second point would be to see whether
Quillen’s theorems extend, which presumably is going to be very close
to the first point I raised.

I take this occasion to raise a third point – where there is no reason
to restrict to an M which is modelizing (neither was there such reason
before, when phrasing everything in terms of aspheric or c-aspheric
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functors, rather than test functors. . . ). Namely, assuming as above that [p. 309]
for any test category or contractor A, MA or MAop

can be endowed with
an asphericity structure or a closed model structure, or at any rate with
a set of weak equivalences, hence a localization or corresponding “ho-
motopy category”. What one would expect now is that up to (canonical)
equivalence, the latter does not depend upon the choice of A, and hence
is the same for arbitrary A as when using , i.e., simplices. This should
be true at any rate for MAop

and when M is a topos – which means that
Illusie’s derived category D•(X ) of the category of semisimplicial sheaves
on a topos X , could be constructed by using, instead of ss objects, A-objects
of the category of sheaves on X , where A is any test category. This should
be one of the main points to settle in part VII of the notes.

There is a slight discrepancy though between the first point, about
existence of test functors with values in M , depending on a given as-
phericity or contractibility structure of M , and the second and the third,
which seem to depend only on the category structure of M . This is
further evidence that the set of questions raised here is still far from
being clear in my mind yet. Stating them now, however confusingly, is
a first step towards clarification!

4.7.
Just still two comments about the existence questions for test functors,

before going over to the next questions in our present review. One is that
for given A, to prove that for rather general modelizing M there exists a
test functor from A to M , we are reduced to the case when M is of the
type Bˆ, where B is a test category – namely, it is enough to take a B
such that there exists a test functor B→ M . If we can even find a perfect
test functor from some B to M , then likewise the existence question for
perfect test functors from A to M is reduced to the case when M = Bˆ.
These comments may be useful for applying to the situation Quillen’s
model theory, as envisioned on the previous page – as his criteria for
Hom( op, N) to be a closed model category apply when N is the dual
of a topos, for instance the dual of Bˆ. The second comment is about
Thomason’s result concerning the standard inclusion

i : ,→ (Cat),

which can be expressed by saying that, although i itself is not a perfect
test functor, however, for any integer n≥ 2, the composition [p. 310]

in = i! Sdnα : → ˆ→ ˆ→ (Cat)

is a perfect test functor, where α : → ˆ is the canonical inclusion. It
is tempting to surmise that this result is not special to i alone, but that
it holds for a large class, if not all, test functors from to asphericity
or contractibility modelizers. Here, Sdn denotes the n’th iterate of
the barycentric subdivision functor Sd (following now the notation in
Thomason’s paper, which presumably is standard, while I have been
using “Bar” in part II of the notes). Presumably, functors analogous
to Sd can be defined in any elementary modelizer Aˆ, as suggested by
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the natural constructions arising in connection with the factorization
property for a closed model structure on Aˆ. Thus, possibly there is a
general method in view for deducing perfect test functors from ordinary
ones. However, it definitely seems to me that the natural place for these
existence questions is in part V of the notes, as they seem intimately
related to an understanding of the homotopy structures of elementary
modelizers, and more specifically to the closed model structures to
which such modelizers give rise in various ways.

* * *

Before proceeding, I would like to state still another afterthought to the
reflections of section 89, about strictly generating subcategories of a
category M . I recall that a family of arrows in M with same target X

ui : X i → X

is called strictly epimorphic, if for every object Y of M , the corresponding
map

(*) Hom(X , Y )→
∏

i

Hom(X i , Y )

is injective (which is expressed by saying that the family (ui) is epimor-
phic), and if moreover the following obviously necessary condition for
an element ( fi) of the product set of (*) to be in the image of the map
(*), is also sufficient:
(Comp) For any two indices i, j (possibly equal) and any commutative

square
T

X i X j

X

vi v j

ui u j

in M , the relation fi vi = f j v j holds.
It is immediate that the condition for (ui) to be strictly epimorphic [p. 311]
depends only on the sieve X0 of X in M (namely, the subobject of X ,
viewed as an object of Mˆ) generated by the ui ’s – we’ll say also that
this sieve is strictly epimorphic. One should beware that this does not
mean of course that X0→ X is epimorphic in Mˆ (which would imply
X0 = X , i.e., that one of the ui ’s admits a section, i.e., a right inverse);
nor is it true that if a sieve is strictly epimorphic, a large one should
be so too – which means that when adding more arrows to a strictly
epimorphic family, the family need not stay str. ep.

We’ll say that the family (ui) is universally strictly epimorphic if it
is strictly epimorphic, i.e., the corresponding sieve X0 is, and if the
latter remains so by arbitrary base change X ′ → X in M , i.e., if the
corresponding sieve X ′0 of X ′ is strictly epimorphic too. If the fibered
products

X ′i = X i ×X X ′
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exist in M , this condition also means that the corresponding family of
maps

u′i : X ′i → X ′

is strictly epimorphic. The condition that (ui) be univ. str. epimorphic
again depends only on the generated sieve, it is moreover stable under
base change, and equally stable under adding new arrows, i.e., replacing
a sieve in X by a larger one.

It should be noted that if the fibered products X i ×X X j exist in M ,
then the compatibility condition (Comp) above is equivalent to the one
obtained by restricting to

T = X i ×X X j ,

with vi and v j the two projections.
Assume the indices i are objects of a category I , and the X i are the

values of a functor
I → M ,

and that the family of arrows (ui) turns X into the direct limit in M of
the X i:

X = lim−→
i

X i ,

then it follows immediately that the family (u j) is strictly epimorphic.
After these terminological preliminaries, we’re ready to give the fol- [p. 312]

lowing useful statement, which is lacking in SGA 4 Chap. I (compare
[Artin, Grothendieck, and Verdier
(SGA 4.1)]

loc. cit. prop. 7.2, page 47, giving part of the story):

Proposition. Let M be a U-category, A a small full subcategory, i : A→ M
the inclusion functor, hence a functor

i∗ : M → Aˆ.

For any object X of M, we consider the family FX of all arrows in M with
target X , source in A. The following conditions are equivalent:

(i) For any X in M, the family FX is strictly epimorphic.

(ii) For any X in M, the family FX is universally strictly epimorphic.

(iii) For any X in M, FX turns X into a direct limit of the composition
functor A/X → A→ M, i.e.,

X ∼←− lim−→
A/X

a.

(iv) The functor i∗ is fully faithful.

Proof left to the reader (who may consult loc. cit. for (i)⇒ (iii)⇔
(iv), so that only (i)⇒ (ii) is left to prove).

Definition. When the equivalent conditions above are satisfied, we’ll
say that A is a strictly generating subcategory of M .
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NB The notion makes sense too without assuming A to be small, nor
M to be a U-category, by passing to a larger universe (it is immediate
for (i) or (iii) that the condition does not depend on the choice of the
universe.)

Corollary. If A is strictly generating in M, then so is any larger full
subcategory B.

This is clear by criterion (ii) (whereas it isn’t by any one of the other
two criteria!).

91 I see three more questions to review – presumably they will be a lot Review of questions (continued): 7)
Homotopy types of finite type, 8) test
categories with boundary operations,
9) miscellaneous.

shorter than the last!
7) Description of homotopy types “of finite type”, in terms of an

elementary modelizer Aˆ. In terms of the modelizer (Spaces), a natural
finiteness condition on a homotopy type is that it may be described
(up to isomorphism) as the homotopy type of a space admitting a finite [p. 313]
triangulation. In terms of ss sets, i.e., of the modelizer ˆ, the natural
finiteness condition, suggested by the algebraic formalism, is that the
homotopy type be isomorphic to one defined by an object “of finite
presentation” in ˆ, namely one which is a direct limit of a finite diagram
in ˆ, made up with simplices, i.e., coming from a diagram in . It
is clear that the first finiteness condition implies the second, by using
a total order on the set of vertices of the triangulation. The converse
shouldn’t be hard either, using an induction argument on the number of
simplices occurring in the diagram, and using the fact that any quotient
object in ˆ of a simplex is again a simplex, hence also a subobject
of a simplex is a union of subsimplices; from this should follow by
induction that the geometric realization of a ss set of finite presentation
is endowed with a natural compact piecewise linear structure, and hence
can be finitely triangulated. Presumably, one can even find a canonical
triangulation, using twofold barycentric subdivision Sd2 (again!) on
any simplex. All this is surely standard knowledge, and I don’t feel like
diving into technicalities on this matter, unless I am forced to.

If we start with an arbitrary test category A, the notion of an object of
finite presentation in Aˆ still makes sense. Indeed, in any category M ,
stable under filtering small direct limits, we may define objects of finite
presentation as those for which the corresponding covariant functor

Y 7→ Hom(X , Y )

commutes to filtering direct limits. If M is stable under some type of
finite direct limits, say under any finite direct limits, then so is the full
subcategory Mfp of objects of finite presentation of M . In the case when
M = Aˆ, A any small category, it is obvious that objects of A, and hence
finite direct limits of such, are of finite presentation, and it is not difficult
to show that the converse equally holds. As a matter of fact Af̂p can be
viewed as the solution of the 2-universal problem of “adding finite direct
limits to A”.
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Coming back to the case when A is a test category, and hence Aˆ is
modelizing, one may ask for conditions upon A which ensure that the
homotopy types of finite presentation are exactly those isomorphic to
the homotopy types defined by objects of Af̂p. One expects that some
stringent extra condition is needed on A to ensure this. To see this, [p. 314]
let’s take a finite group G, and an aspherical topological space EG upon
which G operates freely, with quotient BG , a classifying space of G. If
G 6= 1, the homotopy type of BG isn’t of finite type, because BG has non-
vanishing cohomology groups in arbitrarily high dimensions, as well
known. We could transpose the following construction in either (Cat)
or ˆ say, but we may as well work in the modelizer M = (Spaces), and
take any small full subcategory A of M , containing the unit interval but
not the empty space, and stable under finite products – which implies
that A is a strict test category. We’ll take A large enough to contain
EG , and small enough to be made up with aspheric spaces, hence the
inclusion functor

i : A→ (Spaces)

is a test functor. Now consider the quotient object in Aˆ

F = EG/G,

i.e., the presheaf on A

F : T 7→ Hom(T, EG)/G ' Hom(T, BG),

where the last isomorphism comes from the fact that the object T of A
is aspheric and hence 1-connected. Thus, we get

F ' i∗(BG),

hence the homotopy type defined by F is the homotopy type of BG , which
is not of finite type, despite the fact that F is of finite presentation.

In order to ensure that the homotopy type defined by any object in Af̂p
be of finite type, it may be useful perhaps to make on A the assumption
that any quotient in Aˆ of an object in A is isomorphic to an object in A,
and that the set of all subobjects in Aˆ of an object a in A (i.e., the set of
all sieves on a) is finite – possibly too that for any two objects a and b
of A, Hom(a, b) is finite. As for the opposite inclusion, namely that any
homotopy type of finite type can be described by an object of Af̂p, this
would follow from the existence of a perfect test functor from into
Aˆ, factoring through Af̂p. Thus, the present question about finiteness [p. 315]
conditions, seems to be related (possibly) to the previous one about
existence of various types of test functors.

The condition for a strict test category A we are looking at is surely
satisfied, besides , by the cubical and hemispherical test categories
and , and surely also by any finite products of these. I add this comment,
of course, in order to “push through” the point that not any more with
respect to finiteness conditions on homotopy types, than (presumably
at least, for the time being)in any other essential respect concerning



§91 Review of questions (continued): 7) Homotopy types of . . . 292

the ability for expressing basic situations and facts in homotopy or
cohomology theory, the category of simplices stands singled out by itself
from all other test categories. Nor does it seem that the “trinity”

, ,

has this property, with the only exception so far, possibly, of the Dold-
Puppe theorem (as no other test category except these is known to me
for which a Dold-Puppe theorem in its strict form holds true (compare
reflections section 71)).

8) I could make the same point in favor of more general test categories
than the trinity above, when it comes to the existence of an algorithm for
computing homology and cohomology groups, using suitable boundary
operators. What is meant by these is clear of course for the three types
of complexes, but then it extends in an obvious way to multicomplexes
too – which means that for the test categories deduced from the trinity
by taking finite products, we still get an algorithm for cohomology via
boundary operators. Of course, for any test category A, using a test
functor (if we can find one) from one of the three above (say) into Aˆ
will allow us to reduce “computation” of homology and cohomology
invariants in terms of a model in Aˆ, to the case of the corresponding
type of complexes – hence again an algorithm (similar to the familiar
one of computing the cohomology of an object of (Cat) semisimplicially,
via the nerve). But this is cheating of course! The question I want to
raise here is about existence of “boundary operations” in A, similar to the
familiar ones used for the three basic types of complexes, and allowing
to compute the homology and cohomology groups of an object of Aˆ in
the usual way, involving suitable signs + or − associated to the various
boundary operations. It shouldn’t be hard, I feel, to pin down exactly [p. 316]
what is needed for getting such a formalism. The intuitive idea behind it
(suggested by the example of standard complexes and multicomplexes)
is that such a formalism should be associated to cellular decompositions
of n-cells for variable n, such that the interior of each n-cell should be
an open cell of the subdivision. There may of course be several n-cells
for the same n, which are not combinatorially isomorphic. When trying
to express this idea in a precise way, we are led to assume, as an extra
structure on the would-be test category A, a functor

(1) i : A→ (Ord)

of A into the category of ordered sets, such that for any a in A, i(a) be
a finite ordered set, whose geometric realization (cf. section 22) is an

n-cell for suitable n
def
= dim(a). We assume moreover that i(a) has a

largest element e(a), and that the geometric realization of i(a) \ {e(a)}
is the bounding (n− 1)-sphere of the n-cell |i(a)|:

(2) |i(a)∗| ' Sn−1, where i(a)∗
def
= i(a) \ {e(a)},

which will imply the precedent condition, namely

(3) |i(a)| ' Bn,
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as Bn can be identified to the cone over Sn−1. As another condition, we
need that

(4) For any a in A and x ∈ i(a), there exists b in A and an isomor-
phism

i(b) ∼−→ i(a)/x
def
=
�

y ∈ i(a)
�

� y ≤ x
	

,→ i(a),

induced by a map
b→ a

in A.
It is enough to make this assumption for x of codimension 1 in i(a),
which will imply that it is true for any x . It seems reasonable on the
other hand to make the assumption that for a given x , the object b in (4),
viewed as an object of A/a, is determined up to a unique isomorphism,
we may call it ax , and ∂x the canonical map of b into a

(5) ∂x : ax → a (x ∈ i(a), of codim. 1 in i(a),
i.e., dim(x) = dim(a)− 1).

As an extra structure, we need for any a in A

(6) ωa, an orientation of the n-cell i(a) (n= dim(a)).

This allows us, for any x as in (5), to define a signature

(7) ε(x) or εa(x) ∈ {+1,−1},

which will be +1 or −1, depending on whether in the inclusion [p. 317]

|∂x | : |i(ax)| → |i(a)|,

the orientation ω(ax) is induced “à la Stokes” by the orientation ω(a)
of the ambient n-cell, or not. Having the boundary operations (5) with
their signatures (7), and the decomposition

(8) A=
∐

n≥0

An, where An =
�

a ∈ Ob A
�

� dim a = n
	

,

we get in the usual way, for any contravariant functor K• from A with
values in an additive category, a corresponding chain complex in this
category, with components

(9) Kn =
∐

a∈An

K•(a),

and boundary operators defined in the usual way via (5) and (7). Apply-
ing this to the case of the category (Ab) of abelian groups, or to its dual,
and to the abelianization of an object X of Aˆ, we obtain a tentative way
for computing the homology and cohomology groups of the homotopy
type of A/X , and similarly for any system of twisted coefficients on X .
The question which arises here is to write down a set of natural extra
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conditions on the data, which will ensure that we do get a canonical
isomorphism between the “homology” and “cohomology” groups thus
constructed, and the usual homology and cohomology invariants of the
object A/X of (Cat). Moreover, we would like too to have conditions to
ensure that A is a test category, or even a strict one.

One difficulty here, if one really wants a test category and not just
a weak one (which may not be without any problem either), is that
presumably for this, we’ll need suitable degeneracy operations, which
may well turn out a very exacting condition indeed! The skeptical
reader may wonder, as I am just doing myself, whether there will be
any example within the set-up I propose, which does not reduce to a
finite product of test categories in our trinity. [p. 318]

I just spent a while trying to find some convincing example, by using a
suitable full subcategory A0 of (Ord), made up with finite sets satisfying
the assumption (2) above for i(a), under some additional assumption
on A0 such as stability under finite products and under passage from a
to an object a/x , and that A0 contain the ordered set

I =
•

•
•

,

whose geometric realization is the segment B1 with its usual cellular
decomposition. In terms of A0 and introducing “orientations” of object
of A0, the idea was to define another category A (of pairs (a,ω), with a
in A0 and ω an orientation of |a|), stable under finite products so that Aˆ
is totally aspheric, together with a functor i : A→ (Ord) ,→ (Cat) such
that i∗(I) should be representable, and hence furnish the homotopy
interval needed to ensure that A is a test category. The first idea that
comes to mind, namely define a map from (a,ω) to (a′,ω′) as merely a
map from a to a′ in A0, is nonsense unfortunately, as in the data (6), the
orientations will not be stable under isomorphisms, a condition which I
forgot to state before, and which is visibly needed in order to be able to
define the differential between the Kn’s. If we try to define A taking into
account this compatibility condition, we loose existence of products,
anyhow i∗(I) isn’t representable anymore, so why should it be aspheric
over the final object, so why should the functor i be a test functor?

The difficulty I find in carrying through any explicit example for a “test
category with boundary operations”, except those which stem from our
trinity, is rather intriguing I feel. The question is whether maybe in this
direction, one might get at an intrinsic description of the trinity, in terms
of the rather natural structure species of a “test category with boundary
operations”. This is the second instance where the thought arises that
the three standard test categories , and may be distinguished
in some respects – the first instance was in relation to the Dold-Puppe
theorem.

9) Miscellaneous residual questions from part II. One of these was
about the category f of simplices without degeneracies being a weak
test category (cf. section 43) – while it is definitely not a test category.
It seems worth while to write down a proof for this, maybe too for the
analogous statements for f and f. This reminds me too that I never got [p. 319]
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around to introducing formally the hemispherical test category, which
presumably will be very useful when it comes to studying stacks – this
too could be done in part IV, as well as proving of course that is a
strict test category indeed, or better still, a contractor. It may be fun too
constructing test functors from any one of the three basic test categories
in the trinity, to the category of complexes defined by the two others –
six cases altogether to consider! But as I am not in the process of writing
the “Elements d’Algèbre Homotopique”, maybe I will skip this!

[pity!]In the same section 43, I raised the question as to whether the ordered
set of all non-empty finite subsets of a given infinite set, viewed as a
category in the usual way for an ordered set, was a weak test category
(on page 78 it was seen not to be a test category, and it is immediate
then that it is not totally aspheric either). One interesting application,
as noticed there, would be to the effect that (Ord), the subcategory of
(Cat) defined by ordered sets, is a modelizer (for the induced notion of
weak equivalences). Now the question arises moreover whether this
modelizing structure comes from an asphericity structure, or even from
a contractibility structure – and the same question arises in the more
general situation described in the proposition of page 74.

A last question along these lines I would like to clear up, is the relation
of total W-asphericity for an asphericity structure, for variable W, when
W ⊂ W′. Assuming the localizers satisfy the condition Loc 4), is it
true that total W-asphericity is equivalent to total W′-asphericity – or
equivalently, is it equivalent to total 0-connectedness?

5.7. [p. 320]

92 The review on “pending questions and topics” related to part IV of Short range working program, and
an afterthought on abelianization
of homotopy types: a handful of
questions around the Whitehead and
Dold-Puppe theorems.

the notes has taken pretty much longer than expected. It was quite
useful though, to get a clearer view of what those questions are about,
and to get a feeling for what to include and develop, and where. As
I do not intend to spend my life on the task, not even one year, it is
becoming clear that I am not going to get the whole picture of all the
questions touched – and some presumably I am going to leave just aside,
as they do not seem indispensable for a comprehensive overall picture
of what I’m after. This seems to me to be the case for the questions
7) and 8), concerned with finiteness conditions for homotopy types in
terms of models, and with test categories with boundary operations.
At the opposite side, it seems that the questions 2), part of 3), and 9),
about the notion of contractor, induced asphericity and contractibility
structures on a category M/a, and “miscellaneous” left-overs from part
II, should be dealt with in part IV – whose end now is in sight after all!
On the other hand, questions 1), another part of 3), 5) and 6), about
morphisms of asphericity structures and related problems, about an
autodual treatment of asphericity and contractibility notions, about a
handy criterion for canonical modelizers, and about existence theorems
for various kinds of test functors or aspheric functors, while I feel that
I should come at least to a considerably clear understanding of these
matters than now, the adequate place for developing such reflection is
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definitely not in the present part IV, but belong to one or the other of
the three parts still ahead in our overall reflection on the modelizing
story.

During our review, we came a number of times upon situations when
the question arose as to whether one point I like to make, namely that
a more or less arbitrary (strict) test category “is just as good” as the
sacrosanct test category , or its twin brothers and , is a valid one
or not. I would like to list here these situations, with a view of coming
back to it later:

a) Existence theorems for test functors (cf. section 90).

b) Aˆ and various other categories constructed in terms of A, such
as Hom(Aop, M), are closed model categories (under suitable as-
sumptions. . . ).

c) Independence of the derived category of Hom(Aop, M) on the
choice of test category, notably when M is a topos or the dual of
a topos (with suitable assumptions on A, M . . . ). [p. 321]

d) Possibility of expressing finite type of a homotopy type in terms
of Af̂p, for suitable test categories A.

e) Possibility of defining boundary operations within a test category
– and/or getting Dold-Puppe type relations.

* * *

Before resuming more technical work with the matters left over for
part IV, I would like still to write down some afterthoughts, concerning
the question of boundary operations in a test category (question 8) in
our review). It occurred to me that perhaps it isn’t such a good idea,
to try at all costs to subordinate this question to a question of cellular
decompositions of spheres, however natural this idea may be in view of
the examples of the standard types of complexes and multicomplexes.
In this connection, I remember that among my first thoughts when
starting unwittingly on the modelizing story, was that a “test category”
A (namely one such that Aˆ should be “modelizing”) should more or
less correspond to such decompositions. Soon after it came as a big
surprise that so little was needed in fact for A to merit the name of a
test category – and that the relevant conditions had nothing to do with
cellular decompositions of this or that. The same may well turn out,
when looking for a generalization of the standard simplicial, cubical or
hemispherical chain complexes, giving rise to the homology and coho-
mology invariants of a given “complex”. The kind of set-up I proposed
in yesterday’s notes, for a formalism of boundary operations in a test
category A, now looks to me in some respects somewhat “étriqué”, and

[“étriqué” can again be translated
as “narrow-minded”]

I’ll try another start in a different spirit.
In order not to get involved in irrelevant technicalities, I assume that

the basic localizer W is W∞ = usual weak equivalence. It seems that
one basic fact for writing down a relationship between homotopy types
and “homology types”, is the existence of a canonical “abelianization
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functor”

(1) (Hot)→ D•((Ab)) (
def
= Hotab),

where (Ab) is the abelian category of abelian groups, and D• designates
the “derived category” of the category Ch•((Ab)) of chain complexes of
abelian groups, namely its localization with respect to “weak equiva-
lences”, i.e., quasi-isomorphisms: [p. 322]

(2) D•(Ab) =W−1Ch•(Ab),

where W means “quasi-isomorphisms”, i.e., maps inducing isomor-
phisms for all homology groups. The most common way for defining the
canonical functor (1), where as usual here (Hot) is defined as W−1(Cat),
is via the test category , as the composition in the bottom row of

(3)

(Cat) ˆ âb Ch•(Ab)

(Hot) Hot Hotab D•(Ab)

i∗ Wh ≈DP

≈ ≈ ,

which is deduced from the top row by passing to the localized categories.
The subscript ab in âb denotes the category of abelian group objects
in ˆ, the functor

(4) Wh : ˆ→ âb

is the “abelianization functor” obtained by composing a presheaf op→
(Sets) with the abelianization functor

(Sets)→ (Ab), X 7→ Z(X ).

We call this functor Wh also the “Whitehead functor”, as its main prop-
erty is expressed in Whitehead’s theorem, namely that it is compatible
with weak equivalences (where weak equivalences in âb are defined
in terms of the underlying semisimplicial sets, forgetting the addition
laws). The localized category of âb with respect to the latter notion of
weak equivalence is denoted by Hotab , the functor

(4’) Hot → Hotab

induced by Wh may be equally (and still more validly) be designated
by Wh . The two subscripts (in Wh and in Hotab) refer to the fact
that the notions make still a sense when is replaced by an arbitrary
small category A, cf. below.

The functor DP in the top row is the well-known Dold-Puppe functor,
which is an equivalence of categories. As for i∗, it is defined in terms of
an arbitrary test functor

i : → (Cat),
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which may be either the standard inclusion (which is the more commonly
used one) or the canonical functor a 7→ /a, called i . The functors
i∗ corresponding to different choices of i are of course in general non-
isomorphic, however (as follows from section 77) the corresponding [p. 323]
functor

i∗ : (Hot)→ Hot

is independent of such choice, up to canonical isomorphism.
Instead of , we could have worked with or instead, as these

give rise to a Dold-Puppe functor (which is still an equivalence), and
(almost certainly, see below) to a corresponding variant of the “White-
head theorem”. We thus get two other ways for defining a canonical
“abelianization functor” (1) for homotopy types, and it should be an
easy and pleasant exercise to show these three functors are canonically
isomorphic, using the fact that a product of test categories is again a
test category.

Remark. Of course, when concerned mainly with defining a functor
(1) we don’t really need Whitehead and Dold-Puppe theorems – indeed,
instead of taking the functor

DP ◦Wh : ˆ→ Ch•(Ab),

we could have taken directly (using the standard boundary operations
between the components of a semisimplicial abelian group) the standard
chain complex structure of Z(K•) (for K• in ˆ), without taking the
trouble and normalizing it à la Dold-Puppe – and it is a lot more trivial
than either Whitehead’s or Dold-Puppe’s theorem, that the latter functor
transforms weak equivalences into quasi-isomorphisms; moreover, it
gives rise to the same functor

(5) Hot → D•(Ab) (= Hotab)

as DP ◦Wh .

Let now A be any small category, we are interested in the functor

(6) HotA→ D•(Ab) (= Hotab)

obtained as the composition

(7) HotA→ (Hot)→ D•(Ab),

where the second functor is the abelianization functor (1), and the first
is the canonical functor, deduced by localization from

(8) iA : Aˆ→ (Cat), a 7→ A/a.

We see immediately that for A= , the functor (6) reduces to (5) up to
canonical isomorphism – and the same of course when A is either or [p. 324]

. In these three cases, the functor (6) can be factorized in a natural
way through the category

HotabA =W−1Aâb,
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where now W stands for the set of “weak equivalences” in Aâb, defined
in the same way as above in the case A= . The question then arises,
for any given A, as to whether such a factorization can be still obtained,
and how exactly.

This formulation is inspired by the description of abelianization of
homotopy types via the (slightly sophisticated diagram) (3). When
following the more naive approach of the remark above, this leads us to
the closely related question of defining (6) via a composition

(9) Aˆ
WhA−−→ Aâb

L
−→ Ch•(Ab),

(for a suitable functor L, cf. below), by passing to localizations.
Both approaches seem to me of interest. The first one, to make sense

at all as stated, relies on the existence of a canonical functor

(9’) HotA→ HotabA,

induced by the abelianization functor

WhA : Aˆ→ Aâb, X 7→ Z(X ),

i.e., on the validity of Whitehead’s theorem, with replaced by A. This
looks like an interesting question, whose answer should be in the affir-
mative. At any rate, if we can find an aspheric functor

(10) j : → Aˆ

(with respect to the standard asphericity structure of A), then the answer
is affirmative, as we are immediately reduced to the known case A is
replaced by . Thus, the answer is possibly tied up with the question of
existence of test functors, which we’ll deal with presumably in part V. It
should be noted though that if such a functor (10) exists, then necessarily
A is aspheric, and even totally aspheric – a substantial restriction indeed.

More generally, let

(10’) j : B→ Aˆ

any aspheric functor with respect to the standard asphericity structure
of Aˆ, where B is any small category. The corresponding functor [p. 325]

(11) j∗ : Aˆ→ Bˆ

then satisfies
( j∗)−1(WB) =WA,

and the corresponding functor for the localizations gives rise to a com-
mutative diagram

HotA HotB

(Hot)

j∗

iA iB
,
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and hence the corresponding diagram

(12)

HotA HotB

D•(Ab) = Hotab

j∗

is commutative, where the vertical arrows are the canonical functors
(6). Coming back to the base B = say, this shows that (6) can be
viewed as the composition

HotA
j∗
−→ Hot

Wh
−−→ Hotab

DP
−→
≈

Hotab,

and hence it can be inserted in the commutative diagram

(13)

HotA Hot

HotabA Hotab Hotab≈ ,

where the functor
HotabA→ Hotab

is induced by j∗ab. Thus, we get the wished for factorization of (6) via
HotabA, provided we can find an aspheric functor (10). It should not be
hard moreover to see that the factorizing functor obtained from (13),
namely

(14) HotabA→ Hotab,

does not depend up to canonical isomorphism on the choice of j, at
least in the case when A is a contractor, using the end remarks of section
82 (p. 272) concerning products of aspheric functors.

The question remains whether we can define (14) for (more or less)
any small category A, without having to rely upon the existence of an [p. 326]
aspheric functor (10), in such a way that it factors the canonical functor
(6) (granting Whitehead’s theorem holds for A), and moreover that for
an aspheric functor (10’) j : B→ Aˆ, giving rise to

j∗ab : HotabA→ HotabB,

then corresponding diagram

(15)
HotabA HotabB

Hotab

should commute, where the vertical arrows are the functors (14).
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For defining (14) in this general case, recalling that

Hotab ≈←− Hotab ,

we can’t help it and have to use diagram (3) and the functor

iA : Aˆ→ (Cat),

or rather ((Cat) serving only as an intermediary) the functor

u
def
= i∗iA : Aˆ→ ˆ,

so that (6) can be viewed as deduced by localization of Aˆ from the
composition

(*) Aˆ
u
−→ ˆ

Wh
−−→ âb→ Hotab ( ≈−→ Hotab).

One difficulty here is that u does not commute to finite products, and
hence doesn’t induce a functor

Aâb→ âb,

it would seem. Now this difficulty, I just noticed, can be overcome, using
the fact that iA and hence also u commutes to fibered products, or, what
amounts to the same, induces an exact functor

u0 : Aˆ→ ˆ/F
≈−→ ( /F )ˆ,

where
F = u(eAˆ) = i∗(A)

is a suitable object in ˆ. A fortiori, u0 commutes to finite products,
hence transforms abelian group objects into same, i.e., induces

u0ab : Aâb→ ( /F )âb,

on the other hand, we do have too a natural functor [p. 327]

(16) αab
! : ( /F )âb→ âb,

defined as the left adjoint of the evident functor

α∗ab : âb→ ( /F )âb

induced by the left exact functor α∗, where α is the “localization mor-
phism of topoi”

α : /F → F

defined by the object F of ˆ. We thus get a diagram

(17)

Aˆ Aâb

( /F )ˆ ( /F )âb

ˆ âb Hotab Hotab

WhA

u0

u

u0ab

Wh
/F

α! αab
!

Wh
,
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containing (*) above as the composition of maps in the left-hand verti-
cal column and in the bottom row. The lower square in this diagram
commutes (up to natural isomorphism) – which is a general fact surely
for morphisms of topoi f : X → Y such that f! exists, which allows to
define too a functor f ab

! as (16) above. The upper square though doesn’t
look at all commutative, too bad! The only hope left now is that the
natural compatibility arrow for this square (there is bound to be one,
isn’t there!), when composed with the lower square (so as to give a
compatibility map for the composite rectangle) should give rise to a weak
equivalence in âb, for any choice of an object X in Aˆ.

It would seem to me that a reasonable functor (14) will exist, without
an existence assumption of a test functor (10), exactly in those cases
when the composite rectangle in (17) is “commutative up to weak
equivalence”. I have no idea whether or not this is true for any small
category A, not even (I confess) when there is an aspheric functor (10)
– as a matter of fact, I don’t feel like going any further now in this
direction, and trying to check anything whatsoever.

I was a little rash in the definite statement I made about the “exact”
assumption to make for a “reasonable” functor (14) to exist; another
seems needed still, namely that the functor [p. 328]

(18) Aâb→ âb

we obtain by composing the two arrows in the right hand vertical column,
transforms weak equivalences into same, which is needed in order to
deduce (14) by passing to the localized categories. When the two
assumptions are satisfied, then the functor (14) obtained from (18)
does factorize (6) as required, and it should be clear too that it satisfies
the compatibility (15).

Thus, it seems there are good prospects for getting canonical functors

HotA→ HotabA→ Hotab,

whose composition is (6), i.e., inserting into the commutative diagram

(19)

HotA HotabA

Hot Hotab .

The next question then which arises is whether the second vertical arrow
(namely (14)) is an equivalence, whenever the first one is, i.e., when A is
a pseudo-test category, or whether this is true if we make some familiar
extra assumption on A, such as being an actual test category say.

I feel I am getting gradually back into thin air conjecturing, I wouldn’t
go on too long this way! This whole HotabA business was just a di-
gression, which then took me longer than expected, it doesn’t seem to
have much to do with what I have been out for in this section, namely
afterthoughts about boundary operations in a test category, which are
designed to gave a “computational” description of the canonical func-
tor (6), the latter being defined without any restriction nor difficulty
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for any small category A. More accurately still, we want to describe
the composition of (6) with the canonical functor Aˆ→ HotA, namely
Aˆ→ Hotab, via a suitable functor Aˆ→ Ch•(Ab), with the expectation
that the latter should factor through Aâb via the abelianization functor
WhA. In other words, we are looking for commutative diagrams

(20)

Aˆ Hot

Aâb

Ch•(Ab) Hotab

K

L
,

where all functors in the diagram, except for K and L, are the canonical [p. 329]
ones familiar to us. The question then is how to define a suitable L, such
that the corresponding square (where K = L ◦WhA) should commute
up to (canonical?) isomorphism.

There is such an L, whenever we have an aspheric functor (10) (where
may be replaced by one of its twins), using corresponding semisim-

plicial chain complexes – but, as already remarked yesterday, taking
things this way is “cheating”! Conceivably too, there are quite general
theorems asserting that a functor from a category Aˆ say to a derived
additive category such as Hotab can be lifted to the category of models
(here abelian chain complexes) it comes from, and possibly even in a
way factoring through Aâb? I don’t intend to dive into these questions
either, but rather, make a comment on a general method for constructing
certain functors

(21) L : Aâb→ Ch•(Ab),

(maybe not in a way to give rise to a commutative diagram (20)), as
suggested by the standard chain complexes associated to the three types
of complexes, using simplices, cubes or hemispheres, or multicomplexes
(using products of the standard test categories). Writing

Aâb ' Hom(Aop, (Ab)),

we remark that the standard constructions of chain complexes associated
to semisimplicial (say) complexes of abelian groups, makes sense not
only for such abelian complexes, but more generally for complexes with
values in any additive category, M say. This induces us to look more
generally, for any such M , for a functor

(22) LM : Hom(Aop, M)→ Ch•(M),

in a way compatible with additive functors

M → M ′

(in the obvious sense of the word).
Now, for any category B (here Aop) one can define an “enveloping

additive category” Add(B), together with a canonical functor

(23) B→ Add(B),
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which is “2-universal” for all possible functors of B into any additive
category M . More specifically, for any such M , the corresponding functor [p. 330]
“composition with (23)” is an equivalence

(24) Homadd(Add(B), M) ≈−→ Hom(B, M).

This condition defines (22) “up to canonical equivalence” – but we’ll give
an explicit description in a minute. Before doing so, let’s just remark that
the universal property of (23) implies that to give a system of functors
LM as above, “amounts to the same” as giving a chain complex L• in
Add(B). More accurately, the category of all systems LM (where maps
are defined in an evident way) is equivalent to the category Ch•(Add(B)),
where B = Aop. The functors L (21) we are specifically interested in,
are those which are associated to some chain complex in Add(Aop),

(25) L• ∈ Ob(Ch•(Add(Aop))),

by the formula

(26) L(X ) = eX (L•) for any X in Aâb ' Hom(Aop, Ab)

where
eX : Add(Aop)→ (Ab)

is the additive functor corresponding to X .
We are thus led to the question: if A is any small category, does there

exist a chain complex L• in Add(Aop), the additive envelope of Aop, giving
rise to a functor (21) via (26) and hence to a diagram (20), such that
the square in (20) commutes up to isomorphism? And when this is so,
what kind of unicity statement, if any, can be made for L• (such as being
unique up to chain homotopy say), and what about the structure of the
category of all pairs (L•,λ), where λ is a compatibility isomorphism
making the square in (20) commute?

We are far here from the rather narrow set-up in yesterday’s notes,
and as far as existence goes, if no extra conditions are put upon L•, it
seems likely that for a rather large class of small categories A (if not all)
it should hold true. At any rate, the functor L obtained from a functor
(10), i.e., “by cheating”, is visibly associated to an L•. Sorry, we have to
assume that the functor j factors even through A itself, i.e., is just an
aspherical functor between the small categories and A, a much more
stringent condition on A to be sure – and which implies that there is an
induced functor [p. 331]

(27) Add( jop) : Add( op)→ Add(Aop),

hence we get an L• as the image of the canonical chain complex L• we
got in Add( op).
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6.7.

93 It is time to give the promised construction of Add(B), the additive The afterthought continued: abelian-
izators, and “standard” abelianiza-
tors for categories with boundary op-
erators.

envelope of B, for any given category B. The obvious idea is to enlarge
the sets Hom(a, b), for a and b in B, by taking linear combinations with
coefficients in Z, i.e., writing

(1) HomAdd(B)(a, b) = Z(Hom(a,b)),

and composing these HomAdd in the obvious way. This is not quite
enough though, as we still have to add new objects, namely direct sums
of objects in B. The most convenient way for doing so seems by defining
an object of Add(B) to be defined by a finite set I (in the given universe),
namely the indexing set for taking the direct sum, and a map

I → Ob B,

in other words, the new objects are just families of objects of B

(bi)i∈I ,

indexed by finite sets. We’ll however denote by

(2)
⊕

i∈I

bi

the corresponding object of Add(B), as this will turn out to be the direct
sum indeed of the images of the bi ’s in Add(B) – but of course we’ll
ignore the possible existence of direct sums in B itself, when they exist,
and not confuse (2) with a direct sum taken in B. Writing Homadd
instead of HomAdd(B) for the sake of abbreviation, the maps between
objects (2) are defined by matrices in the obvious way

(3) Homadd((ai)i∈I , (b j) j∈J ) =
�

(ui j)(i, j)∈I×J

�

� ui j ∈ Homadd(ai , b j) = ZHom(ai ,b j)
	

,

while composition of maps is defined by the composition of matrices.
We thus get a new category Add(B) and a functor

(4) B→ Add(B),

it is immediately checked that Add(B) is an additive category and that [p. 332]
the functor (4) has the 2-universal property for functors from B into
any additive category, stated in yesterday’s notes (p. 330).

Remark. The same construction essentially applies when considering
the universal problem of mapping B into any k-additive category M
(where k is any commutative ring with unit), i.e., an additive category
M endowed with a ring homomorphism

k→ End(idM ),
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replacing Z by k in formulas (1) and (3). The “abelianization” ques-
tions touched at in yesterday’s notes still make sense in terms of “k-
linearization” – a notion much in the spirit of our introduction of a
general basic localizer W, as the very notion of k-linearization will give
rise to a corresponding basic localizer Wk. . .

Let’s come back to the case when B = Aop, A being a small category,
and to our question about chain complexes

L• in Ch•(Add(Aop))

giving rise to a commutative diagram (20) (p. 328), up to isomorphism.
A pair

(L•,λ),

where L• is a chain complex as above, and λ a compatibility isomorphism
for the square in (20), could be suggestively called an abelianizator for
the small category A. The question of existence, and uniqueness up to
homotopy say, of an abelianizator for A seems especially relevant when
A is a test category say, and hence Aˆ modelizes homotopy types. In any
case, in terms of an abelianizator we get an additive functor

(5) L : Aâb→ Ch•(Ab),

and the question arises whether this is compatible with weak equiva-
lences and quasi-isomorphisms; maybe even if this is not automatic,
we should insist it holds when defining the notion of an abelianizator.
When this is OK, then by passing to localizations we deduce from (5) a
functor

(6) HotabA→ Hotab,

i.e., a functor (14) as looked for in yesterday’s notes, giving rise to
the commutative diagram (19) (p. 328) – whereas commutativity of
diagrams of the type (15) (p. 326) looks less obvious.

When A is a finite product of copies taken from among the three [p. 333]
standard test categories , , , the standard chain complex structure
on multicomplexes does furnish us with a “canonical” abelianizator for
A, which we may denote by LA

• (as we did yesterday for A= ). This
“standard” abelianizator has some very remarkable extra features which
I would like to pin down, which had caused our rather narrow focus in
the notes of two days ago (section 91).

a) There is a “dimension map”

(7) dim : Ob A→ N.

It can be described (in the particular case above at any rate) in terms of
the intrinsic category structure of A, by associating to every a in A the
ordered set

(8) i(a) = set of subobjects of a in A.
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(NB not to be confused with subobjects of a in Aˆ, namely sieves in a).
This is an ordered set with a largest object (namely a itself), and which
turns out to be finite (in the particular cases considered), hence of finite
combinatorial dimension (equal to the dimension of the geometrical
realization |i(a)|), and we have

(9) dim(a) = dim i(a).

b) The n’th component Ln of LA
• = L• is given by

(10) Ln =
⊕

dim(a)=n

a

(where the direct sum of course is taken in Add(Aop) as in (2) above),
which makes sense when we assume (as is the case in our example)
that the map (7) is “finite”, i.e., has finite fibers. For instance, in all our
“standard” cases, there is just one object of A which is of dimension 0,
and this is also the final object.

c) The differential operator

(11) dn : Ln→ Ln−1

can be obtained in the following way. We have only to describe dn on
each summand a of Ln, i.e., by (10) on each a in

(12) An =
�

a ∈ Ob A
�

� dim a = n
	

.

In view of (3), this restriction dn | a can be described as a linear combi-
nation of elements in the disjoint sum of the sets

Hom(b, a), with b ∈ An−1 (a ∈ An fixed).

This being clear, the non-zero coefficients which occur in this linear [p. 334]
combination are all ±1, and moreover the maps which target a

b→ a (b ∈ An−1)

which occur with non-zero coefficient are exactly all monomorphisms
from objects b in An−1 into a. Thus, the differential operators are known,
when we know, for all monomorphisms in A

(13) ∂ : b→ a, with dim a = dim b+ 1

(the so-called “boundary maps”), the corresponding coefficients

(14) ε∂ ∈ {±1}.

Instinct tells us, at this point, that we may get into trouble, when trying to
define (in a more or less general case) boundary operations in such a way,
because of the ambiguity in the definition of subobjects, namely, because
of possible existence of isomorphisms which may not be identities. But
precisely, in the standard cases we are copying from, any isomorphism
is an identity!
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d) For describing the “signatures” (14), in one of the “standard” cases,
we still need to remark that for any a in A, we have

(15) i(a) is an n-cell, with n= dim(a),

and the choice of the signatures will be determined by a choice of
orientations

(16) ωa an orientation of the n-cell |i(a)|,

(a notion which could be given a purely combinatorial definition, by
induction on the dimension of a given ordered set whose geometrical
realization is a variety. . . ). We then get a the “Stokes rule”

For a boundary map ∂ : b→ a, ε∂ = +1 iff ωb is “induced” à la
Stokes byωa, via the induced orientation on the boundary of i(a)
(which is the union of the images of all i(b)’s, for all boundary
operations with target a).

(17)

Whether or not we are in a “standard” case, if A is any category
such that for any object a of A, the ordered set i(a) of its subobjects
in A is finite, and its geometrical realization is an n-cell (call n the
“dimension” of a), and if moreover for a given n, the set An of objects
with dimension n is finite, and also (to be on the safe side!) assuming
that all isomorphisms are identities, then for any choice of orientations
(16), giving rise to a system of signatures (13) by the “Stokes rule” (17), [p. 335]
the corresponding operators (11) do turn the family (Ln) into a chain
complex, namely we have the relations

(18) dn−1dn = 0.

This follows immediately from the well-known anti-commutativity prop-
erty of (twofold) induction of orientation on boundaries.

Things are a little more delicate if we don’t assume that isomorphisms
are identities, even if (by compensation) we should insist that two
distinct objects are never isomorphic. To define dn, we then must choose,
for any subobject b of dimension n−1 of an object a of dimension n, just
one representative monomorphism (13) of b. The coherence condition
then needed in order to get (18) is that any square diagram

(19)

c

b b′

a

made up with such restricted boundary maps, should commute – a
somewhat delicate condition, presumably hard to ensure, for the choices
involved for defining the “strict” boundary maps in A.

In one case as in the other, we are very close of course to the set-
up envisioned in section 91 – it wouldn’t be hard even to fit the case
considered here into this set-up, if we make the slight extra assumption
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that any map in A factors into an epimorphism-with-section, followed by
a monomorphism (which is true indeed in the “standard” cases), which
will ensure that for varying a, i(a) is indeed a functor with values in
(Ord), as stated in loc. cit. But from the point of view of construction of
abelianizators, it would seem that the existence of the functor

(20) i : A→ (Ord)

is irrelevant.
Our main question now, of course, is about the chain complex L•

being an abelianizator or not. The question is interesting even in the
standard cases, by choosing the orientations (16) in a way different from
the standard one. Are the corresponding chain complexes in Add(Aop)
necessarily chain-homotopic?

It just occurs to me that indeed, between the chain complexes [p. 336]

(22) Lω• = ((Ln)n∈N, (d
ω
n )n∈N)

associated to all possible systems of orientations

(23) ω= (ωa)a∈Ob(A)

of the various cells i(a), there is a canonical transitive system of isomor-
phisms, by defining the isomorphism

(24) uω,ω′ : L•
∼−→ L′•

for two different choices ω,ω′ of systems of orientations, by

(25) uω,ω′ | a = εω,ω′

a ida, εω,ω′

a ∈ {±1},

where the sign εω,ω′
a is equal to +1 or −!, according to whether ωa and

ω′a are equal or not. It is immediate that (24) then is an isomorphism
componentwise, respecting degrees, and commuting to the respective
differential operators. Transitivity of the isomorphisms (24) for a triple
(ω,ω′,ω′′) is equally immediate. This implies that by this transitive
system of isomorphisms, we may identify all the chain complexes Lω•
in Add(Aop) to a single chain complex, canonically isomorphic to each
Lω• , and which we may just designate by L•. This chain complex now
is defined intrinsically in terms of the category structure of A (up to
canonical isomorphism), in the “safe” case at any rate when every
isomorphism in A is an identity, so that in the construction of Lω• there
enters no other choice besides ω. Otherwise as seen above (precedent
page), we must still suitably choose the so-called “strict” boundary
operators (13), among all monomorphisms b ,→ a in A such that dim a =
dim b+ 1.

In the first case say (isomorphisms being identities), all conditions
considered for A are stable under finite products, that’s why in terms of
the three standard cases of , and , we could construct others by
taking finite products. The three standard test categories may be viewed
as particularly “economic” of skillful ways of “cutting out” a suitable
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bunch of cellular decompositions, and of eliminating automorphisms
(by total ordering of vertices and the like. . . ), so as to ensure: a) that
isomorphisms in A are identities, b) the canonical chain complex L• in
Add(Aop) is an abelianizator, and c) A moreover is a strict test category,
and even a contractor. On the other hand, as all these conditions (plus
the condition (15) of course about the i(a)’s representing n-cells) are [p. 337]
stable under taking products (of finite non-empty families of categories
Ai), hence in terms of the three standard cases, the possibility of satisfy-
ing them too by the “multistandard” test categories. I wonder if there
are any other ways (up to equivalence). If we take categories such as e

(non-ordered simplices), we still get contractors, but objects have non-
trivial automorphisms, and if we take categories such as f (ordered
simplices without degeneracy operations, only boundary maps), it is
true that isomorphisms are identities, but the category is no longer a
test category but only a weak one.

If we do not insist on the rigidity assumption (isomorphisms are iden-
tities), but on suitable choice of so-called “strict boundary operations”
within A, then it would seem after all that we do have a lot more elbow
freedom than it seemed by the end of our reflections on that matter
two days ago (cf. p. 318), where the picture of the relevant data and
corresponding construction of chain complexes was still a little confused.
Let now A be the category called A0 in loc. cit. We don’t have to modify
it in order to introduce orientations of cells i(a) as extra structure and
take account of this in defining a new notion of maps. Therefore, it
is clear that A just as it is, is a strict test category (presumably not a
contractor though). There is problem of course of isomorphisms which
are not identities, and particularly of non-trivial automorphisms – for
instance the object I (playing the part of the unit segment) has a non-
trivial automorphism, the elimination of which does not look so trivial!
However, there is a rather evident way of cutting out strict boundary
maps, in a way as to satisfy the transitivity condition of p. 335 – namely
by taking boundary maps (13) ∂ : b → a which are inclusions in the
strict sense, namely the inclusion map of a subset of a, endowed with
the induced order relation.

Thus, there are many other cases still than just multi-standard test
categories for getting a canonical chain complex L• in Add(Aop), and for
which now the question makes sense as to whether L• is an abelianizator.
In the construction above, we were careful to assume that the full
subcategory A of (Ord), besides containing I , was stable under finite
products, so as to make sure it comes out as a test category. The silly
thing is that this condition is not satisfied by any one among the standard
test categories – thus, it seems reasonable to try and replace it by a [p. 338]
suitable substitute, such as the existence, of any two objects a and b
in A, of a cellular subdivision of |i(a)| × |i(b)|, made up with cells of
the type |i(c)|, and inducing on the latter the given cellular structure of
|i(c)|. The problem is now (besides getting or not an abelianizator L•)
whether A is at any rate a weak test category (in view of the example f,
we can’t expect now of course to get an actual test category). Maybe I’ll
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come back to this later, when writing down a proof for f being a weak
test category, i.e., a more general result along these lines should come
out alongside.

Remarks. I feel the canonical chain complex L• in Add(Aop) constructed
in this section, under suitable assumptions on the small category A,
merits a name of its own. We may call it the standard abelianizator of
A – but this is reasonable only if it turns out that in all cases when it
can be constructed, it is an abelianizator indeed. Another convenient
name may be the Dold-Puppe chain complex, as in the three standard
cases, the standard Dold-Puppe construction of the “normalization” of
an abelian complex (ss say) can be viewed as being performed in the
“universal” case, namely for Aop → Add(Aop), and the corresponding
“full” chain complex, namely L• – with this grain of salt though that we
still have to enlarge Add(Aop) slightly, so as to make stable under taking
direct summands corresponding to projectors. But then it occurs to me
that the name of Dold-Puppe chain complex is much more suitable for
the result of normalization applied to L•, which (if I got it right) is the
“new” complex discovered by Dold-Puppe, together with the inverse
construction, whereas L• had already been known for ages (even if not
under its universal disguise. . . ).

94 In the last section, as in the two preceding days, our emphasis with Afterthought (continued): retrospec-
tive on the “De Rham complex with
divided powers” and on some wishful
thinking about linearization of ho-
motopy types and arbitrary ground-
ring extension in homotopy types.

abelianization of homotopy types has been to look at it in terms of
more or less arbitrary test categories and the corresponding elementary
modelizers, and even in terms of arbitrary small categories. This has
causes as spinning a kind of dream for a while, with the Whitehead
and Dold-Puppe theorems and generalized boundary maps as our main
thread. Now this reminds me of a rather different line of thoughts
tied up with abelianization, quite independently of playing around
with variable modelizers – a question which has been intriguing me
for a very long time now, ever since I got acquainted a little with the
very notion of homotopy types, and the corresponding homology and [p. 339]
cohomology invariants. This is the question of how far a homotopy type
can be expressed in terms of homology or cohomology invariants (or both
together), plus some relevant extra structure, the most important surely
being cup-products in cohomology (or, dually, “interior” operation of
cohomology on homology). Once the notion of derived categories of

[I wonder whether AG knew of the
Steenrod algebra. . . yes, see below]

various kinds had become familiar, in the early sixties, the question
would appear as expressing, or recovering, a homotopy type, namely
an object in the (highly non-abelian) “derived category” (Hot), in terms
of its abelianization in Hotab = D•(Ab), endowed with suitable extra
structure. It was about clear that this extra structure had to include, as
its main non-commutative item, the fundamental group π, so as to allow
for description of homology and cohomology invariants with twisted
coefficients. The most natural candidate for expressing this would be
the chain complex associated to the universal covering, viewed as an
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object in the derived category

(26) D•(Z(π))

of chain complexes of modules over the group ring Z(π). Another
important structural item, giving rise to all cup-products with non-
twisted coefficients, is the diagonal map for the abelianization

L• in Hotab= D•(Ab),

namely a map

(27) L•→ L•
L
⊗ L•,

where
L
⊗ is the “total” left derived functor of tensor product. This map is

[aka the Tor functor]subjected to suitable conditions, concerning mainly commutativity and
associativity. In case of a non-1-connected space, i.e., π 6= 1, it shouldn’t
be hard combining the two structural items so as to get a structure em-
bodying at any rate cup-products with arbitrary twisted coefficients. One
key question in my mind, which I never really looked into, was whether
these two structures were enough in order to reconstruct entirely (up
to canonical isomorphism) the (pointed, 0-connected) homotopy type
giving rise to it, and hence also any other homotopy invariants, such as
“operations” on cohomology and the like, K-invariants, etc.

If I got it right, it has been known now for quite a while that even
for a 1-connected homotopy type, so that the relevant structure re-
duces to (27), that this is not quite enough for recovering the homotopy
type, maybe not even the rational homotopy type. I believe I first got
this from Sullivan, namely that what was needed for recovering a 1- [p. 340]
connected rational homotopy type was not merely (27) (where now
L• is an object of D•(Q) rather than of D•(Z) = D•(Ab)), which reduces
more or less (under suitable finiteness assumption) to knowing the
rational cohomology ring, but an anti-commutative and associative dif-
ferential graded algebra over Q (giving rise to (27) by duality). Thus,
1-connected rational homotopy types are expressible as objects of the
derived category defined in terms of such algebras, and the obvious
notion of quasi-isomorphism for these. To any space or ss set, Sullivan
associates a corresponding “De Rham complex” with rational coefficients,
in order to get a functor from rational homotopy types to the derived
category obtained from those algebras – and (if I remember it right) this
is an equivalence of categories, provided one restricts to 1-connected
homotopy types, and correspondingly to 1-connected algebras. Probably
somebody must have explained to me by then (it was in 1976 more
or less) why not every eligible differential algebra could be recovered
(up to isomorphism in the derived category) by the corresponding coho-
mology algebra, namely why it was not necessarily isomorphic to the
latter, endowed with zero differential operator; I am afraid I forgot it
since! Also, it was well-known by the informed people (as I was told
too) that there where obstructions against expressing the multiplicative
structure in cohomology with (say) integer coefficients, in terms of an
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anti-commutative differential graded Z-algebra; so there was no hope,
I was informed, for defining something like a “De Rham complex with
integer coefficients” for an arbitrary topological space.

All this was very interesting indeed – still, I found it hard to believe
that, while succeeding in constructing De Rham complexes with rational
coefficients for arbitrary spaces, by looking at the algebraic De Rham
complex on the enveloping affine space for the various singular simplices
of a space, that the same could not be achieved with integral coefficients.
Of course, the basic Poincaré lemma for algebraic differential forms was
no longer true, however this reminded me strongly of a similar difficulty
met with in algebraic geometry, and which is overcome by working with
suitable “divided power structures” – as Poincaré’s lemma becomes valid
when replacing usual polynomials (as coefficients for differential forms)
by “polynomials with divided powers”. Then I got quite excited and
involved in a formalism of De Rham complexes with divided powers for [p. 341]
arbitrary semisimplicial sets, which took me a few weeks to work out
and alongside getting back into homotopy and cohomology formalism
again. I had the feeling that this structure, or the technically more
adequate dual “coalgebra” structure, might well turn out to be the more
refined version of (27) needed for recovering homotopy types – or at
any rate 1-connected ones. I gave a talk about the matter at IHES
while things were still hot in my mind – but it doesn’t seem it went
really through. It doesn’t seem this structure (which was worked out
independently by someone else too, I understand) has become a familiar
notion to topologists. Maybe one reason is that most topologists and

[I’m guessing the reference is
to Cartan (1976) and Miller
(1978). . . anyhow, there has been
many developments since con-
cerning Witt vectors, crystalline
cohomology, etc.. . . ]

homotopy theorists never really got acquainted with the formalism of
derived categories – and it seems that moreover, by the mid-seventies,
it had even become altogether unfashionable and “mal vu” to make any
mention of them, let alone work with them, also among some of the
people who during some time had been helping develop it. Now one
of the main points I was making in that talk was a somewhat delicate
property of derived categories of abelian categories, with respect to
binomial coefficients – too bad!

I have not heard since about any work done in this direction I am
reflecting about now (somewhat retrospectively) – namely recovering
homotopy types from their abelianization, plus extra structure. For all I
know, the relevant structure may well be the differential algebra with
divided powers structure embodied by the De Rham complex (with a
bigraduation however instead of just a graduation), or its coalgebra
version – viewed as defining an object of a suitable derived category. (Of
course, when there is a fundamental group π around, one will have to
look at a slightly more complex structure still, involving operations of π,
by looking at the De Rham complex of the universal covering.) If it is just
the matter of describing homotopy types in terms of other models than
semisimplicial complexes, it must be admitted that the new models are
of incomparably more intricate description than the complexes! There
is however one feature of it which greatly struck me by that time, and
still seems to me quite intriguing, namely that this structure, although
definitely not “abelian” anymore (due to multiplication as well as to
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divided power structure), makes a sense over any commutative ground
ring (or even scheme, etc.). When this ring is Q, the “models” we get
modelize rational homotopy types, which was the starting point of my
reflections about seven years ago. Replacing Q by a more general ring, [p. 342]
this suggests that there might exist a notion of “homotopy types” over any
ground ring k – and a corresponding notion of ground ring extension
for homotopy types. For abelianizations of homotopy types, this is
particularly “obvious”, as being just the functorial dependence of the
derived category D•(k) with respect to the ground ring k, corresponding
to ring extension in a chain complex. For a week or two I played around
with this idea, which on the semisimplicial level tied in with expressing
homotopy types of some simple spaces (such as standard K(π, n) spaces
and fibrations between these) in terms of some simple semisimplicial
schemes (affine and of finite type over Spec(Z)), by taking Z-valued
points of these; ring extension Z→ k was interpreted in the scheme-
theoretic sense.

I didn’t go on very long, as soon after I was taken by personal matters
and never took up the matter later – and maybe it was an altogether
unrealistic or silly attempt. If I remember it right, the idea lurking
was something of this kind, that there was a functor from (Hot) to (if
not an equivalence of (Hot) with. . . ) a suitable derived category of
some category of semisimplicial schemes over Spec(Z), and that the base
change intuition, as suggested by the abelianized theory or by the subtler
“divided power De Rham theory”, would reflect in naive base change
Z→ k for schemes.

I was then looking mainly at 1-connected structures, but there was
an idea too that nilpotent fundamental groups might fit into the picture,
with the hope that such a group (under suitable restrictions, finite pre-
sentation and torsion freeness say) could be expressed in a canonical
way in terms of an affine nilpotent group scheme of finite type over
Spec(Z), by taking the integral points of the latter. It seems (if I remem-
ber right) that this is not quite true though – that one couldn’t hope for
much better than getting a nilpotent algebraic group scheme over Q –
and that one would recover the discrete group one started with only
“up to commensurability”. Possibly, there may be an equivalence between
localization of the category of nilpotent groups as above (with respect to
monomorphisms with image of finite index) and affine nilpotent connected
algebraic group schemes over Q, or equivalently, group schemes whose
underlying scheme is isomorphic to standard affine space.

7.7. [p. 343]

95 After this cascade of “afterthoughts” on abelianization of homotopy Contractors
types, it is time now to resume some more technical work, and get
through with this unending part IV, in accordance with the short range
working program I had come to four days ago (section 92, p. 320).
I’ll take up the three topics stated there – namely contractors, induced
structures, and “miscellaneous” – in that order, as reviewed previously.
Thus, we’ll start with contractors. I have in mind now mainly the
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definition of contractors, and a few basic facts following easily from
what is already known to us.

The first thought that comes to my mind is to define a contractor as a
category A such that the set Ob(A) of all objects of A is a contractibility
structure on A, i.e., that there exists a contractibility structure on A for
which every object in A is contractible. The trouble with this definition
is that it makes the implicit assumption that A is stable under finite
products – as the notion of a contractibility structure was defined only
in a category satisfying this extra assumption (cf. section 51, D)). Now,
this assumption is not satisfied by the three standard test categories,
including , which surely we do want to consider as contractors! The
next thought then, suggested by this reflection, is to embed A into Aˆ to
supply the products which may be lacking in A, and demand there exist a
contractibility structure on Aˆ, such that the objects in A be contractible
and moreover generate; or, what amounts to the same, that for the
homotopy interval structure on Aˆ defined by intervals coming from A
as a generating family, the objects of A are contractible (which implies
that this structure “is” indeed a contractibility structure). This condition
(in the more general case, when A appears as a full subcategory of any
larger category M) has been restated in wholly explicit terms as the
“basic assumption” (Bas 4) on a set of objects, in order that it generate
a contractibility structure (section 51, p. 118). It is immediate that in
the case when A itself is stable under finite products in the ambient
category, that this condition is intrinsic to A and just amounts to the first
definition we had in mind.

Still, we will call a category A satisfying the condition (Bas 4) with [p. 344]
respect to the embedding

(1) A ,→ Aˆ

a precontractor, as we’ll expect something more still from a contractor,
which will be automatically satisfied in the particular case when A is
stable under finite products. Roughly speaking, we want to have a
satisfactory relation between contractibility and asphericity in Aˆ – we’ll
make this more precise below. For the time being, let’s dwell just a little
more on the notion of a precontractor.

A second thought about contractors, coming alongside with the first,
is that for any full embedding of A into a larger category

(2) f : A→ M , M stable under finite products,

f (A) should generate in M a contractibility structure. In the particular
case when A is stable under finite products (and hence the notion of a
precontractor, already defined, coincides with the notion of a contrac-
tor), this is indeed so provided A is a (pre)contractor, and moreover f
commutes to finite products. When A is just assumed to be a precon-
tractor (without an assumption about stability of A under products),
we’ll assume in compensation that M is stable under small direct limits,
which allows to take the canonical extension f! of f to Aˆ in a way
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commuting to direct limits

(3) f! : Aˆ→ M ,

and we can now state: if f! commutes to finite products (cf. prop. 1, a), p.
281), then f (A) generates a contractibility structure in M. This statement
is true even without assuming that the functor f is fully faithful (and
follows immediately from the criterion (Bas 4) of p. 118); however, in
the particular case when f is fully faithful, we have a handy criterion
(prop. 2, p. 283) for f! to commute to finite products, namely that
f (A) be a strictly generating subcategory of M , or equivalently, that the
functor

(4) f ∗ : M → Aˆ

(right adjoint to f!) be fully faithful. In this case, we may identify M (up
to equivalence) to a full subcategory of Aˆ containing A, and the fact
that f (A) generates a contractibility structure in M follows immediately
directly (without having to rely on existence of direct limits in M , nor
even existence of f!). To sum up:

Proposition 1. Let A be a small category, M a category stable under finite [p. 345]
products, f : A→ M a functor, we assume A is a precontractor. Then f (A)
generates a contractibility structure in M in each of the following three
cases:

a) A stable under finite products, and f commutes to these.

b) There exists a functor f! : Aˆ→ M extending f , and commuting to
final object and binary products in Aˆ of objects in A.

c) The functor f is fully faithful and strictly generating.

Of course, the validity of the conclusion in either case b) or c), for
fixed A and variable M and f , characterizes the property for A of being
a precontractor, and the same for a) if we assume beforehand that A is
stable under finite products. Thus, we may view the proposition 1 as
the most comprehensive statement of the meaning of this property.

Proposition 2. Let A be a precontractor. Let Aĉ be the set of contractible
objects in Aˆ for the contractibility structure generated by the subcate-
gory A, Aâs (resp. Al̂oc.as) the set of aspheric (resp. locally aspheric – cf.
p. 250) objects of Aˆ, h the homotopy structure on Aˆ associated to the
contractibility structure Aĉ , i.e., generated by the intervals in Aˆ coming
from A. As usual, WA denotes the set of weak equivalences in Aˆ – it is
understood here that the basic localizer W ⊂ Fl (Cat) is W∞ = usual weak
equivalence. The following conditions on A are equivalent:

(i) Aˆ is totally aspheric (i.e., Ob A⊂ Al̂oc.as).

(ii) The asphericity structure Aâs on Aˆ is generated by the contractibility
structure Aĉ .

(ii’) Aĉ ⊂ Aâs.

(ii”) Aĉ ⊂ Al̂oc.as.
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(iii) Any h-homotopism is in WA (i.e., WA is “strictly compatible” with
the homotopy structure h, (cf. section 54), i.e., h≤ h′ = hWA

).

(iv) The homotopy structure h is equal to the homotopy structure h′ = hW
associated to W =WA (cf. section 54).

Proof of proposition. Immediate from what is known to us, via

(i)⇒ (ii)⇒ (ii’)⇔ (ii”)⇒ (i) and (ii)⇒ (iv)⇒ (iii)⇒ (i).

Definition 1. A small category A is called a contractor if it is a precon- [p. 346]
tractor, and if moreover it is totally aspheric or, equivalently, satisfies
one of the equivalent condition (i) to (iv) of prop. 2.

Equivalently, this also means that

(5) Ob A⊂ Aĉ ∩ Al̂oc.as,

i.e., every object in A is contractible and locally aspheric, where the set
Aĉ of “contractible” objects of Aˆ is defined in terms of the homotopy
interval structure h generated by all intervals in Aˆ coming from objects
in A. (Thus structure is not necessarily a contractibility structure, but it
is when A is a precontractor, namely Ob A⊂ Aĉ .)

The most trivial example of a contractor is the final category 0, and
more generally, any category equivalent to it (NB a category equivalent
to a precontractor resp. to a contractor is again a precontractor resp.
a contractor). Such a contractor will be called trivial. For a trivial
contractor A, we get an equivalence

Aˆ u (Sets).

If
(M , Mc)

is a contractibility structure, and A⊂ M any small full subcategory of M
generating the contractibility structure, then A is a precontractor, hence
a contractor iff A is totally aspheric, which will be the case if A is stable
in M under binary products, a fortiori if it is stable under finite products,
i.e., contains moreover a final object of M . Thus, the contractibility
structure of M can always be generated by a full subcategory A of M which
is a contractor.

Apart from these two examples, the most interesting examples of
contractors are of course the three standard test categories , and ,
and also their finite products. Note that the notion of a precontractor
or of a contractor is clearly stable under finite products.

Proposition 3. Let A be a precontractor, assume A non-trivial, i.e., non-
equivalent to the final category. Then A contains a separating interval,
and hence it is a (strict) test category if A is tot. asph., i.e., is a contractor.
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Proof. As any object of A has a section (over eAˆ), it follows immediately
that any non-empty object of Aˆ has a section too, hence any non-empty
subobject of eAˆ is equal to eAˆ . This implies that for any interval [p. 347]

I= (I ,δ0,δ1)

in Aˆ, either I is separating, i.e., Ker(δ0,δ1) is the empty object of Aˆ,
or δ0 = δ1. If no interval coming from A was separating, this then
would just mean that any two sections (over eAˆ) of an object I of A
are equal. By the definition of the homotopy structure in Aˆ generated
by these intervals, this would imply that any homotopism in Aˆ is an
isomorphism, and hence that any contractible object for this structure
is isomorphic to the final object eAˆ . As by assumption on A all objects
of A are contractible, this would mean that A is trivial, which is against
our assumptions, qed.

Corollary 1. Let (M , Mc) be a contractibility structure.
a) The following conditions are equivalent (and will be expressed by

saying that this given contractibility structure is trivial):

(i) Two maps in M which are homotopic are equal.
(ii) Any homotopism in M is an isomorphism.

(iii) Any homotopy interval in M is “trivial”, i.e., any two homotopic
sections of an object of M are equal.

(iv) Any contractible object of M is a final object, i.e., Mc is just
the set of all final objects of M.

(v) Any two sections of a contractible object are equal.

b) Assume the contractibility structure Mc non-trivial, i.e., there exists [p. 348]
an interval

I= (I ,δ0,δ1) with I ∈ Mc,δ0 6= δ1.

Then for any small category A and any functor

i : A→ M

factoring through Mc, the interval i∗(I) in Aˆ is separating. Hence
if (for a given basic localizer W) i is totally W-aspheric (cf. theorem
1 cor. 1 p. 252), hence i∗(I) is totally aspheric in Aˆ, then A is a
W-test category. In particular, if A is totally W-aspheric and i is
Ma-W-aspheric, then A is a strict W-test category.

Proof. Part a) is a tautology in terms of section 51. For part b), to prove
that i∗(I) is separating, we only have to check that for any a in A, the
two compositions

a→ i∗(eM )' eAˆ i∗(I)
i∗(δ0),i∗(δ1)

are distinct, or what amounts to the same by the definition of i∗, that
the compositions

i!(a)
def
= x → eM I
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are distinct. As x is in Mc, it has a section over eM , so it is enough to
check that the compositions with eM → x are distinct, which just means
that δ0 6= δ1, qed.

Remarks. 1) Part b) of the corollary replaces cor. 3 on page 253, which
is a little monster of incongruity (as I just discovered) – namely, two
of the assumption on I made there (namely that I be a multiplicative
interval, and I ∈ Ob C) are useless if we assume just I contractible,
moreover the awkward separation assumption made there just reduces
by the trivial argument above to the assumption δ0 6= δ1!

2) It should be noted that the homotopy structure on Aˆ envisioned
in th. 1 of section 79 (p. 252) is not defined as in the present section, in
terms of intervals in Aˆ coming from A (call this structure h), but as

h′ = hWA

defined in terms of intervals in Al̂oc.as; this depends a priori on the choice
of W, as it has to because th. 1 gives a criterion for the functor i to
be Ma-W-aspheric which does depend on W. (It surely won’t be the
same if we take W=W∞ = usual weak equivalence, or W= Fl((Cat))
hence WA = Fl(A) and the condition that i be Ma-W-aspheric is always [p. 349]
satisfied!) However, let’s assume A to be totally W-aspheric and every
object of A has a section (over the final object eAˆ of Aˆ) or, what
amounts to the same, every “non-empty” object of Aˆ has a section –
we’ll say in this case A is “strictly totally W-aspheric” (compare section
60, p. 149, in the particular case W=W∞, and with Aˆ replaced by an
arbitrary topos). Let’s assume moreover that W satisfied Loc 4). In this
case, the homotopy structure h′ = hWA

does not depend on the choice
of W, namely it is the so-called “canonical homotopy structure”

h′′ = hAˆ
of the (strictly totally 0-connected) category Aˆ (cf. section 57), which
in the special case of a category Aˆ can also be defined as the homotopy
structure hW0

associated to W0A, where W0 is the coarsest basic localizer
satisfying Loc 4), i.e.,

W0 =
�

f ∈ Fl (Cat)
�

� π0( f ) bijective
	

.

The proof of this fact h′ = h′′, i.e.,

hWA
= hAˆ ( = hW0

)

is essentially the same as for the similar prop. (section 60, p. 149). The
condition Loc 4) on W, i.e., W ⊂W0 clearly implies

hWA
⊂ hW0A

,

and to get the opposite inequality, for which we’ll use the assumption
on A, we only have to prove that for any 0-connected object K of Aˆ,
any two sections are (h′ = hWA

)-homotopic, a fortiori (as h≤ h′ by the
assumption of total W-asphericity of A) it is enough to prove they are
h-homotopic. Now this follows from lemma 2, p. 268, applied to C = Aˆ,
C = A.
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The preceding reflections thus prove the following afterthought to [p. 350]
theorem 1 of section 79:

Proposition 4. Let (M , Mc) be a contractibility structure, A a small cat-
egory, i : A→ M a functor factoring through Mc. Let moreover W be a
basic localizer satisfying Loc 4). We assume A strictly totally W-aspheric,
i.e., totally W-aspheric and moreover any object of A has a section (over
eAˆ).

a) The homotopy structure hWA
on Aˆ is equal to the canonical homo-

topy structure hAˆ defined by 0-connected intervals, and equal also
to the homotopy structure h defined by intervals coming from A:

(6) h= hWA
= hAˆ .

In what follows, we assume Aˆ endowed with this homotopy structure,
and denote by Aĉ the set of all contractible object in Aˆ. We equally
endow Aˆ with its canonical W-asphericity structure, and M with the
W-asphericity structure associated to its contractibility structure Mc. With
these conventions:

b) The following conditions on i are equivalent, where

i∗ : M → Aˆ

is the functor defined as usual in terms of i:

(i) i∗ is compatible with the homotopy structures (cf. criteria on
pages 251–252), which can be expressed also by

i∗(Mc) ⊂ Aĉ

(a condition independent from W, in view of a)).
(ii) i is W-aspheric, i.e.,

MW ⊂ (i∗)−1(A
Ŵ
)

(where MW and A
Ŵ

are the sets of W-aspheric objects in M
and in Aˆ).

(iii) (For a given full subcategory C of M generating the contractibil-
ity structure Mc):

i∗(C) ⊂ A
Ŵ0
= set of 0-connected objects of Aˆ.

c) Assume these conditions hold, and moreover that the contractibility
structure of M is non-trivial. Then A is a strict W-test category.

Proof. Part a) has been proved in remark 2) above, and in view of th. 1, [p. 351]
p. 252, the equivalence of (i) and (ii) is clear, hence also the equivalence
with (iii) by applying loc. cit. to W0 instead of W. Part c) now follows
from prop. 3 cor. 1 b).

Corollary. Under the conditions of c) above, if Mc is W-modelizing, then
i is a W-test functor, and induces an equivalence

HotM ,W
def
= W−1

M M '−→ HotA,W
def
= WA

−1Aˆ.
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8.7.

96 Yesterday’s notes have proceeded very falteringly, to my surprise, while Vertical and horizontal
topoi. . . (afterthought on ter-
minology).

everything seemed ready for smooth sailing. A number of times, after
going on for a page or two “following my nose” (as they say in German),

[I’m pretty sure that “to follow one’s
nose” is an English idiom in the
sense of following one’s instinct,
while the meaning of going straight
ahead is shared with the German
“der Nase nach gehen”]

or for half a page, it turned out it just wasn’t right that way and I would
feel quite stupid and put the silly pages away as scratchpaper and have
another start. There wouldn’t have been any point dragging the poor
reader (if there is still one left. . . ) along on my stumbling path, where it
was a matter merely of getting some technical adjustments right. Maybe
it is just that attention was distracted, perhaps precisely through this
(partly mistaken, and anyhow not too inspiring) feeling that everything
was kind of cooked already, and what was left to do was just swallow!
What came out in the process was that finally things were not so clear
yet in my mind as I thought they were. It is a frequent experience
that whenever one wants to go ahead too quickly, one finds oneself
dispersing stupidly a hell of a lot of energy. . .

There occurred to me some inadequacies with terminology. One is
about the property of certain categories (contractor or precontractors
for instance) that every object of A has a section (over eAˆ), which can
be viewed also as a property of the topos Aˆ = A, namely that any
“non-empty” object of the topos has a section. This is immediately seen
(for any given topos A) to imply the property that the final object eA
has only the two trivial subobjects, the “empty” and the “full” one – or
equivalently, that any subtopos of the topos is either the empty of the
full one, – a property, too of obvious geometric significance. In case
of a topos of the type Aˆ, one immediately sees the two properties are
equivalent – but this is not true for an arbitrary topos: for instance [p. 352]
the classifying topos BG of a discrete group G has the second property,
but visibly not the first unless G is the unit group. (I recall that the
category of sheaves on BG is the category (G-sets) of sets on which G
operates.) I feel both properties for a topos merit a name. The first
(every sheaf has a section) can be viewed as the strongest conceivable
(I would think) global asphericity property for a topos, as far as H1 goes
at any rate, as the H1 of X with coefficients in any group object will be
zero. (But I confess I didn’t try and look if any precontractor, say, is
aspheric. . . ) The second property (every subtopos is trivial) comes with
a rather different flavor, it suggests the image of just one “point” – and
as a matter of fact, the étale topos of a scheme, say has this property
iff it is reduced to a point. Such a topos may called “punctual” (not to
be confused though with some other meanings suggested by this word,
such as being equivalent to the topos defined by a one-point topological
space, namely A being equivalent to (Sets)) or “atomic” (which has
rather unpleasant connotations though nowadays!), or maybe “vertical”
(this image is suggested by the BG above) – the “base”, i.e., the final
object of A being very “small” (in terms of harboring subobjects), so
the inner structure is expressed like a kind of tower, related (in the case
of BG) to the “Galois tower” of subgroups of G. . . The corresponding
notion of a “horizontal” topos is visibly the one when A admits the
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subobjects of the final object as a generating family. In terms of these
definitions, a topos is horizontal and vertical iff it is either the “empty” or
the “final” (or “one-point”) topos. This brings to mind that in the notion
of verticality, we should exclude the “empty” topos (which formally
satisfies the condition – every sheaf has a section). This brings to my
attention too that I certainly do not want to consider an empty category
A (defining the “empty” topos Aˆ) as a precontractor, although formally
(in terms of yesterday’s definition) it is. Thus, I suggest I’ll introduce
the following

Definition. A topos is called vertical if it is not an “empty” topos (i.e.,
the category of sheaves on it is not equivalent to the final category 0),
and if moreover any open subtopos is either the “empty” or the “full”
one (hence the same for any subtopos, whether open or not). A small
category A is called vertical, if the associated topos (with category of
sheaves Aˆ) is, or equivalently, if A is non-empty and any object of A [p. 353]
has a section (over eAˆ). A topos is called horizontal if the family of all
subobjects of the final object in the category of sheaves A is generating.

For instance, the topos associated to a topological space is horizontal
– in particular, an “empty” topos is horizontal. A topos is both horizon-
tal and vertical iff it is a (2-)final topos, i.e., equivalent to the topos
defined by a one-point topological space (i.e., the category of sheaves is
equivalent to (Sets)).

The property of verticality, I feel, is of interest in its own right, as ex-
emplified notably by lemma 2 p. 268 (which we used yesterday), and the
related proposition of section 60 (p. 149). It does not seem at all subor-
dinated to notions such as total asphericity or total 0-connectedness, and
goes in an entirely different direction – thus, the terminology “strictly
totally aspheric” (or totally 0-connected), which I still used yesterday
(hesitatingly, I should say), is definitely inadequate. I would rather say
“totally aspheric (or totally 0-connected) and vertical”.

Another point is about the terminology of totally aspheric and locally
aspheric objects in a category Aˆ (with respect to a given basic localizer
W), introduced in section 79 (p. 250), and still used yesterday. This
terminology does not seem inadequate by itself, I introduced it because
it struck me as suggestive (and the notions it refers to do deserve a
name, in order to be at ease). The trouble here is that it conflicts with
another possible meaning, in accordance with the principle insisted
upon forcefully in the reflections of section 66 – namely that for objects
or arrows in (Cat), or within a category Aˆ, the terminology used for
naming properties for these should be in accordance with the termi-
nology used for the corresponding topoi or maps of topoi. Now, we
do have already the notions of a locally aspheric and totally aspheric
topos, which therefore should imply automatically the meaning of these
notions for an object of (Cat) (which was done satisfactorily months
ago), or for an object of a category Aˆ. But in the latter case, there
is definitely conflict with the terminology introduced on p. 252. This
conflict has not manifested itself yet in any concrete situation, while the
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unorthodox terminology has been used quite satisfactorily a number
of times. Therefore, I would like to keep it, as long as I am not forced
otherwise.

* * *

We were faced yesterday with three different homotopy structures [p. 354]
h, h′, h′′ on a category Aˆ, for a given small category A, which make
sense for any A, and which in case A is a contractor all coincide. The
exact relationship between these structures in more general cases has
remained somewhat confused, and in order to dispel the resulting feel-
ing of uneasiness, I took finally the trouble today to write it out with
some case. One of these structures, h′, depends on the choice of a basic
localizer W, whereas the two others don’t. . .

12.7.

97 I was interrupted in my notes by visiting friends arriving in close succes- “Projective” topoi. Morphisms and
bimorphisms of contractors.sion – then since yesterday I have been busy mainly with letter writing.

Now, I am ready to take up the thread where I left it – namely some
afterthoughts to the reflections of section 95 on contractors.

First an afterthought to the afterthoughts! I had introduced the name
“vertical topos” for a topos admitting only the two trivial open subtopoi
(page 352), whereas the stronger property that every “non-empty” sheaf
has a section remained unnamed (which is no real drawback as long as
we are restricting to topoi of the type Aˆ, where indeed the two notions
coincide). Now, the latter property can be viewed as the property that
every sheaf F such that F → e be epimorphic, should admit a section.
It is this last property which does merit to “be viewed as the strongest
conceivable asphericity property for a topos” as I commented on it last
Friday (p. 352). After I had written this down as a kind of selfevidence,
a doubt turned up though and I qualified the comment by added “as far
as H1 goes at any rate, as the H1 with coefficients in any group object
will be zero”. I didn’t pause then to see if the doubt was founded – quite
evidently it isn’t, except for H0, as it is clear by the usual shift argument,
using embedding of an abelian sheaf into an injective one, that if for
given k (here k = 1) Hk(X , F) = 0 for any abelian sheaf F , then the
same holds for Hn with any n ≥ k – i.e., the global cohomological
dimension of X is < k. This implies that any small vertical category (a
fortiori any precontractor) is aspheric, provided it is 0-connected, indeed
its cohomology variants with values in any sheaf of coefficients (not
necessarily commutative as far as H1 goes) are trivial.

The property for a topos X , with category of sheaves A, that any [p. 355]
object F in A covering the final object eA should have a section, can be
expressed by saying that the latter is a projective object in the category
A. Following the principle to use the same names for properties of a
topos, and corresponding properties of the final sheaf on it, we may call
a topos with the above property a projective topos. Thus, the “non-empty”
topoi such that every “non-empty” sheaf has a section, are exactly the
topoi which are both vertical and projective.
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* * *

Here is the promised “exact relationship” between the three standard
homotopy structures h, h′, h′′ on Aˆ, where A is any small category (cf.
end of section 96, p. 354):

(*)
h h′ h′′ h

hA ,̂ A hWA
hW0A

= hAˆ

≤
(A tot. W-asph.)

≤
(W⊂W0)

≤
(A vertical)

,

where W is a given basic localizer. Above each one of the three con-
ditional inequalities between homotopy structures h, h′, h′′ I wrote the
natural assumption on A or W validating it, and in the diagram I have
recalled the definition of the three homotopy structures. Apropos the de-
scription h = hA ,̂ A, the notation used here is hM ,A when M is a category
stable under finite products and A a full subcategory, for designating the
homotopy structure on M generated by intervals in M coming from A.
Apropos h′′ = hAˆ , I recall the notation hM for designating the canoni-
cal homotopy structure on a category M satisfying suitable conditions
(section 57). Also, I recall

W0 =
�

f ∈ Fl (Cat)
�

� π0( f ) bijective
	

.

The diagram implies that if W ⊂ W0, i.e., W satisfies Loc 4), and if
moreover A is vertical and totally W-aspheric, then all three homotopy
structures coincide. Also, taking W = W0, we see that h = h′′ if A is
vertical and totally 0-connected, which is lemma 2 of p. 268 for Aˆ, A.

From (*) it follows of course that if A is a contractor, then (for any W

satisfying Loc 4)) the three homotopy structures h, h′, h′′ on Aˆ coincide.
In case the contractor A is not trivial, hence A is a strict test category [p. 356]
and Aˆ is W-modelizing, it follows that Aˆ is even a canonical modelizer
(with respect to W), i.e., defined in terms of the W-asphericity structure
associated to the “canonical” homotopy structure h′′ = hAˆ on Aˆ (cf.
prop. 2 (ii) p. 345). These, for the time being, together with the mod-
elizers (Cat) and (Spaces), are the main examples we got of canonical
modelizers. Presumably, stacks should give another sizable bunch of
canonical modelizers, not of the type Aˆ.

* * *

We still have to say a word about morphisms between contractors A, B.
The first thing that comes to my mind is that this should be a functor

(0) f : A→ B

such that the corresponding functor

(1) f ∗ : Bˆ→ Aˆ

should be compatible with the homotopy structures, which can be ex-
pressed, as we know, in manifold ways, the most natural one here being
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the following two

(2) f ∗(B) ⊂ Aĉ

or

(3) f ∗(Bĉ ) ⊂ Aĉ ,

which are both implied by the apparently weaker one

(4) f ∗(B) ⊂ A
Ŵ0

def
= set of 0-connected objects of Aˆ,

and equivalently still, as Aĉ ⊂ A
Ŵ
⊂ A

Ŵ0
(where W is a basic localizer

satisfying Loc 4)), to the condition

(5) f ∗(B) ⊂ A
Ŵ
(

def
= set of W-aspheric objects of Aˆ).

Thus, the condition for f to be a “morphism of contractors” just boils
down to the long familiar W-asphericity of f , and implies the following
relation, apparently stronger than (5):

(5’) B
Ŵ
= ( f ∗)−1(A

Ŵ
).

This comes almost as a surprise (after a four day interruption in contact
with the stuff!) – but it occurs to me now that we got already a more
general statement with prop. 4 of section 95 (p. 350), which includes
the situation when instead of f : A→ B, we got a functor [p. 357]

(6) f : A→ Bˆ, factoring through Bĉ

(which need not factor through B), or equivalently a functor

(7) f! : Aˆ→ Bˆ

commuting with small direct limits, or equivalently still, a functor f ∗

in opposite direction, commuting with small inverse limits, but in the
last two cases with the extra condition that f!(A) ⊂ Bĉ . We may want to
extend the notion of morphism of contractors to include this situation,
hence expressed by the two following conditions on a functor f (6) or
f! (7), or on the pair ( f!, f ∗) of adjoint functors

(8)

¨

f!(A) ⊂ Bĉ

f ∗(B) ⊂ Aĉ .

However, in order for this notion to be stable under composition, we
should strengthen the first of the relations (8) into

(9) f!(Aĉ ) ⊂ Bĉ ,

which follows automatically whenever f! commutes to finite products
(cf. section 85), but may not follow from (8) in general, even in the
case when f factors through B, i.e., in the case we start with a functor
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(0) f : A → B. Thus, we get two plausible notions of a morphism
of contractors, neither of which implies the other, and I feel unable to
predict which one will prove the more useful. As far as terminology goes,
it seems reasonable to reserve the name “morphism of contractors” to the
first notion, as the second is adequately characterized as a bimorphism
between the contractibility structures (Aˆ, Aĉ ) and (Bˆ, Bĉ ) defined by
the contractors A and B (cf. section 86).

16.7.

98 Next point on my provisional program is induced structures (asphericity Sketch of proof of f being a weak
test category – and perplexities about
its being aspheric!

of contractibility structures) on a category M/a, when one is given on
M – but finally I decided to skip this, as there was no urgent need
for clarifying this and I am not writing a treatise, thanks Gods! I felt
more interested writing down the proof that the category f of standard
ordered simplices without degeneracies is a weak test category, as an-
nounced months ago, in section 43. It then seemed to come out rather [p. 358]
simply, but I didn’t keep notes of the proof I thought I found, which
caused me spending now a day or two feeling a little stupid, as the stuff
was resisting while I felt it shouldn’t! It did come out in the end I guess
– and still I feel a little stupid, with the impression of having bypassed
definitely some very simple argument which had presented itself as a
matter of evidence by the end of March. On the other hand, I was led
to reflect on some other noteworthy features of the situation, so I don’t
feel I altogether have been loosing my time.

There are four main variants of categories of standard simplices,
inserting into a diagram

(1)

e

f
e

f

β

α

β f

eα

,

where e denotes the category of non-ordered standard simplices n,
and where the exponent f in f and ef denotes restriction to maps which
are injective, namely compositions of boundary maps (plus symmetric in
the non-ordered case). I recall that and e are contractors, wheres f

and e

f are not even test categories. We’ll see however that f is a weak
test category, and presumably the same kind of argument should apply
to prove that ef is a weak test category too. On the other hand, from
the point of view of the modelizing story, the main common property
of the four functors in (1) should be asphericity. However, I checked
this for α and β only, as this was all I needed for getting the desired
result on f. As a matter of fact, β is even better than being aspheric,
it is a morphism of contractors; more precisely still, for any object E in
e , namely essentially a finite non-empty set, choosing one point a in
E, one easily constructs an elementary homotopy for β∗(E) from the
identity map to the constant map defined by β∗(a). I do not know on
the other hand whether β defines a bimorphism between the canonical
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contractibility structures on ˆ and eˆ, namely whether β! transforms
contractible elements into contractible ones (which would be clear if
we knew that β! commutes to finite products).

We’ll come back upon proof of asphericity of α, and show at once
how this implies that f is a weak test category, or equivalently, that the
canonical functor [p. 359]

i f : f→ (Cat)

is aspheric, for the canonical asphericity structure on (Cat). (I should
have noted that the asphericity statements are meant here in the strongest
possible sense, namely with respect to W=W∞ = usual weak equiva-
lence.) Now, for any n in f, the category

i f( n)
def
= f

/ n

is canonically isomorphic to the category associated to the ordered set
of all non-empty subsets of n, hence we get a canonical isomorphism

(2) i f ' ei(βα),

where

(3) ei : e → (Cat)

is the standard test functor, associating to any non-ordered simplex E
the category associated to the ordered set of all non-empty subsets of
E. We know already (section 34) that ei is aspheric, i.e., ei∗ transforms
aspheric objects of (Cat) into aspheric ones, hence the same holds for
its composition with the aspheric functor βα, hence also for i f , qed.

Thus, we are left with proving that α is aspheric, i.e., that the cate-
gories

(*) f
/α∗( n)

are aspheric. Now, let’s denote by ′f the category deduced from f

by adding an initial object ∅ (which we may view as being the empty
simplex), which defines an “open subcategory” U , namely as sieve in ′f,
in such a way that f appears as the “closed subcategory”, i.e., cosieve
in ′f complementary to U . One immediately checks that the category
(*) is canonically isomorphic to

(**) ( ′f)n+1 \ Un+1,

where Un+1 is the open subcategory defined by the initial object of the
ambient category ( ′f)n+1. Now, asphericity of (**) and hence of (*)
follows from the following two lemmas:

Lemma 1. The category f is aspheric.

Lemma 2. Let (X i , Ui)i∈I be a finite non-empty family of pairs (X i , Ui),
where X i is a small category, Ui an open subcategory. We assume that
for any i in I, X i and the closed complement Yi of Ui in X i are aspheric.
Let X be the product of the X i ’s, U the products of the Ui ’s, then (X and) [p. 360]
X \ U = Y are aspheric too.
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Proof of lemma 2: by an immediate induction, we are reduced to the
case when I has just two elements, I = {1,2}, but then X \ U can
be viewed as the union of the two closed subcategories X1 × Y2 and
X2×Y1, whose intersection is Y1×Y2. As all three categories are aspheric
(being products of aspheric categories), it follows by the well-known
Mayer-Vietoris argument that so is X × U , qed.

Thus, we are left with proving that f is aspheric. Somewhat sur-
prisingly, that’s where I spent a number of hours not getting anywhere
and feeling foolish! There is a very simple heuristic argument though
involving the standard calculation of the cohomology invariants of any
semisimplicial “complex”, in terms of the standard boundary operations:
if we admit that the same calculations are valid when working with
semisimplicial “face complexes”, i.e., objects of fˆ, then it is enough
to apply this to the final object of fˆ (including for computation of the
non-commutative H1 with constant coefficients) to get asphericity of f.
As a matter of fact, this argument would give directly asphericity of α,
bypassing altogether the categories (**) and lemmas 1 and 2. Appar-
ently, I got a block against the down-to-earth computational approach
to cohomology via semisimplicial calculations, and have been trying
to bypass it at all price – and not succeeding! Then, curiously enough,
when finding no other way out than look at those boundary operations
and try to understand what they meant (something I remember vaguely
have been doing once ages ago!), this brought me back again to the
abelianization story of sections 92 and 93, and to a more comprehensive
way for looking at “abelianizators”, and get an existence and unicity
statement for these. (At any rate, for a suitably strengthened version
of these.) This seems to me of independent interest, and worth being
written down with some care.

99 When writing down (in sections 92 and 93) some rambling reflections Afterthoughts on abelianization IV:
Integrators.about “abelianization” and “abelianizators”, there has been a persistent

feeling of uneasiness, which I kept pushing aside, as I didn’t want to
spend too much thought on this “digression”. This uneasiness had surely
something to do with the way abelianization (of an object X say of an
elementary modelizer Aˆ) was handled, so that it was designed in a more
or less exclusive way for embodying information about the “homology
structure” of the homotopy type modelized by X , or equivalently, to [p. 361]
describe its cohomology invariants with arbitrary constant coefficients.
Now, among the strongest reflexes I acquired in the past while working
with cohomology, was systematically to look at coefficients which are
arbitrary sheaves (abelian say), and to view constant or locally constant
coefficients as being just particular cases. This reflex has been remaining
idle, not to say repressed, during nearly all of the reflections of the
last four months, due to the fact that in the whole modelizing story
woven around weak equivalence, there was a rather exclusive emphasis
on constant and locally constant coefficients, disregarding any other
coefficients throughout. Probably, while reflecting on abelianization,
a more or less underground reminiscence must have been around of
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the semisimplicial boundary operators having a meaning for computing
cohomology of “something”, with coefficients in arbitrary sheaves – and
also that to get it straight, one had to be careful not to get mixed up
in the variances. But I just didn’t want to dive into all this again if I
could help it – and now it is getting clear, after a day or two of feeling
silly, that it can’t be helped, and I’ll have to write things down at last,
however “well-known” they may be.

Let A be a small category. In section 93 we defined an “abelianizator”
for A to be a chain complex L• in the additive envelope Add(Aop) of
the category Aop opposite to A, satisfying a suitable condition of com-
mutativity (in the diagram (20) of p. 328), and endowed with a mild
extra structure λ, expressing this commutativity. The function of an
abelianizator in loc. cit. was essentially to allow for a simultaneous “com-
putational” description of the homology structure of the homotopy types
stemming from a variable object X in Aˆ, or equivalently, to describe
cohomology of such X (as an object of a suitable derived category say,
to get it at strongest) with coefficients in any (constant) ring or abelian
group. Introducing by an independent symbol the opposite category

(1) B = Aop,

I want now to establish a relationship between this property or function
of a chain complex L• in Add(B), involving objects in Aˆ and their
abelianizations in Aâb, with an apparently different one, in terms of a
variable object of Bâb (not Aâb this time!), namely expressing cohomology
of B (i.e., of the topos Bˆ defined by B) with coefficients in an arbitrary
abelian presheaf F on B, i.e., an arbitrary object of Bâb. I will first [p. 362]
describe this property of (possible) function of a chain complex in
Add(B), forgetting for the time being the category A = Bop and the
homotopy types defined by objects X in Aˆ. Once this property is well
understood, it will be time to show it implies the previous one relative
to A and objects of Aˆ, and presumably is even equivalent with it.

First, we’ll have to interpret the category Add(B), which was con-
structed somewhat “abstractly” in section 93 (as the solution of a univer-
sal problem stated in section 92), as a full subcategory of the category
Bâb of abelian presheaves on B. It will be useful to keep in mind the
following diagram of canonical functors

(2)

B Bˆ

Add(B) Bâb

αB

βB
WhB

γB
,

where αB is the canonical inclusion, WhB is the abelianization functor, βB
the composition of the two, and γB the additive functor factoring βB, in
virtue of the universal property of Add(B). This functor is defined up to
canonical isomorphism, and the lower triangle of (2) is commutative, up
to a given commutativity isomorphism. Also, we’ll use the composition
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of the following sequence of canonical equivalences of categories:

Bâb = Hom(Bop, (Ab)) ∼−→ Hom(B, (Ab)op)op

∼−→ Homadd(Add(B), (Ab)op)op ∼−→ Homadd(Add(B)op, (Ab)),

i.e., a canonical equivalence of category

(3) Bâb
∼−→ Homadd(Add(B)op, (Ab)), F 7→ eF ,

which is a particular case of

(3’) Hom(Bop, M) ∼−→ Hom(Add(B)op, M),

where M is any additive category. If F is an abelian presheaf on B, i.e.,
an object in the left-hand side of (3), we’ll denote by

(4) eF : Add(B)op→ (Ab)

the corresponding additive functor. Now, this functor can be interpreted
very nicely in terms of the functor γB in (2), by the canonical isomor-
phism of abelian groups

(5) eF(L) ∼−→ HomBˆ(γB(L), F),

functorial with respect to the pair (F, L) in Bâb×Add(B)op. This formula [p. 363]
in turn implies easily that the functor γB is fully faithful. Thus, we can
interpret Add(B) as the full subcategory of Bâb whose objects are all
finite direct sums (in Bâb) of objects of the type WhB(b), with b in B. In
terms of this interpretation, γB is just an inclusion functor, and on the
other hand, for F in the ambient category Bâb, eF is just the restriction to
the subcategory Add(B) of the contravariant functor on Bâb represented
by F .

This situation is the exact “additive” analogon of the situation of B
embedded in Bˆ as a full subcategory, the functor on B defined by an
object F of Bˆ being the restriction to B of the contravariant functor
on Bˆ represented by F , i.e., an object of F(b) or eF(b) can (often
advantageously) be interpreted as a map in Bˆ, b 7→ F . Moreover, the
fact that

α∗B : F 7→ eF : Bˆ ∼−→ Hom(bop, (Sets))

is an equivalence (in fact, an isomorphism even), is paralleled by the
equivalence (3), which can likewise be interpreted as γ∗B, or more ac-
curately as the canonical factorization of the purely set-theoretic γ∗B :
Bâb→ Hom(Add(B)op, (Sets)) through Homadd(Add(B)op, (Ab)). . .

The objects L of the full subcategory Add(B) of Bâb have a very strong
common property, namely they are projectives, and they are of finite
presentation (“small” in Quillen’s terminology), namely for variable F in
Bâb, the functor

F 7→ HomBâb
(L, F)

commutes with filtering direct limits. Both properties are immediate,
and they nearly characterize the objects in Add(B) – more accurately,
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it is immediately checked that the projectives of finite presentation in
Bâb are exactly those which are isomorphic to direct factors of objects
in Add(B). It shouldn’t be hard to check that the full subcategory of
Bâb made up with the projectives of finite presentation can be identified
up to equivalence to the “Karoubi envelope” of the category Add(B)
(obtained by formally adding images of projectors), or equivalently,
can be described as the solution of the 2-universal problem defined by
sending B into categories which are, not only additive, but moreover
stable under taking images of projectors (i.e., endomorphisms u of
objects, such that u2 = u).

We’ll henceforth identify Add(B) to a full subcategory of Bâb (by [p. 364]
replacing the solution of the universal problem, constructed in section
95, by the essential image in Bâb say), and rewrite (5) simply as

(5’) eF(L)' Hom(L, F),

the Hom being taken in Bâb, category of abelian presheaves on B. Accord-
ingly, if L• is a chain complex in Add(B), hence in Bâb, the corresponding
cochain complex eF(L•) in (Ab) can be interpreted as

(6) eF(L•)' Hom•(L•, F),

where the symbol Hom• means taking Hom’s componentwise.
What we’re after here is to find a fixed chain complex L• in Add(B),

such that for any abelian presheaf F on B, the cochain complex (6) in
(Ab) should be isomorphic (in the derived category D•(Ab) of cochain
complexes in (Ab) with respect to quasi-isomorphisms) to the “integra-
tion” of F over the topos Bˆ, i.e., to RΓB(F):

(*) Hom•(L•, F)' RΓB(F) ? (isom. in D•(Ab)),

namely to the total right derived functor RΓB (taken for the argument
F) of the “sections” functor

(7) ΓB(F)
def
= lim←−

Bop

F.

Now, using the fact that the components of the chain complex L• are
projective, hence Exti(Ln, F) = 0 for i > 0 (any n, any F), we get at any
rate a canonical isomorphism in D•(Ab), or in D(Ab):

(8) Hom•(L•, F)' RHom(L•, F),

i.e., an interpretation of (6) as a “hyperext”. Now, let’s remember that
RΓB(F) (as on any topos) can be interpreted equally as

(9) RΓB(F)' RHom(ZB, F),

where ZB denotes the constant presheaf on B with value Z. Thus, the
wished-for isomorphism (*) will follow most readily from a correspond-
ing isomorphism in D•(Bâb) between L• and ZB. But using again the
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fact that the components of L• are projective, we see that to give a map
in the derived category of L• into ZB amounts to the same as to give an
augmentation

(10) L•→ ZB,

and the map is an isomorphism in D•(Bâb) iff the augmentation (10) [p. 365]
turns L• into a (projective) resolution of ZB.

We now begin to feel in known territory again! Let’s call “integrator”
on B any projective resolution of ZB, and let’s call the integrator “special”
(by lack of a more suggestive name) if its components Ln are in Add(B),
or what amounts to the same, if it can be viewed as a chain complex
in Add(B), endowed with the extra structure (10). Of course, ZB is
no longer in Add(B) in general, and therefore the data (10) has to be
interpreted as a map L0→ ZB external to Add(B), or equivalently (via
(5’)) as an object

(11) λ in eZB(L0) = Z(I0),

where I0 is the set of indices used in order to express L0 as the direct
sum in Bâb of elements of B. We know, by the general principles of
homological algebra, that any two integrators must be chain homotopic,
hence, if they are special, as Add(B) is a full additive subcategory of
Bâb, they must be chain homotopic in Add(B).

As for existence of integrators, it follows equally from general prin-
ciples, as we know that Bâb has “enough projectives” (which is a very
special feature indeed of Bâb, coming from the fact that the topos Bˆ
has enough projectives, namely the objects of B. . . ). It isn’t clear though
that there exists a special integrator, because when trying inductively
to construct the resolution L• of ZB with components in Add(B), it isn’t
clear that the kernel of Ln→ Ln−1 is “of finite type”, namely is isomor-
phic to a quotient of an object of Add(B) (or, equivalently, is a quotient
of a projective of finite presentation). If we take for instance B to be the
one-object groupoid defined by a group G, an integrator on B is just a
resolution of the constant G-module Z by projective Z[G]-modules, and
the integrator is special off the components are even free modules of
finite type – I doubt such a resolution exists unless G itself is finite. This
example seems to indicate that the existence of a special integrator for
B is a very strong condition on B, of the nature of a (homological) finite-
ness condition. Maybe this condition, more than most others, singles
out the three standard test categories and their finite products, from
arbitrary test categories (even strict ones and contractors. . . ).

Even in case a strict integrator doesn’t exist for B, there is a rather
evident way out to get “the next best” in terms of computations, namely
replacing the very much finitely restricted category Add(B) by a larger
category [p. 366]

(12) Addinf(B) ,→ Bâb

deduced from B by adding, not merely finite direct sums (and linear
combinations of maps), but equally infinite ones. The construction
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can be given “formally” as in section 93, and it can be checked that
this category satisfies the obvious 2-universal property with respect to
functors

f : B→ M

from B to infinitely additive categories M (namely additive categories
stable under direct sums), and functors M → M ′ which are not merely
additive, but commute to small direct sums. Moreover, it is checked
that the category Addinf(B) thus constructed embeds by a fully faithful
functor into Bâb as indicated in (12), and hence can be identified up to
equivalence to a full subcategory of Bâb. The formulas (5) and (5’) are
still valid, when L is in Addinf(B) only instead of Add(B). The objects
of Addinf(B) in Bâb are still projective (as direct sums of projectives),
but of course no longer of finite presentation. In compensation, any
element in Bâb is now a quotient of an object in Addinf(B). As a conse-
quence, the projectives in Bâb can be characterized as the direct factor of
objects of Addinf(B), and presumably the full subcategory of Bâb made
up with all projectives can again be described (up to equivalence) as
the Karoubi envelope of Addinf(B), or equivalently, as the solution of
the 2-universal problem of sending B into infinitely additive karoubian
categories (karoubian = every projective has an image, i.e., corresponds
to a direct sum decomposition). We may call an integrator L• for B with
components in Addinf(B) “quasi-special”. We did just what was needed
in order to be sure now that there always exist quasi-special integra-
tors; moreover, these integrators are unique up to chain homotopy in
Addinf(B). The interpretation (11) of the augmentation structure (10)
on L• is still valid in the quasi-special case, with the only difference that
now the indexing set I0 need not be finite anymore.

17.6. [p. 367]

100 Yesterday I introduced the notion of an integrator for any small category Abelianization V: Homology versus
cohomology.B, to be just a projective resolution of ZB in the category Bâb of all

abelian presheaves on B, where ZB denotes the constant presheaf with
value Z. Such an object in Ch•(Bâb) exists, due to the existence of
sufficiently many projectives in Bâb, and it is unique up to homotopism
of augmented chain complexes, which encourages us to denote it by a
canonizing symbol, namely

(1) LB
• → ZB.

As will become clear in the sequel, LB
• can be viewed as embodying ho-

mology properties of B, i.e., of the topos associated to B (whose category
of sheaves of sets is Bˆ). The way we hit upon it though was in order
to obtain a “computational” way for computing cohomology of B (i.e.,
of the associated topos) with coefficients in any abelian presheaf F in
Bâb, by a canonical isomorphism

(2) RΓB(F)
∼−→ Hom•(LB

• , F)
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in the derived category D•(Ab), where Hom• denotes the cochain com-
plex obtained by applying Hom componentwise. Passing to the coho-
mology groups of both members, this gives rise to

(3) Hi(B, F)' Hi Hom•(LB
• , F).

The designation “computational” takes a rather concrete meaning, when
we choose LB

• to have its components in the infinitely additive envelope
Addinf(B) of B, which (as we saw yesterday) can be viewed as a full
subcategory of Bâb, made up with projectives, and such that any object
in Bˆ is quotient of an object coming from Addinf(B); this ensures that
there exist indeed integrators which are “quasi-special”, i.e., are made
up with objects of Addinf(B), and hence can be interpreted as chain
complexes of this additive category. Thus, any component Ln can now
be written, in an essentially canonical way, as

(4) Ln =
⊕

i∈In

Z(bi),

where

(5) (bi)i∈In

is a family of objects of B indexed by In (NB for simplicity of notations,
we assume the In’s mutually disjoint, otherwise we should write the [p. 368]
general object in the family (5) bn

i rather than bi). Thus, the n’th
component of the cochain complex of the second member of (2) can be
explicitly written as

(6) Homn(LB
• , F) = Hom(LB

n , F)'
⊕

i∈In

F(bi),

and the coboundary operators between these components can be made
explicit in a similar way, by means of (possibly infinite) matrices, whose
entries are Z-linear combinations of maps from some bn

i to some bn−1
j

(i ∈ In, j ∈ In−1). We feel a little happier still when the direct sums (4)
yielding the components Ln are finite, i.e., the sets In are finite, which
also means that LB

• can be interpreted as a chain complex in the additive
envelope Add(B) of B, as contemplated in the first place – in which case
the integrator will be called “special”.

The formula (2) immediately generalizes when F is replaced by a
complex of presheaves F•, with degrees bounded from below (NB as
the notation indicates, the differential operator is of degree +1), to

(7) RΓB(F
•) ∼−→ Hom••(LB

• , F•),

where now the left-hand side designates hypercohomology of B (i.e.,
of the corresponding topos), viewed as an objects of the right derived
category D+(Ab) of the category of abelian groups, and where Hom••

designates the double complex obtained by taking Hom’s component-
wise, or more accurately, the object in D+(Ab) defined by the associated
simple complex.
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An interesting special case of (7) is obtained when starting with a
complex of abelian groups K• bounded from below, i.e., defining an
object of the right derived category D+(Ab), and taking

(8) F• = K•B = p∗B(K
•),

the corresponding constant complex of presheaves on B, which may be
viewed equally as the inverse image of K• by the projection

(9) pB : B→ 0 (the final category),

which geometrically interprets as the canonical morphism of the topos
associated to B to the final (or “one-point”) topos. The second member
of (7) can be rewritten componentwise, using the adjunction formula for
the pair (pab

! , p∗) (where the qualifying B is omitted now in the notation
p):

Hom(Ln, p∗(Km))' Hom(pab
! (Ln), K M ),

so that (7) can be rewritten as [p. 369]

(10) RΓB(K
•
B)' Hom••(pab

B!(L
B
• ), K•),

where this time the Hom’s in the right-hand side of (10) are taken in
(Ab), not in Bâb.

This formula very strongly suggests to view the chain complex of
abelian groups

(11) pab
B!(L

B
• ),

which is in fact a complex of projective (hence free) abelian groups de-
fined up to chain homotopy, as embodying the global homology structure
of B (or of the corresponding topos), more accurately still, as embodying
the homology structure of the corresponding homotopy type. It is easily
seen that the corresponding object of D•(Ab) depends covariantly on B
when B varies in the category (Cat), so that we get a functor

(Cat)→ D•(Ab)
def
= (Hotab),

which in view of (10) (an isomorphism functorial not only with respect
to K•, but equally with respect to B) factors through the localization
(Hot) of (Cat), thus yielding a canonical functor

(12) (Hot)→ (Hotab),

which deserves to be called the abelianization functor, from homotopy
types to “abelian homotopy types”. This cannot be of course anything
else (up to canonical isomorphism) but the functor (1) of section 92
(p. 321), but obtained here in a wholly “intrinsic” way, without having
to pass through the particular properties of a particular test category
such as or one of its twins. One possible way to check this identity
would be by proving that an isomorphism (10) is valid when replacing
(for a given B in (Cat) and K• in D+(Ab)) the chain complex (11) by
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the corresponding one deduced from the map (1) defined p. 321 (via
the diagram (3) on p. 322), and checking moreover that an object `•
of D−(Ab) is known up to canonical isomorphism, when we know the
corresponding functor

(13) K• 7→ HomD(Ab)(`•, K•)

on D+(Ab). Presumably, this latter statement holds when replacing
(Ab) by any abelian category, but I confess I didn’t sit down to check
it, nor do I remember having seen it stated somewhere – as I don’t
remember either having seen anywhere a comprehensive treatment
about the relationship between homology and cohomology. So maybe
my present reflections do fill a gap, or at any rate give some indications
as to how to fill it. . .

I played around some yesterday and today with the formalism of
integrators, notably with respect to maps

f : B′→ B

between small categories, and the corresponding integration functor

f ab
! : B′âb→ Bâb,

and its left derived functor L f ab
! . Thus, the chain complex in Bâb

(14) LB′/B
• or L f

•
def
= f ab

! (L
B′
• ),

which has projective components (and even is a chain complex in
Addinf(B) resp. in Add(B), if LB′

• is quasi-special resp. is special), and is
defined up to chain homotopism, embodies the relative homology prop-
erties of B′ over B, i.e., of f , in much the same way as (11) embodies
the global homology properties of B (i.e., of B over one point). When
the functor f is “coaspheric”, i.e., the functor

f op : B′op→ Bop

between the opposite categories is aspheric, then LB′/B
• is again an

integrator on B, and the converse should hold too provided we take the
meaning of “coaspheric” and “aspheric” with respect to a suitable basic
localizer W =WZ∞ – presumably, we’ll come back upon this in part V
or part VI of the notes. For the time being, it seems more interesting to
give now the precise relationship between the notion of an integrator
for B, and the notion of an abelianizator for the dual category A= Bop,
introduced in section 93.

Remarks. 1) It is a familiar fact that when working in Čech-flavored
contexts, such as general topoi, or étale topoi for schemes and the like,
one has throughout and from the start a good hold upon cohomology no-
tions, whereas it is a lot more subtle to squeeze out adequate homology
notions, which (to my knowledge) can be carried through only indirectly
via cohomology, and using suitable finiteness and duality statements
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within the cohomology formalism. Historically however, homology was
introduced before cohomology via cellular decompositions of spaces,
with a more direct appeal to geometric intuition. This preference for
homology rather than cohomology seems to be still prevalent among
most homotopy theorists, who have a tendency to view a topological
space (however wild it may be) as being no more no less than its sin-
gular complex. A comprehensive statement establishing, in a suitable
wide enough context, essential equivalence between the two viewpoints,
seems to be still lacking, as far as I know – although a fair number [p. 371]
of partly overlapping results in this direction are known, among the
oldest being the relevant “universal coefficients formulæ” relating ho-
mology and cohomology (reducing all to a formula of the type (2) or
(10) above), or Cartan’s old seminar on Leray’s sheaf theory, introducing
singular homology with coefficients in a sheaf and proving that on a
topological variety, this was (up to dimension shift and twist by the
twisted integers) essentially the same as singular cohomology (with
coefficients in sheaves too). It is not sure that an all-inclusive statement
of equivalence between homology and cohomology (in those situations
when such equivalence is felt hold indeed) does at all exist – at any
rate, according to what kind of coefficients one wants to consider, and
what kind of extra structures one is interested in when dealing with
homology and cohomology invariants, it seems that each of the two
points of view has an originality and advantages of its own and cannot
be entirely superseded by the other. From the contexts I have been
mainly working in, there definitely was no choice, namely cohomology
(including non-commutative one) was the basic data, while sheaves
and their generalizations (such complexes of sheaves, or stacks) were
the coefficients. I don’t remember of any moment where I would have
paused and asked myself why in most contexts where I was working
in (whose common denominator was topoi), there wasn’t any direct
hold on anything like homology invariants. The reason for this inertness
of mine, probably, is that the cohomology formalisms I hit upon were
self-contained enough, so as to leave no regret for the absence of a
homology formalism, or at any rate of a more or less direct description
of it independently of cohomology. Another reason, surely, is that I
didn’t have too much contact with topologists and homotopists and
their everyday tools, such as Steenrod operations, homology of the
symmetric group, and the like. This question of “why this reluctance
of homology to show forth” has finally surfaced only during these very
last days, when the answer for it (or one possible answer at any rate)
is becoming evident: namely, that for a general topos, embodied by a
category of sheaves (of sets) A, there are not enough projectives in A,
and not even enough projectives in Aab, the category of abelian sheaves.
It is becoming apparent (what surely everybody has known ages) that in
technical terms, doing “homology” is working with projectives, while doing
“cohomology” is working with injectives. As there are enough injectives in
Aab but not enough projectives, cohomology is around and homology
not, period!
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There is however a rather interesting class of topoi admitting suffi-
ciently many projective sheaves of sets, and hence sufficiently many [p. 372]
projective abelian sheaves – namely the topoi Bˆ defined in terms of
small categories B. They include the topoi which can be described
in terms of semisimplicial complexes and the like, and can be viewed
equally as the topoi which are “closest to algebra” or “purely algebraic”
in a suitable sense – for instance, definable directly in terms of arbi-
trary presheaves, without any reference to the notion of site and of
localization. (The intuition of localization remaining however and in-
dispensable guide even in the so-called “algebraic” set-up.) Moreover,
the morphisms which arise most naturally among such topoi, namely
those associated to maps

f : B′→ B

in (Cat), besides the traditional adjoint pair ( f ∗, f∗) of functors between
sheaves of sets, gives rise equally to a functor

(15) f! : B′ˆ→ Bˆ

left adjoint to f ∗ (i.e., f ∗ commutes to small inverse limits, not only to
small direct limits and to finite inverse limits), inserting in a triple of
mutually adjoint functors (from left to right)

(16) ( f!, f ∗, f∗).

The functors f ∗ and f∗ induce corresponding adjoint functors on abelian
sheaves (due to the fact that they commute to finite products), f ∗ab and
f ab
∗ , whereas f! does not in general transform group objects into group

objects; however, as f ∗ab commutes to small inverse limits, it does admit
again a left adjoint f ab

! , so as to give again a triple

(17) ( f ab
! , f ∗ab, f ab

∗ )

of mutually adjoint functors. Now, whereas the derived functors

f ∗ or L f ∗ab, Rf∗ or Rf ab
∗

of f ∗ab and f ab
∗ have been extensively used in the every-day cohomology

formalism of topoi, the existence in certain cases (such as the one we
are interested in here) of a functor f ab

! and of its left derived functor

(18) L f! or L f ab
! : D−(B′âb)→ D−(Bâb),

seems to me to have been widely overlooked so far, except in extremely
particular cases such as inclusion of an open subtopos; at any rate, I have
been overlooking it till lately, when it came to my attention through the [p. 373]
writing of these notes. (Namely, first in connection with my reflections
on derivators (cf. section 69), and now in connection with the reflections
on abelianization.) In view of my reflections on derivators, I would like
to view the functor (18) as an operation of “integration”, whereas the
traditional functor

(19) Rf∗ : D+(B′âb)→ D+(Bâb)
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is viewed as “cointegration” (which I prefer to my former way of calling
it an “integration”). The first should be viewed as expressing homology
properties of the map f in (Cat) (or between the corresponding topoi),
just as the latter expresses cohomology properties of f . This does check
with the corresponding qualifications “integration” – “cointegration” –
as well as with the intuition, when B is reduced to a point, identifying
the first to a kind of direct sum (= integration), whereas the latter is
viewed as a kind of direct product (= cointegration). The idea behind
the terminology will go through maybe when looking at the particular
case when B′ is a sum of copies of B, namely a product of B by a discrete
category I , and

f : B′ = B × I → B

the projection.
The point I want to make here, mainly to myself, is that in the present

context when (18), namely integration, exists, this operation presum-
ably is by no means less meaningful and important than the familiar Rf∗
or cointegration – or equivalently stated, that the homology properties
of f are just as meaningful and deserving close attention, as the coho-
mology properties, which so far have been the only ones I have been
looking at. Presumably, when following this recommendation, a few
unexpected facts and relationships should come out, such as various
“duality” relationships between homology properties of f , and cohomol-
ogy properties of the map f op between the opposite categories. (This
is suggested by some of the scratchwork I made on derivators and co-
homology properties of maps in (Cat).) The only trouble is that such
change or broadening of emphasis as I am now suggesting will require a
certain amount of extra attention, which I am not too sure to be willing
to invest in the subject, namely algebraic topology. Thus presumably,
my main emphasis will remain with cohomology, rather than homology.
I am no longer convinced though that this point of view is technically
more adequate than the dual one.

2) All the reflections of yesterday’s notes as well as today’s can be
extended, when replacing throughout abelian presheaves by presheaves
of k-modules, and additive envelopes by k-linear ones, where k is any [p. 374]
given commutative ring. Of course, the category (Ab) and its various
derived categories will have to be replaced accordingly by the category
(k-Mod) of k-modules etc. The same holds for the relationship I am
going to write down between integrators for B and abelianizators for
A= Bop. For simplicity of notations, I am going to keep the exposition
in the (Ab)-framework I have started with, and leave the necessary
adjustments to the reader.
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18.7.

101 Finally with yesterday’s non-technical reflections on homology versus Abelianization VI: The abelian inte-
gration operation L f ab

! defined by a
map f in (Cat) (versus abelian coin-
tegration Rf∗).

cohomology, it was getting prohibitively late, and there could be no
question to deal with the relationship between integrators (for B) and
abelianizators (for Bop = A). Also, I feel I should give some “computa-
tional” details about the functor f ab

! associated to a map in (Cat)

f : B′→ B,

namely
f ab
! : B′âb→ Bâb,

which is a lot less familiar to me than its right adjoint and biadjoint f ∗

and f∗. One way to get a “computational hold” upon it is by noting that
f ab
! commuting to small direct limits and a fortiori being right exact,

and moreover any object F ′ in B′âb being a cokernel of a map between
“special projectives” in B′âb, i.e., between objects in Addinf(B′), namely
inserting into an exact sequence

L′1
d
−→ L′0→ F ′→ 0 with L′0, L′1 in Addinf(B′),

the functor f ab
! (via its values on any F ′ say) is essentially known, when

we know its restriction to the subcategory Addinf(B′), as we’ll get a
corresponding exact sequence in Bâb

f ab
! (L

′
1)→ f ab

! (L
′
0)→ f ab

! (F
′)→ 0,

describing f ab
! (F

′) as a cokernel of a map f ab
! (d) corresponding to a map

in Addinf(B′). The relevant fact now is that we have a commutative
diagram of functors (up to can. isomorphism as usual)

(1)

Addinf(B′) B′âb

Addinf(B) Bâb

Addinf( f ) f ab
!

,

where the horizontal arrows are the canonical inclusion functors, and [p. 375]
Addinf( f ) is the “tautological” extension of f : B′→ B to the infinitely
additive envelopes, defined computationally as

(2) Addinf( f )(L′)'
⊕

i∈I

Z f (b′i)

for an object of Addinf(B′) written canonically as

(3) L′ =
⊕

i∈I

Z(b
′
i).

Here, for an object b in a small category B, we denote by the more
suggestive symbol Z(F) the abelianization WhB(F) of an object F of Bˆ,
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and accordingly of F is an object b in B. The fact that (2) is equally
an expression for f ab

! follows immediately from commutation of f ab
! to

small direct sums, and from the canonical isomorphism

(4) f ab
! (Z

F ′)' Z( f!(F
′)),

i.e., commutation up to canonical isomorphism of the diagram

(5)

B′ˆ B′âb

Bˆ Bâb

WhB′

f! f ab
!

WhB ,

the verification of which is immediate. (For a generalization to sheaves
endowed with arbitrary “algebraic structures” and taking free objects,
see SGA 4 I 5.8.3, p. 30.)

[Artin, Grothendieck, and Verdier
(SGA 4.1)]

Of course, (1) and (2) imply that f ab
! maps Add(B′) into Add(B), and

induces the tautological extension Add( f ) of f to the additive envelopes.
Thus, (1) and (5) can be inserted into a beautiful commutative diagram
(up to canonical isomorphism)

(6)

B′ Add(B′) Addinf(B′) B′âb

B Add(B) Addinf(B) Bâb

B′ˆ

Bˆ

f Add( f ) Addinf( f ) f ab
!

f!

WhB′

WhB

.

The formula (1) (or equivalently, (2)) can be viewed as giving a
computational description of the left derived functor

(7) L f ab
! : D−(B′âb)→ D−(Bâb).

Indeed, by general principles of homological algebra, for any small [p. 376]
category B, from the fact that Addinf(B) is made up with projective
objects of Bâb and that any object in Bâb is isomorphic to a quotient of
an object in this subcategory, it follows that

(8) D−(Bâb)uW−1
B Comp−(Addinf(B)),

i.e., the left derived category D−(Bâb) is equivalent with the category
obtained by localizing, with respect to the set WB of homotopy equiva-
lences, the category Comp−(. . .) of differential complexes in the additive
category Addinf(B), with degrees bounded from above (the differential
operator being of degree +1, according to my preference for cohomol-
ogy notation, sorry!). An object of D−(Bâb) may thus be viewed as being
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essentially the same as a differential complex in Addinf(B) with degrees
bounded from above, and given “up to homotopism”. The similar de-
scription holds for D−(B′âb), and in terms of these descriptions, the
“integration functor” (in the abelian context) (7) can be described by

(9) L f ab
! (L

′
•) = Addinf(L′•),

i.e., by applying componentwise the tautological extension Addinf( f )
of f to the differential complexes in Addinf(B′). This very concrete
description applies notably to the complex

(10) LB′/B
• or L f

•
def
= f ab

! (L
B′
• )

introduced yesterday, whenever a (quasi-special) integrator LB′
• for B′

has been chosen. Applying this to the case of the map

pB : B→ 0,

we get (for a given integrator LB
• for B) an explicit description of the

abelianization of the homotopy type of B in terms of the chain complex
pab

B!(L
B
• ) in (Ab), with the n’th component given by

(11)
�

LB/pt
•

�

n = Z
(In),

where In is the set of indices used for describing LB
n as the direct sum of

objects of the type Z(bi).
Returning to the case of a general map f : B′ → B, maybe I should

still write down the formula generalizing (2) or (10) of yesterday’s notes
(pages 367 and 369), relating LB′/B

• to the cohomology properties of the
map f , i.e., to cointegration relative to f . The formula expresses coin- [p. 377]
tegration Rf∗ with coefficients coming from downstairs, namely f ∗(K•),
where K• is any differential complex in Bâb with degrees bounded from
below (thus defining an object in D+(Bâb)). The relevant formula is

[see section 139, bottom of p. 588,
for corrections to this formula and
(12’), (13) below. . . ]

(12) Rf∗( f
∗(K•))' Hom••(LB′/B

• , K•),

an isomorphism in D+(Bâb), where Hom•• designates the double com-
plex in Bâb obtained by applying Hom componentwise, more accurately
the associated simple complex, and where Hom is the internal Hom in
the category Bâb, namely the (pre)sheaf of additive homomorphisms of
a given abelian (pre)sheaf (Ln say) into another (Km say). The proof of
(12) is essentially trivial, it is just the computational interpretation, in
terms of using projective resolutions, of the adjunction formula “local-
ized on B

(12’) Rf∗(L f ∗(K•))' RHom(L f ab
! (ZB′), K•),

which is a particular case of the more general “adjunction formula”

(13) Rf∗(RHom(F ′•, L f ∗(K•))' RHom(L f ab
! (F

′
•), K•),

valid for
F ′• in D−(B′âb), K• in D+(Bâb),

(12’) following from (13) by taking F ′• = ZB′ .
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Remarks. We may view (13), and its particular case (12) or (12’), as the
main formula relating the homology and cohomology invariants for a map
f in (Cat), or equivalently, the (abelian) integration and cointegration
operations defined by f . It now occurs to me that this formula, and the
variance formalism in which it inserts, is valid more generally whenever
we have a map f between two ringed topoi, such that f! exists for
sheaves of sets, hence there exists too a corresponding functor f mod

! for
sheaves of modules. The fact that we have been restricting to the case
of the constant sheaves of rings defined by Z isn’t relevant, and (in the
case of topoi defined by objects in (Cat), hence with sufficiently many
projective sheaves of sets) the formalism of the subcategories Add(B)
and Addinf(B) in Bâb can be generalized equally to arbitrary sheaves of
rings on B. At present, I don’t see though any striking particular case
where this generalization would seem useful. [p. 378]

102 We now focus attention upon the pair of mutually dual small categories Abelianization VII: Integrators ( for
Aop) are abelianizators ( for A).

(1) (A, B), with B = Aop, i.e., A= Bop,

and recall the equivalence of section 93 following from the universal
property of Add(B)

(2) Aâb = Hom(Aop, (Ab))u Homadd(Add(Aop), (Ab)),

which we parallel with the formula (3) of section 99 (p. 362), which
reads when replacing in it B by A

Aâb ' Homadd(Add(A)op, (Ab));

this immediately suggests a canonical equivalence of categories

(3) Add(Aop)u Add(A)op,

following immediately indeed from the 2-universal properties of these
categories. We complement (2) by the similar formula

(4) F 7→ eF : Aâb
≈−→ Homaddinf(Addinf(B), (Ab)), B = Aop,

where Homaddinf denotes the category of infinitely additive functors
between two infinitely additive categories. In view of the emphasis
lately on chain complexes in Addinf(B) rather than in Add(B), in order
to reconstruct say the derived category D•(Bâb) of chain complexes in
Bâb, and get existence of “integrators” with components in Addinf(B)
(whereas there may be none with components in Add(B)), it is formula
(4) rather than (2) which is going to be relevant for our homology
formalism. Using (4), we get a canonical biadditive pairing

(*) Aâb ×Addinf(B)→ (Ab),

which visibly is exact with respect to the first factor, and which we may
equally interpret as a functor

(5) L 7→ eL : Addinf(B)→ Homex(Aâb, (Ab)),
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where Homex denotes the category of exact (hence additive) functors
from an abelian category to another one.

It can be shown that the pairing (*) can be extended canonically to a
pairing

(6) Aâb × Bâb→ (Ab)

commuting to small direct limits in each variable, and identifying (up [p. 379]
to equivalence) each left hand factor to the category of functors from
the other functor to (Ab) which commute with small direct limits (much
in the same way as the corresponding relationship between Aˆ and Bˆ,
with (Ab) being replaced by (Sets)), and the accordingly the functor
(5) is equally fully faithful, and extends to a fully faithful functor from
Bâb to Homadd(Aâb, (Ab)), inducing in fact an equivalence between Bâb
and the full subcategory Hom!(Aâb, (Ab)) of Hom(Aâb, (Ab)) made up
by all functors Aâb → (Ab) which commute to small direct limits. But
for what we have in mind at present, these niceties are not too relevant
yet it seems – all what matters is that an object L of Addinf(B) defines
an exact functor

eL : Aâb→ (Ab),

depending functorially on L, in an infinitely additive way. Thus, as noted
in section 92 (but where Addinf(B)was replaced by the smaller category
Add(B), which has turned out insufficient for our purposes), whenever
we have a chain complex L• in Addinf(B), we get a corresponding
functor

(7) eL• : Aâb→ Ch•(Ab)

from Aâb to the category of chain complexes of (Ab), which is moreover
an exact functor. Generalizing slightly the terminology introduced in
section 93, where we restricted to chain complexes with components in
Add(B) rather than in Add(B), we’ll say that eL• is an abelianizator for A,
if the following diagram commutes up to isomorphism:

(8)

Aˆ HotA (Hot)

Aâb Ch•(Ab) (Hotab)

WhA

(abelianization)

“absolute”

abelianization

functoreL• .

More accurately, an abelianizator is a pair (eL•,λ), where λ is an isomor-
phism of functors Aˆ→ (Hotab) making the diagram commute. Here, I
like to view the abelianization functor

(9) (Hot)→ (Hotab)
def
= D•(Ab)

as the one described directly in section 100 via integrators of arbitrary
modelizing objects in (Cat), without any reference to an auxiliary test
category such as or the like.

The point of (8) is that via an “abelianizator” for A, we want to be able
to give a) a simultaneous handy expression, in terms of “computable”



§102 Abelianization VII: Integrators (for Aop) are . . . 345

chain complexes in (Ab), of abelianization of homotopy types modelized [p. 380]
by a variable object X in Aˆ, and b) we want that the chain complex
in (Ab) expressing abelianization of X , should be expressible in terms
of the “tautological abelianization” WhA(X ) = Z(X ) of X itself, by a
formula moreover which should make sense functorially with respect to
an arbitrary abelian presheaf, i.e., an object F in Aâb.

The main fact I have in view here is that whenever the chain complex
L• in Addinf(B) is endowed with an augmentation

(10) L•→ ZB

turning it into a resolution of ZB, i.e., into a (quasi-special) integrator
for B, then ipso facto L• is an abelianizator for A, the commutation
isomorphism λ being canonically defined by the augmentation (10).

Some comments, before proceeding to a proof. Presumably, the con-
verse of our statement holds too – namely that the natural functor we’ll
get from quasi-special integrators for B to abelianizators (L•,λ) for B is
an equivalence (even an isomorphism!) between the relevant categories.
I don’t feel like pursuing this – the more relevant fact here, whether
or not a converse as contemplated holds, is that we can pin down at
any rate a special class of abelianizators for A, namely those which
come from (quasi-special) integrators for B, and these abelianizators
are defined up to chain homotopism in Addinf(B). In this sense, we get
an existence and unicity statement for abelianizators in A, as strong as we
possibly could hope for. In practical terms, it would seem, an abelianiza-
tor for A will be no more no less than just a (quasi-special) integrator for
B, namely a projective resolution of ZB in Bâb, whose components satisfy a
mild extra assumption besides being projective.

Here, I am struck by a slight discrepancy in terminology, as we would
rather have a correspondence

¨

integrators for B → abelianizators for A
quasi-special int.s for B → quasi-special abelian.s for A,

and the same for “special” integrators and abelianizators. As I still
feel that the general appellation of an “integrator” for any projective
resolution of ZB is adequate (without insisting that the components
should be in Addinf(B)), this kind of forces us to extend accordingly
still the notion of an abelianizator for A. This does make sense, using
the pairing (6) (which we had dismissed as an “irrelevant nicety for the
time being”!), and the corresponding equivalence [p. 381]

(11) Bâb
≈−→ Hom!(Aâb, (Ab)),

where the index ! denotes the full subcategory of Hom made up with
functors commuting to small direct limits. It is immediate that projective
objects in Bâb give rise to objects in Hom! which are exact functors from
Aâb to (Ab), and I’ll have to check that the converse also holds. If so, a
chain complex in Bâb with projective components can be interpreted as
being just an arbitrary exact functor commuting to small sums

Aâb→ Ch•(Ab),



§103 Integrators versus cointegrators. 346

(never minding whether or not it can be described “computationally”
in terms of objects in Add(B) or in Addinf(B)!) – which is all that is
needed in order to complete the diagram (8), and wonder if it commutes
up to isomorphism! And the most natural statement here is that this
is indeed so whenever this functor, viewed as a chain complex in the
abelian category

(12) Hom!(Aâb, (Ab)),

is a (projective) resolution of the canonical object eZB of the category
(12), coming from the object ZB of the left-hand side of (11). Now, this
functor is just the familiar “direct limit” functor

(13) eZB ' lim−→
B

: Aâb
def
= Hom(B, (Ab))→ (Ab),

which can be equally interpreted as

(14) eZB ' pab
A! : Aâb→ (Ab),

namely (abelian) “integration” with respect to the map in (Cat)

pA : A→ 0.

Thus, ultimately, abelianizators for A (or what we may call “standard
abelianizators”, if there should turn out to be any others, and that they
are worth looking at) turn out to be no more, no less than just a projective
resolution, in the category (12) of functors from Aâb to (Ab) commuting
with small direct limits, of the most interesting object in the category,
namely the functor

(15) pab
A! ' lim−→

B

: Aâb→ (Ab).

We are far indeed from the faltering reflections of section 91, about
computing homology and cohomology of homotopy models described
in terms of test categories deduced some way or other from cellular
decompositions of spheres!

11.8. [p. 382]

103 It has been over three weeks now I haven’t been working on the notes. Integrators versus cointegrators.
Most part of this time was spent wandering in the Pyrenees with some
friends (a kind of thing I hadn’t been doing since I was a boy), and
touring some other friends living the simple life around there, in the
mountains. I was glad to meet them and happy to wander and breathe
the fresher air of the mountains – and very happy too after two weeks to
be back in the familiar surroundings of my home amidst the gentle hills
covered with vineyards. . . Yesterday I resumed mathematical work – I
had to spend the day doing scratchwork in order to get back into it, now
I feel ready to go on with the notes. I’ll have to finish in the long last with
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that abelianization story I got into unpremeditatedly – which turns out to
be essentially the same thing as some systematics about (commutative)
cohomology and homology, in the context of “models” in (Cat), or in
a category Aˆ (with A is (Cat)). We were out for proving a statement
about “integrators” for a small category B being “abelianizators” for the
dual category A= Bop. The proof I had in mind for this is somewhat
indirect via cohomology, and follows the proof I gave myself a very
long time ago (in case A ), that the usual semi-simplicial boundary
operations do give the correct (topos-theoretic) cohomology invariants
for any object X in Aˆ (i.e., any semisimplicial set), for any locally
constant coefficients on A/X . The idea was to replace A/X by the dual
category (A/X )op = X\A

op (which, according to a nice result of Quillen,
has a homotopy type canonically isomorphic to the one defined by A/X ),
and use the canonical functor

f = (pX )
op : (A/X )

op→ Aop def
= B,

which is a cofibration with discrete fibers, and hence gives rise, for any
abelian presheaf F on the category C upstairs, to an isomorphism

RΓ (C , F)' RΓ (B, f∗(F))

(due to Rf∗(F)
∼←− f∗(F), as f∗ is exact, due to the fact that f is a

cofibration with discrete fibers). We’ll get Quillen’s result about the
isomorphism C ' Cop in (Hot), for any object C in (Cat), very smoothly
in part VI, as a result of the asphericity story of part IV. However, I now
realize that the proof of the fact about abelianizators via Quillen’s result
and cohomology is rather awkward, as what we’re after now is typically
a result on homology, not cohomology – and I was really turning it
upside down in order to fit it at all costs into the more familiar (to me) [p. 383]
cohomology pot! Therefore, I’m not going to write out this proof, as
“the” natural proof is going to come out by itself, once we got a good
conceptual understanding of homology, cohomology and abelianization,
in the context of “spaces” embodies by objects of (Cat). Thus, I feel
what is mainly needed now is an overall review of the relevant notions
and facts along these lines – most of which we’ve come in touch with
before, be it only “en passant”.

Before starting, just an afterthought on terminology. It occurred to
me that the name of an “integrator” (for A), for a projective resolution of
the constant abelian presheaf ZA in Aâb, is inaccurate – as it was meant
to suggest that its main use is for allowing computation, for an arbitrary
abelian presheaf (or complex of such presheaves) F on A, of RΓ (A, F),
which we were thinking of by that time as the “integration” of F over A
(or over the associated topos). But it has turned out that for the sake
of coherence with a broader use of the notions of “integration” and
“cointegration” (compare section 69), the appropriate designation of
RΓ (A, F) is “cointegration” of F over A, not integration. Therefore, the
appropriate designation for a projective resolution LA

• of ZA, allowing
computational expression of cointegration, is “cointegrator” (for A)
rather than “integrator”. On the other hand, in terms of the dual category
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B = Aop, it turns out that such LA
• allows computational expression of

integration (i.e., homology) over B, and therefore it seems adequate
to call LA

• also an “integrator” for B. Moreover, it turns out that such
an integrator for B is equally an “abelianizator” for B, i.e., it allows
simultaneous computation of the “abelianizations” of the homotopy
types defined by arbitrary objects X in Aˆ, in terms of the abelianization
WhA(X ) = Z(X ) of X (cf. sections 93 and 102) – and possibly the converse
holds too. Whether this is so or not, there doesn’t seem at present much
sense to bother about abelianizators which do not come from integrators,
while the latter have the invaluable advantage (besides mere existence)
of being unique up to homotopism. Thus, in practical terms, it would
seem that abelianizators (for a given small category B) are no more
no less than just integrators (for the same B, i.e., cointegrators for
A= Bop) – and I would therefore suggest to simply drop the designation
“abelianizator” for the benefit of the synonym “integrator”, which fits
more suggestively into the pair of dual notions integrator—cointegrator. [p. 384]

104 I’ll have after all to give a certain amount of functorial “general non- Overall review on abelianization (1):
Case of pseudo-topoi.sense” which I’ve tried to bypass so far.

A) Pseudo-topoi and adjunction equivalences. In what follows,
ordinary capital letters as A, B, . . . will generally denote small categories
(mostly objects in (Cat)), whereas round capital letters A,B,M will
denote U-categories which may be “large”, for instance A = Aˆ, B = Bˆ,
etc. For two such categories A,B, we denote by

(1) Hom!(A,B), Hom!(A,B)

the full subcategories of the functor category Hom(A,B), made up
with all functors which commute with small direct or inverse limits
respectively. This notation is useful mainly in case A and B are stable
under small direct resp. inverse limits, in which case the same holds
true for the corresponding category (1), because as a full subcategory
of Hom(A,B) (where direct resp. inverse limits exist and are computed
componentwise) it is stable under direct resp. inverse limits. Thus, the
inclusion functors

(2) Hom!(A,B)→ Hom(A,B), Hom!(A,B)→ Hom(A,B)

commute with direct resp. inverse limits, i.e., those limits in the cate-
gories (1) are computed equally componentwise.

The canonical inclusion

A ,→ Hom(Aop, (Sets))

factors into a fully faithful inclusion functor

(3) A ,→ Hom!(Aop, (Sets)).

Let’s recall the non-trivial useful result:
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Proposition 1. Assume the U-category A is stable under small direct
limits, and admits a small full subcategory A which is “generating for
monomorphisms”, i.e., any monomorphism i : X → Y in A such that
Hom(Z , i) : Hom(Z , X )→ Hom(Z , Y ) is bijective for any Z in C, is an
isomorphism. Then the fully faithful functor (3) is an equivalence, i.e.,
any functor

Aop→ (Sets)

that commutes with small inverse limits is representable.

For a proof, see SGA 4 I 8.12.7.
[Artin, Grothendieck, and Verdier
(SGA 4.1)]Corollary 1. If A satisfies the assumptions above, then A is equally stable

under small inverse limits.

For the sake of brevity, we’ll say that a U-category satisfying the [p. 385]
assumptions of prop. 1 is a pseudo-topos (as these conditions are satisfied
for any topos). We get at once the

Corollary 2. Let A,B be two pseudo-topoi. Then a functor from A to
Bop (resp. from Bop to A) has a right adjoint (resp. a left adjoint) iff it
commutes to small direct limits (resp. to small inverse limits). Thus, taking
right and left adjoints we get two equivalences of categories, quasi-inverse
to each other

(4) Hom!(A,Bop)� Hom!(Bop,A),

and the two members of (4) are canonically equivalent to the category

(5) Hom!!(Aop,Bop; (Sets))

of functors
Aop ×Bop→ (Sets)

which commute with small inverse limits with respect to either variable (the
other being fixed), (5) being viewed as a full subcategory of Hom(Aop ×
Bop, (Sets)).

Remarks. 1) The first-hand side of (4) is tautologically isomorphic to
the category Hom!(Aop,B) (as for any two U-categories we have the
tautological isomorphism

(6) (Hom!(P,Q))op ' Hom!(Pop,Qop) ),

thus, the equivalence (4) can be seen more symmetrically as an equiva-
lence

(4’) Hom!(Aop,B)' Hom!(Bop, scrA),

both categories being equivalent to (5) using the equivalence (3) for
the second, and the corresponding equivalence for B for the first, plus
the tautological isomorphism

(7) Hom!(P,Hom!(Q,M))' Hom!!(P,Q;M),
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for any three U-categories P,Q,M.
2) When A is a topos, B any U-category stable under small inverse

limits, then we may interpret the category Hom!(Aop,B) as the category
of B-valued sheaves on the topos (defined by) A. When A and B are both
topoi, then the equivalence (4) states that B-valued sheaves on A can be
identified with A-valued sheaves on B, and both may be identified with
set-valued “bi-sheaves” on A×B. In case the topoi A, B are defined
respectively by U-sites A, B (not necessarily small ones), these bisheaves [p. 386]
can be interpreted in a rather evident way as bisheaves on A×B, namely
functors

Aop × Bop→ (Sets)

which are sheaves with respect to each variable (the other being fixed).
It is easy to check that the category of all such bisheaves is again a topos,
and that the latter is a 2-product of the two topoi A, B in the 2-category
of all topoi – it plays exactly the same geometrical role as the usual
product for two topological spaces. . .

B) Abelianization of a pseudo-topos. Let A be a pseudo-topos, and
let’s denote by

(8) Aab

the category of abelian group-objects in A. It is immediate that the
forgetful functor

(9) Aab→ A

commutes with small direct limits (and that such limits exist in Aab,
whereas they exist in A by cor. 1 above) – thus, we may expect that this
functor admits a left adjoint. When so, this will be denoted by

(10) WhA : A→ Aab,

we’ll write also
Wh(X ) = Z(X )

when no confusion may arise. The abelianization functor exists for
instance when A is a topos, in this case it is well-known that Aab is not
only an additive category, but an abelian category with small filtering
direct limits which are exact, and a small generating subcategory. This in
turn ensures, as well-known too, that any object of Aab can be embedded
into an injective one, and from this follows (cf. SGA 4 I 7.12) that

[Artin, Grothendieck, and Verdier
(SGA 4.1)]

Aab admits also a small full subcategory which is cogenerating with
respect to epimorphisms, in other words that Aab is not only an abelian
pseudo-topos, but that the dual category (Aab)op is a pseudo-topos too.
Conversely (kind of), without assuming A to be a topos, if we know some
way or other (but this may be hard to check directly. . . ) that (Aab)op is
a pseudo-topos, then it follows from cor. 2 above that the abelianization
functor WhA exists, and this in turn implies that Aab is a pseudo-topos,
i.e., admits a small full subcategory which is generating with respect to
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monomorphisms (as we see by taking such a full subcategory A in A, [p. 387]
and the full subcategory in Aab generated by WhA(A)).

Let now M be an additive U-category, which is moreover a pseudo-
cotopos, i.e., the dual category Mop is a pseudo-topos. Using twice the
corollary 2 above, for the pair of pseudotopoi (A,Mop) and (Aab,Mop),
we get the sequence of equivalences of categories

Hom!(A,M)u Hom!(M,A)op ≈←− Hom!(M,Aab)
op u Hom!(Aab,M),

where the second equivalence of categories comes from the fact that
any functor

f : M→ A

from an additive category M to a category A, which commutes with
finite products, factors canonically through Aab→ A. We are interested
now in the composite equivalence

(11) Hom!(A,M)u Hom!(Aab,M),

defined under the only assumption that M is additive and the categories
A, Aab and Mop are pseudotopoi (without having to assume the existence
of the abelianization functor WhA). This equivalence is functorial for
variable additive pseudo-cotopos M, when we take as “maps” M→M′

functors which commute to small direct limits (a fortiori, these are
right exact and hence additive). In case Aab itself is among the eligible
M’s, i.e., is a pseudo-cotopos (not only pseudotopos), we may say that
Aab 2-represents the 2-functor M 7→ Hom!(A,M) on the 2-category of
all additive pseudo-cotopoi and functors between these commuting to
small direct limits. As we noticed above, the assumption just made
implies that WhA exists. On the other hand, assuming merely existence
of WhA (besides A being a pseudo-topos), which implies that Aab is
equally a pseudotopos as we say above, it is readily checked that the
equivalence (11) can be described as

(12) F 7→ F ◦WhA : Hom!(Aab,M) ≈−→ Hom!(A,M).

Thus, we get the

Proposition 2. Let A be a pseudotopos such that the abelianization
functor (10) exists ( for instance A a topos). Then Aab is a pseudotopos
and an additive category. Moreover, for any additive category M which is
a pseudo-cotopos, the functor (12) is an equivalence of categories.

Corollary 1. Let A be a pseudotopos such that Aab is a pseudotopos ( for [p. 388]
instance, A is a topos). Then the abelianization functor WhA exists, and
this functor is 2-universal for functors from A into U-categories which are
both additive and are pseudotopoi (maps between these being functors
which commute with small direct limits).

By duality, using (6), we can restate the equivalence (12) as

(13) F 7→ F ◦Whop : Hom!(Aab
op,N) ≈−→ Hom!(Aop,N),
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valid provided A is a pseudo-topos, WhA exists, and N is an additive
category which is moreover a pseudotopos.

Take for instance N = (Ab), the category of abelian groups, i.e.,

N = Bab, where B= (Sets),

then as already noticed above the left hand side of (13) is canonically
equivalent with Hom!(Aab

op,B) = Hom!(Aab
op, (Sets)), as Aab

op is ad-
ditive; on the other hand, by prop. 1 applied to the pseudotopos Aab we
get

Aab
≈−→ Hom!(Aab

op, (Sets))
� ≈←− Hom!(Aab

op, (Ab))
�

,

and hence an equivalence

(14) Aab
≈−→ Hom!(Aop, (Ab)), F 7→

�

X 7→ Hom(X , F)
�

,

valid whenever A is a pseudotopos such that WhA exists. When A

is a topos, this corresponds to the familiar fact that an abelian group
object in the category of sheaves (of sets) on a topos, can be interpreted
equally as a sheaf on the topos with values in the category (Ab) of
abelian groups.

C) Interior and exterior operations ⊗Z and HomZ. In the first
place, I want to emphasize the basic tensor product operation

(15) (F, G) 7→ F ⊗Z G : Aab ×Aab→ Aab

between abelian group objects of the pseudotopos A, defined as usual
argumentwise as the solution of the universal problem, expressed by
the “Cartan isomorphism”

(16) HomAab
(F ⊗ G, H)' BilZ(F, G; H),

where we dropped the subscript Z in the tensor product, and where BilZ
or simply Bil denotes the set of maps F × G→ H which are “biadditive”
in the usual sense of the word. Thus, the existence of (15) just means, [p. 389]
by definition, that for any pair (F, G) of objects in Aab, the functor in H

H 7→ Bil(F, G; H)

is representable. It is clear that this functor commutes with small inverse
limits, hence by prop. 1 it is representable, provided we know that Aab
is a pseudo-cotopos (for instance, when A is a topos, in which case the
existence of tensor products is anyhow a familiar fact). The familiar
Bourbaki construction of a tensor product amounts on the other hand
to viewing F ⊗ G as a quotient of WhA(F × G) = Z(F×G) by suitable
“relations”, i.e., as the cokernel of a map in Aab

L1→ L0 =WhA(F × G),

where, as a matter fact, L1 can be described as

L1 =WhA(F × F × G)×WhA(F × G × G).
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Thus, if we know beforehand that cokernels exist in Aab (which would
indeed follow from Aab being a pseudotopos, but may be checked more
readily in terms of suitable exactness properties of A directly), plus
the existence of course of WhA, the tensor product functor (15) exists.
(On the other hand, no use is made here of the assumption that A be a
pseudotopos.)

Let’s assume the tensor product functor (15) exists. Then it is readily
checked it is associative and commutative up to canonical isomorphisms,
giving rise to the usual compatibilities. If moreover WhA exists, we
readily get the canonical isomorphism

(17) WhA(X × Y )
def
= Z(X×Y ) ∼←−WhA(X )⊗WhA(Y )

�def
= Z(X )⊗Z(Y )

�

,

compatible of course with the commutativity and associativity isomor-
phisms for the operations × and ⊗. If on the other hand A admits
moreover a final object (as it does if A is a pseudotopos and hence
stable under small direct limits), then

(18) ZA
def
= WhA(e) = Z(e)

is a two-sided unit for the tensor product operation.
In what follows, we are interested in categories of the type

(19) AM def
= Hom!(A,M), AN

def
= Hom!(Aop,N)

where now A is assumed to be a fixed pseudotopos, and M and N are [p. 390]
additive categories, M being moreover a pseudo-cotopos, N a pseudo-
topos. We assume moreover that WhA exists, and hence the categories
(19) can be interpreted up to equivalence, via (12) and (13), as

(19’) Hom!(Aab,M), Hom!(Aab
op,N).

Let’s remark that the dual of a category of one of the types (19) (or
equivalently, (19’)) is isomorphic to a category of the other type, more
accurately, by (6) we get

(20) Hom!(A,M)op ∼−→ Hom!(Aop,N),

i.e., (AM)op ∼−→ AN, with N = Mop. In case A is a topos, the objects
of the second category AN in (19) (or equivalently, in (19’)) can be
interpreted as N-valued sheaves on the topos A, whereas the object
of the first, AM, may be called, correspondingly, cosheaves on A with
values in M. Thus, in virtue of (20), M-valued cosheaves on A can be
interpreted as scrN = Mop-valued sheaves on A, the corresponding
categories of cosheaves and sheaves being however dual to each other.
In the next subsection D), when A = Aˆ, we’ll interpret moreover M-
valued cosheaves on A (or on A, as we’ll call them equivalently) as
M-valued sheaves on the (topos associated to the) dual category B = Aop,
and in this context the difference between the categories of cosheaves
and of sheaves (which for the time being appear as categories dual to
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each other) will disappear altogether, provided we allow the ground
topos A to change (from A= Aˆ to the “dual” topos B= Bˆ).

In terms of the expressions (19’) of the category of “cosheaves” and
“sheaves” we are interested in, we want now to define an external
operation of the fixed category Aab on those categories, using the tensor
product operation (15) in Aab. What is needed visibly for this end is
that for fixed F , the functor

(21) G 7→ F ⊗ G

from Aab to itself should commute with small direct limits – hence
composing it with a functor L in Hom!(Aab,M) will yield a functor in
the same category, which will be the looked-for external tensor product
F þ L, i.e.,

(22) F þ L(G) = L(F ⊗ G),

which we may write more suggestively as

(22’) G ∗ (F þ L) = (G ⊗ F) ∗ L,

with the notation

(23) H ∗ L
def
= L(H), for H in Aab, L in AM = Hom!(A,M),

which will be convenient mainly in the context of the next subsection [p. 391]
(when A is of the type Aˆ).

The exactness property needed for the functor (21) is equivalent with
the property that for any object H in Aab, the functor

G 7→ Hom(F ⊗ G, H)' Bil(F, G; H)

from Aab
op to (Sets) commute with small inverse limits. As Aab is a

pseudotopos (prop. 2), this is equivalent by prop. 1 with this functor
being representable. By definition of Bil, we get

Bil(F, G; H)' HomAâb
(G,HomZ(F, H)),

where the object

(24) HomZ(F, H)

is taken in the category of presheavesAâb (cheating a little with universes
here. . . ). To sum up, the condition we want for (21) just boils down to
the representability of the abelian group objects (24) in Aâb, for any two
objects F, G in Aab, i.e., essentially to the existence of “internal Hom’s”
in the category Aab (endowed with the tensor product ⊗Z), satisfying
the familiar Cartan isomorphism formula

(25) Hom(F ⊗ G, H)' Hom(G,Hom(F, H)).

To sum up, what is needed for a nice formalism of interior and exte-
rior tensor products and Hom’s for “sheaves” and “presheaves” on the
pseudotopos A, are the following assumptions on A:
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1) Tensor products and corresponding internal Hom’s exist in Aab,
and

2) the abelianization functor WhA (15) exists,
the latter assumption being needed in order to feel at ease with the
equivalence between the categories (19) of sheaves and cosheaves, and
their “abelianized” interpretations (19’).

Under these assumptions, we define the exterior tensor product oper-
ation of Aab upon a category of cosheaves AM

(26) Aab ×AM→ AM, (F, L) 7→ F þ L,

by formula (22) (which may be written also under the form (22’)). This
operation has the obvious associativity property

(27) F þ (Gþ L)' (F ⊗ G)þ L,

and moreover the unit ZA for the internal tensor product in Aab opera-
tors on AM as the identity functors, i.e., [p. 392]

(28) ZA þ L ' L.

Using the tautological duality relation (20) between categories of
cosheaves (with values in M) and categories of sheaves (with values in
N =Mop), we deduce accordingly an associative and unitary operation
of Aab on any category of the type AN, namely N-valued sheaves on A.
This operation is most conveniently denoted by the Hom symbol

(29) (F, K) 7→ Hom(F, K) : Aab
op ×AN→ AN,

its explicit description in terms of K , viewed as a functor

K : Aab
op→ N

is by

(30) Hom(F, L)(G) = K(G ⊗ F)

for K in AN, F and G in Aab. This may be written more suggestively as

(30’) Hom(G,Hom(F, L))' Hom(G ⊗ F, K),

similar to (22’), where we use the notation Hom (non-bold!) in analogy
[In the typescript this parentheti-
cal remark says “non-underlined!”,
as internal Hom’s there are under-
lined rather than in boldface.]

to (23) for denoting K(H), namely

(31) Hom(H, K)
def
= K(H).

If confusion is feared, we may put a subscript Z in all Hom’s and Hom’s
just introduced, as well as in the internal and external tensor product
operations ⊗, ∗, þ.
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Comments. Take for instance

N = (Ab), hence AN ' Aab

by prop. 1 (compare (14)). By this equivalence, the Hom in (31) is just
the usual Hom set corresponding to the category structure of Aab (the
Hom endowed moreover with the structure of abelian group, coming
from the fact that Aab is an additive category), whereas formula (30’)
shows that the “external” Hom in this case is nothing but the usual
internal Hom as contemplated in (24). This I hope will convince the
reader of the adequacy of the notation used (in case of exterior oper-
ation of abelian sheaves on N-valued sheaves), and of the convention
(31). We would like to give a similar justification for the notations (22)
(23) used in connection with operation of abelian sheaves on M-valued
emphcosheaves, by interpreting this as the internal tensor product oper-
ation in Aab, for suitable choice of N. This I am afraid cannot be done
for an arbitrary A satisfying our assumptions, even when A is a topos [p. 393]
and even when it is of the special type Aˆ, as I do not know of any M

such that

(*) AM ' Aab.

However, in case A = Aˆ, introducing the dual category B = Aop and
B= Bˆ, we get (see D) below)

(**) AM u BM u Bab if M= (Ab),

hence we do get a canonical isomorphism (*) provided A = B say
and hence A = B. Let’s look at any rate at the simplest case, namely
when A is a final object in (Cat), hence A can be identified with (Sets),
and Aab with (Ab), the identification between the categories (Ab) and
Hom!((Ab), (Ab)) being obtained (we hope!) by associating to every
object L in (Ab), the functor

F 7→ L ⊗ F : (Ab)→ (Ab).

This being so, the external operation (22) of (Ab) on Hom! u (Ab) can
be interpreted (using this identification) as the interior tensor product
operation in (Ab). On the other hand, the operation ∗ of (23) is equally
interpreted as nothing but the tensor product in (Ab), which justifies
the notation suggesting a tensor product. It would be nice checking
corresponding compatibilities for a general object A in (Cat) satisfying
A= Aop, namely a direct sum of one-object categories Ai defined each in
terms of a commutative monoid Mi – I didn’t work it out myself, sorry!

It should be noted that the relationship between the two exterior
Hom’s in (29) and (31) is essentially the same as between the two
exterior tensor-type operations (26) and (23), Hom(F, K) designating
an object in N and Hom(F, K) an N-valued sheaf on A, just as F ∗
L designates an object in M and F þ L an M-valued cosheaf on A;
the graphical device of bold-facing the symbol Hom (used for sheaves)

[in the typescript: underlining]corresponds to the device of circling the symbol ∗ (used for cosheaves).
With this luxury of explanations, I hope the notations introduced here
are getting through. . .
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12.8. and 13.8. [p. 394]

105 Let’s go on with the overall review of abelianization. Review (2): duality equivalences for
“algebraic” topoi and abelian topoi.

D) Duality for topoi of the type Aˆ, and tentative generalizations.
The main fact, it seems, which will give rise to duality statements for
topoi of the type Aˆ is the following, rather familiar one:

Proposition 3. Let A be a small category, M a U-category stable under
small direct limits,

(32) εA : A ,→ Aˆ

the canonical inclusion functor. Then the following functor is an equivalence
of categories:

(33) F 7→ F ◦ εA : Hom!(Aˆ,M)→ Hom(A,M).

As I am at a loss to give a reference for this standard fact of category
theory, I’ll give in guise of a proof the indication that a quasi-inverse
functor for (33) is given by the familiar construction

(34) i 7→ i! : Hom(A,M)→ Hom!(Aˆ,M),

where for any functor
i : A→M,

the functor
i! : Aˆ→M

is defined by the formula

(35) i!(F) = lim−→
a in A/F

i(a).

It is readily checked (and we have already used a number of times) that
this functor admits a right adjoint

(36) i∗ : M→ Aˆ, i∗(x) = (a 7→ Hom(i(a), x)),

and hence i! commutes to small direct limits, i.e., is in Hom!(Aˆ,M),
hence (34).

Remark. If M is a pseudotopos, then by prop. 3 above and by corollary
2 of prop. 1 (p. 385) the functor

(37) i 7→ i∗ : Hom(A,M)→ Hom!(M, Aˆ)

(which in any case is fully faithful) is equally an equivalence of cate-
gories.
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The equivalence (33) of prop. 3 can be interpreted by saying that the [p. 395]
canonical functor (32) from A to Aˆ is 2-universal, for functors of A into
U-categories stable under small direct limits, taking as “maps” between
such categories functors which commute to small direct limits. Thus,
the U-category Aˆ may be viewed as “the” category deduced from A by
adding arbitrary direct limits (disregarding the direct limits which may
perchance already exist in A. . . ).

Taking the duals of the two members of (33), we get an equivalent
statement of prop. 3:

Corollary 1. Let N be a U-category stable under small inverse limits. Then
the functor

(38) F 7→ εop
A : Hom!(Aˆop,N)→ Hom(Aop,N)

is an equivalence of categories.

In terms of the topos
A= Aˆ,

we may interpret the left-hand side of (33) as the category of M-valued
cosheaves on this topos, which by prop. 3 can be interpreted (up to
equivalence) as the category of functors from A to M. Dually, the left-
hand side of (38) can be viewed as the category of N-valued sheaves on
the topos A, which (via the right-hand side) can be interpreted up to
equivalence as the category of functors Aop→ N, i.e., as the category of
N-valued presheaves on A. As A endowed with the coarsest (“chaotic”)
site structure is a generating site for the topos A, the equivalence (38)
may be viewed as a particular case of the familiar fact, according to
which (up to equivalence) the category of N-valued sheaves on a topos
can be constructed in terms of N-valued sheaves on any U-site defining
this topos. (When the site structure is chaotic, then those sheaves are
just arbitrary N-valued presheaves.)

Assume now that the U-category M is stable under both types of small
limits (direct and inverse). Then applying (33) for (A,M) and (38) for
(B,M) where B = Aop, we get an equivalence

(39) δM
A : Hom!(Aˆ,M) ≈−→ Hom!(Bˆop,M),

i.e. (as announced in yesterday’s notes, p. 390), we get:

Corollary 2. Let A be a small category, B = Aop the dual category, M any
U-category stable under small direct and inverse limits. Then the category
of M-valued cosheaves on the topos Aˆ is equivalent to the category of [p. 396]
M-valued sheaves on the topos Bˆ.

This equivalence, defined up to unique isomorphism, is deduced from
the diagram of canonical equivalences

(40)
Hom!(Aˆ,M)

def
= (Aˆ)M (Bˆ)M

def
= Hom!(Bˆop,M)

Hom(A,M) Hom(Bop,M)

≈ ≈

,
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and depends upon the choice of a quasi-inverse of the second vertical
equivalence in (40) (which choice can be made, via the dual of (35),
via the choice of small inverse limits in M).

Remark. It is felt that the way we got the equivalence (39) via (40),
the role of A and B in it is symmetric. To give a more precise statement,
consider the equivalence deduced from (39) by passing to the dual
categories of the two members – using the tautological isomorphisms
(6) of page 385, we get an equivalence

(39’) (δM
A )
′ : Hom!((Aˆ)op,N) ≈−→ Hom!(Bˆ,N), where N =Mop;

this equivalence is canonically quasi-inverse to the equivalence δN
B in

opposite direction, associated to the pair (B,N =Mop) instead of (A,M).

In the rest of this subsection D), we’ll elaborate on some particular
cases of the equivalence (39) between cosheaves and sheaves.

Case 1o
¯). Assume M = (Sets), then by prop. 1 (p. 384) the right-

hand side of (39) is canonically equivalent to Bˆ itself, hence we get an
equivalence

(41) Bˆ ≈−→ Hom!(Aˆ, (Sets)).

If we want to keep track of the symmetry aspect described in the remark
above, we may consider the functor (41) as being deduced from a
canonical “pairing” between the categories Aˆ and Bˆ

(42) δA : Aˆ × Bˆ→ (Sets),

which is an object in

Hom!!(Aˆ, Bˆ; (Sets)),

i.e., which commutes to small direct limits in each variable. (For this
interpretation, compare the dual statement contained in formula (7)
of page 385 – and note that (41), being an equivalence, commutes to
small direct limits, i.e., is in a category Hom!(Bˆ,Hom!(Aˆ, (Sets))).)
This pairing gives rise, in a symmetric way, to the functor (41) (which [p. 397]
is an equivalence) and to a functor

(41’) Aˆ ≈−→ Hom!(Bˆ, (Sets))

which (it turns out) is none other (up to canonical isomorphism) than
(41) with B replaced by A (and hence A replaced by B), and therefore is
equally and equivalence. Thus, the pairing (42) between the two topoi
Aˆ and Bˆ has the remarkable property that it defines an equivalence of
each of these topoi with the category of (set-valued) cosheaves on the other.
I do not know of any other example of a pair of topoi related in such a
remarkable way, which we may express by saying that the two topoi are
“dual” to each other.

We still have to give an explicit expression for the pairing (42), plus
a convenient notation. I’ll write

(43) δA(F, G)
def
= F ∗ G for F in Aˆ, G in Bˆ,
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and I’ll use the canonical equivalence (valid for any pair of small cat-
egories A, B – not necessarily dual to each other – and any U-category
stable under direct limits), deduced by twofold application of prop. 3,
plus the tautological isomorphism similar to (7) p. 385:

(44) Hom!!(Aˆ, Bˆ;M) ≈−→ Hom(A× B,M), F 7→ F ◦ (εA× εB),

which shows that (42) is known up to canonical isomorphism when we
know its restriction to the full subcategory A× B = A× Aop, identifying
as usual an object a of A to its image in Aˆ, and similarly for B. If b is
an object of A, we’ll denote by bop the same object viewed as an object
of Aop = B. With these conventions (including (43)) we get the nice
formula

(45) a ∗ bop = HomA(b, a) ( = HomB(a
op, bop)), for a, b in A,

which has the required symmetry property – which, for general objects
F in Aˆ and G in Bˆ, can be stated as a bifunctorial isomorphism

(46) F ∗ G ' G ∗ F,

where the operation ∗ in the first member refers to the pair (A, B), and
in the second to the pair (B, A).

From (45) we easily deduce the more general formula for F ∗G, when
either F or G is in A resp. B, namely [p. 398]

(47) a ∗ G ' G(a), F ∗ bop ' F(b).

Remarks. We are mainly interested here in abelianization and (commu-
tative) homology and cohomology, and hence in sheaves and cosheaves
with values in additive (even abelian) categories, we are not going to
use for the time being the relationship between Aˆ and Bˆ just touched
upon. We could elaborate a great deal more on it, for instance intro-
ducing a canonical pairing (more accurately, a bi-sheaf) with opposite
variance to (42)

(48) Aˆop × Bˆop→ (Sets)

(or what amounts to the same, canonical functors adjoint to each other

Aˆop→ Bˆ, Bˆop→ Aˆ ),

deduced (via the equivalence dual to (44)

Hom!!(Aˆop, Bˆop;N) ≈−→ Hom(Aop × Bop,N) )

from the co-pairing

Aop × Bop = B × A→ (Sets)

given by
(bop, a) 7→ Hom(b, a) (for a, b in A).
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The two pairings (42) and (48) can be given a common interpretation
as Hom-sets in a suitable category

E= E(A),

which is the union of the two full subcategories Aˆ and Bˆop (which
may be interpreted as deduced from A by adjoining respectively small
direct and small inverse limits to it) intersecting in the common subcat-
egory A, the Hom-sets in the two directions between an object F of Aˆ
and an object Gop of Bˆop (corresponding to an object G of Bˆ) being
given respectively by the pairings (48) and (42). The full relationship [unreadable footnote]
between these pairings is most conveniently expressed, it seems, by the
composition law of maps in E(A), and associativity for this law. The
symmetry of the situation with respect to the pair (A, B) is expressed by
the canonical isomorphism of categories

E(A)op ' E(B) (where B = Aop).

Case 2o
¯). Of direct relevance for the abelianization story is the par-

ticular case of the equivalence (39), obtained by taking

M= (Ab).

Using formula (12) (page 387) for the pair (Aˆ, (Ab)) and formula (14)
for Bˆ in guise of A, we get the canonical equivalence [p. 399]

(49) Bâb
≈−→ Hom!(Aâb, (Ab)),

which should be viewed as the “abelian” analogon of the equivalence
(41) above (corresponding to the case M = (Sets)). This equivalence
again may be viewed as described (in analogy to (45)) by a canonical
pairing

(50) Aâb × Bâb→ (Ab),

which commutes to small direct limits in each variable, i.e., can be
viewed as an object in the category of “abelian bi-cosheaves”

(*) Hom!!(Aâb, Bâb; (Ab)),

and gives rise simultaneously to the equivalence (49), and to the sym-
metric equivalence

(49’) Aâb
≈−→ Hom!(Bâb, (Ab))

of the category of abelian sheaves on Aˆ with the category of abelian
cosheaves on Bˆ (which is just (49) with A replaced by B, up to canonical
isomorphism at any rate).

Using the equivalence

(51) Hom!!(Aâb, Bâb; (Ab)) ≈−→ Hom(A× B, (Ab))
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(which is a particular case of the evident abelian analogon of the equiv-
alence (44)), we see that the pairing (50) is described, up to canonical
isomorphism, by its composition with

(a, b) 7→ (WhAˆ(a),WhBˆ(b)) : A× B→ Aâb × Bâb,

and the latter, as is readily checked, is given by

(52) WhA(a) ∗ZWhB(b
op)' Z(Hom(b,a)) for a, b in A,

where we have written WhA instead of WhAˆ for brevity and accordingly
for B, and where the pairing (50) is denoted by the symbol ∗Z, in analogy
with the notation ∗ in (43), the index Z being added in order to avoid
confusion with the non-abelian case (43) (and the index being dropped
when no such confusion is to be feared). The formula (52) can be
written, with different notations

(52’) Z(a) ∗Z Z(b
op) ' Z(Hom(b,a)) for a, b in A.

Comparing with the similar formula (45), this suggests the generaliza-
tion

(53) WhA(F) ∗ZWhB(G)' Z(F∗G),

or with the exponential notation

(53’) Z(F) ∗Z Z(G) ' Z(F∗G),

valid for F in Aˆ and G in Bˆ. As both members of (53) commute with [p. 400]
small direct limits in each variable, the formula (53) follows from the
particular case (52), in view of the equivalence of categories (51).

Remarks. 1) In order to appreciate the significance of the pairing (50),
we may forget altogether about the non-additive categories Aˆ and
Bˆ, and view (50) as a remarkable “duality” relationship between two
additive U-categories, stable under small direct limits, say P and Q,
endowed with a “pairing”

P×Q→ (Ab) in Hom!!(P,Q; (Ab)),

giving rise to two functors which are equivalences

Q
≈−→ Hom!(P, (Ab)), P

≈−→ Hom!(Q, (Ab)),

identifying each of P, Q to the category of “abelian cosheaves” on the
other. In the particular case (50), P = Aâb and Q = Bâb with B = Aop,
each of these categories is even an “abelian topos” by which I mean
an abelian category P stable under small filtering direct limits, with
the latter being exact, and moreover P admitting a small generating
subcategory. (These categories are sometimes called, somewhat mis-
leadingly, “Grothendieck categories”. Of course, an “abelian topos” is
by no means a category which is a topos, besides being abelian!) There
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are many other examples of dual pairs of abelian topoi. One evident
generalization is by taking

P= Ak̂ , Q= Bk̂ , where again B = Aop,

where k is any commutative ring, and Ak̂
def
= A(̂k-Mod) is the category of

presheaves of k-modules on A, or equivalently, of objects in Aˆ endowed
with a structure of a k-module – and accordingly for the notation Bk̂ .
Indeed, the generalities B) and C) in yesterday’s notes about abelian
sheaves and cosheaves, as well as today’s, could be developed replacing
throughout abelian group objects and additive categories by k-module
objects and k-linear categories. In case k is not supposed commutative,
one still should get a duality pairing

Ak̂op × Bk̂ → (Ab),

where kop denotes the ring opposite to k (i.e., a duality pairing between
presheaves on A of right k-modules, and copresheaves on A of left k-
modules), given in terms of ∗Z in (50) by the formula [p. 401]

M ∗k N = (M ∗Z N)\,

where in the right-hand side P = M ∗Z N is viewed as a bi-k-module
via the right and left k-module structures on M and N respectively and
bifunctoriality of ∗Z, and where for any bimodule P, we write

P\
def
= P/sub-Z-module generated by elements of the

type s. x − x . s for x in P and s in k.

I confess I didn’t do the checking that this does give rise indeed to a
duality pairing as desired. When A= B = final category, then the pairing
above is just the pairing given by usual tensor product

(M , N) 7→ M ⊗k N

between right and left k-modules, which is immediately checked to be
dualizing indeed. More generally, posing

P= (kop-Mod), Q = (k-Mod),

it is immediately checked that for any additive category M stable under
small direct limits, we get a canonical equivalence

[Clearly, the “d” in kd is for “dexter”
(on the right), and the “s” below is
for “sinister” (on the left).]

Hom!(P,M) ≈−→ (k-M), F 7→ F(kd),

where (k-M) denotes the category of objects L of M endowed with a
structure of a “left k-module in M”, i.e., a ring homomorphism k →
EndM(L), kd denotes k viewed as a right k-module, and F(kd) is viewed
as an object of (k-M) via the operations of k on it coming from left
multiplication of k upon kd. A quasi-inverse equivalence is obtained by
associating to an object L in (k-M) the functor

M 7→ M ⊗k L : (kop-Mod)→M.



§105 Review (2): duality equivalences for “algebraic” topoi and . . . 364

Dually, we get an equivalence (if N stable under small inv. limits)

Hom!(Q,N) ≈−→ (k-N), F 7→ F(ks),

where ks denotes k viewed as a left k-module, so that the contravari-
ant functor F transforms the endomorphisms of ks (obtained by right
operation of k on ks via right multiplication) into a left operation of k
on F(ks); the quasi-inverse is given by the familiar Homk operation, it
associates to the left k-module L in M the functor

M 7→ Homk(M , L) : (k-Mod)→ N.

Comparing the two pairs of equivalences, we get the equivalence [p. 402]

(*) Hom!(scrP,M)u Hom!(Qop,M),

valid when M is stable under both (small) direct and inverse limits, and
which should be viewed as an abelian analogon of the equivalence (39).

2) It is well-known that an abelian topos P is equivalent to a cate-
gory (k-Mod), for a suitable ring k (not necessarily commutative) iff
it admits an object L which is a) generating, and b) “ultraprojective”,
i.e., the functor X 7→ Hom(L, X ) commutes to small direct limits. The
condition b) (for an object of an abelian category stable under small
direct limits or equivalently, under small direct sums) is equivalent with
L being: b1) projective, and b2) of “finite presentation”, i.e., the func-
tor X 7→ Hom(L, X ) commutes with small filtering direct limits. This
observation suggests one common feature of all the examples of abelian
duality pairings considered so far, namely that the abelian topoi under
consideration in the pairing have a small set of ultraprojective generators.
I don’t know if a structure theory of such categories (which are the
abelian analogons for topoi equivalent to topoi of the special type Aˆ,
with A in (Cat)) has been worked out yet. I didn’t do it at any rate –
but the natural thing to expect is that these abelian topoi P (which we
may call “algebraic” ones, just as an ordinary topos equivalent to one
of the type Aˆ may be called “algebraic”, which equally means that the
set of ultraprojective objects in it is generating. . . ) are exactly those
equivalent to a category of the type

Homadd(Pop, (Ab)),

where P is any small additive category, and where Homadd denotes
the category of additive functors from one additive category to another.
Instead of assuming P small, we may as well take P merely “essentially
small”, i.e., equivalent to a small category, with the benefit that for a
given P, there is a canonical choice of an additive category P together
with an equivalence

P
≈−→ Homadd(Pop, (Ab)),

namely by taking

P = full subcategory of P made up with all ultraprojective
objects in P.
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As we saw earlier, in case P = Aâb, P is nothing but the abelian Karoubi
envelope of the category A, namely the Karoubi envelope of the additive
category Add(A) (cf. sections 93 and 99). Another choice for P in this
case would be just Add(A) itself, whose objects are more amenable to
computations. [p. 403]

Associating to any small [additive] category P the algebraic abelian
topos Homadd(Pop, (Ab)) should be viewed of course as the abelian
analogon of A 7→ Aˆ, associating to a small category A the corresponding
algebraic topos. It merits a notation of its own, say

P& def
= Homadd(Pop, (Ab)),

and as in the non-additive case, we get a canonical inclusion functor

εP : P → P&

which is additive. (Its composition with the canonical functor P&→ Pˆ
is the canonical inclusion previously denoted by εP too from P to Pˆ.)
Next thing we’ll expect, in analogy to prop. 3, is that for any additive
category M stable under small direct limits, the following canonical
functor is an equivalence of categories:

(**) Hom!(P
&,M) ≈−→ Homadd(P,M), F 7→ F ◦ εP .

The proof, via construction of a quasi-inverse functor, should be about
the same as for prop. 3, which should go through once we get the abelian
analogon of the well-known fact in Aˆ, that any object F in Aˆ can be
recovered as a direct limit in Aˆ of objects of A, according to A/F as an
indexing category – which makes us expect that we get too:

F ∼←− lim−→
a in P&

/F

a (direct limit in P&).

From (**) we get as in cor. 1, passing to the dual categories, the dual
equivalence

Hom!(P&op
,N) ≈−→ Homadd(Pop,N),

valid if N is an additive category stable under small inverse limits. Hence,
if M is additive and stable under both types of limits, the equivalence

(***) Hom!(P
&,M) ≈−→ Hom!(Q&op

,M), with Q = Pop,

between abelian cosheaves on P& and abelian sheaves in Q&, with values
in the same additive category (in analogy to (39)). In the particular
case M= (Ab), this then gives rise to the equivalence

Q& u Hom!(P
&, (Ab))

and to the corresponding pairing

P& ×Q&→ (Ab)
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which is a duality, namely induces an equivalence between each abelian
topos P&, Q& and the category of abelian cosheaves on the other. [p. 404]

We may call an abelian topos “reflexive” if it can be inserted in a pair
(P,Q) of dually paired abelian topoi – where Q, or the “dual” of P, is
defined up to equivalence in terms of P as Hom!(P, (Ab)), the category
of cosheaves on P with values in (Ab). Thus, it seems that a sufficient
condition for reflexivity is “algebraicity” of P, namely the existence of a
small generating family made up with ultraprojective objects. (NB In
the non-abelian case, it is well-known that a topos A is “algebraic”,
i.e., equivalent to a topos Aˆ, iff it admits such a generating family –
and as we saw in 1o

¯), as a consequence of (39) for M= (Sets), such a
topos is indeed “reflexive”.) I wouldn’t be too surprised if this sufficient
condition for reflexivity turned out to be necessary too, at any rate if
we want a property stronger still than reflexivity, namely validity of
a duality equivalence (***) for sheaves and cosheaves with values in
an arbitrary additive U-category stable under small direct and inverse
limits, satisfying (for varying M) suitable compatibility assumptions.

3) With respect to this duality equivalence (***), I am a little unhappy
still, as I do not see how to get (for a general dual pair P, Q of abelian
topoi) a functor i one direction or the other between the two categories

Hom!(P,M), Hom!(Qop,M),

in terms of just the duality pairing. The same perplexity holds in the
non-abelian case. This is one of the reasons that make me feel that I
haven’t yet a thorough understanding of the duality formalism I am
developing here, except in the “algebraic” case (granting for the latter
that the tentative theory just outlined for algebraic abelian topoi is
indeed correct).

4) To finish with the comments on the (pre-homological) duality for-
malism for algebraic topoi and algebraic abelian topoi, I still would like
to add that the category E(A) (union of Aˆ and Bˆop, with B = Aop) intro-
duced in 1o

¯) (cf. remark on page 398) admits also an abelian analogon.
In the non-abelian case still, the simplest way to construct the category
E(A), is via an equivalent category canonically embedded in the category
Hom(Bˆ, (Sets)) as a strictly full subcategory (“strict” referring to the
fact that with any object it contains all isomorphic ones), namely the
union E(A) of the (strictly full) subcategories Hom!(Bˆ, (Sets)) (equiva- [p. 405]
lent to Aˆ) and the subcategory of representable functors (equivalent
to Bˆop). The intersection of these two categories contains of course

[There seems to be another unread-
able footnote here. . . ]

A (embedded in Hom(Bˆ, (Sets)) by associating to a in A the functor
G 7→ G(a) from Bˆ = Hom(A, (Sets)) to (Sets)), but in general need not
be quite equivalent to A – it turns out to be the “Karoubi envelope” of
A, obtained by adjoining to A formally images (or equivalently, coim-
ages) of projectors in A. The more immediate interpretation of this
intersection, is that it is equivalent to the dual category of the category
of ultraprojective objects in Bˆ (and the latter can be viewed as Kar(B),
but formation of the Karoubi envelope up to equivalence commutes to
taking dual categories. . . ). All these constructions immediately extend
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to the abelian set-up, starting with a small additive category P, instead
of A.

After this endless procession of remarks, which are really digressions
for what we’re after (namely abelianization and duality in the context of
small categories as homotopy models), it is time to resume our main line
of thought in this subsection, namely looking at interesting particular
cases for the general duality relation (39).

Case 3o
¯). This is the case when M is an additive category, stable

under both types of small limits. If we assume moreover that M and
Mop are both pseudotopoi, using the equivalences (12) and (13) (p.
387), (39) may be interpreted as an equivalence

(54) Hom!(Aâb,M)u Hom!(Bâb,M),

interpreting M-valued cosheaves on the abelian topos Aâb in terms of
M-valued sheaves on the dual abelian topos Bâb, as anticipated in a
more general situation in the remark above (cf. formula (***) on page
403). There, however, the assumption that M and/or Mop should be
pseudotopoi didn’t seem to come in at all, so we expect this condition
to be irrelevant indeed. This will of course follow, if the same holds for
(12) (hence by duality for (13)), namely that the canonical functor

(55) Hom!(Aâb,M) ≈−→ Hom!(Aˆ,M), F 7→ F ◦WhA,

is an equivalence, under the only assumption that the additive category
M is stable under small direct limits (without assuming that M be a
pseudotopos). The line of thought of the remark 2 above suggests a
way for proving this, via an equivalence [p. 406]

(56) Hom!(Aâb,M) ≈−→ Homadd(Add(A),M), F 7→ F ◦ jA,

where
jA : Add(A)→ Aâb

is the canonical inclusion functor (cf. section 97). This, and the dual
equivalence (deduced from (55), taking N =Mop)

(57) Hom!(Aâb
op,N) ≈−→ Homadd(Add(A)op,N),

valid for any additive category stable under small inverse limits, will
immediately imply an equivalence (54) by a direct argument as in the
remark above, without passing through the non-abelian case (39). At
any rate, (56) implies that (55) is an equivalence, as is seem by looking
at the commutative diagram

(58)

Hom!(Aˆ,M)

Hom!(Aâb,M) Hom(A,M)

Homadd(Add(A),M) ,
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where the two right-hand arrows are equivalences, which implies that
one of the two left-hand arrows is an equivalence iff the other is.

Thus, for getting (54) and (55) without extraneous assumptions on
M, we are left with proving (56). Now, writing

P= Aâb, P = Add(A),

we do have indeed an equivalence

Pu P& def
= Homadd(Pop, (Ab)),

as seen from (57) taking N = (Ab) (which satisfies the extra assump-
tions). So we may as well prove (56) in the more general case when
P is any small additive category and P is defined as P&, namely prove
the equivalence (**) of page 403 above, as I don’t expect the particular
case at hand here to be any simpler. The suggestion for a proof there
there seems convincing, I guess I should check it works during some
in-between scratchwork. . .

14.8. and 15.8 [p. 407]

106 E) A formulaire around the basic operations ∗ and Hom. I would Review (3): A formulaire for the ba-
sic integration and cointegration op-
erations ∗ and Hom.

like to dwell a little more still on the duality formalism weaving around
formula (39) (p. 395), stating that for two given small categories A and
B dual to each other

B = Aop, A= Bop,

and any U-category M stable under both types of small limits, M-valued
cosheaves on Aˆ may be interpreted as M-valued sheaves on the dual
topos Bˆ. This identification preserves variance (i.e., (39) is an equiva-
lence of categories, not an antiequivalence:

(59) (Aˆ)M = Hom!(Aˆ,M) ≈−→ Hom!((Bˆ)op,M) = B
M̂

).

It should not be confused with the tautological interpretation of M-
valued cosheaves on Aˆ as Mop-valued sheaves on the same topos, an
identification reversing variance, as expressed by the canonical antiequiv-
alence between the corresponding categories – an anti-isomorphism
even (reflecting its tautological nature):

(60) Hom!(Aˆ,M)op ∼−→ Hom!((Aˆ)op,Mop), i.e., ((Aˆ)M)op ∼−→ A
M̂

.

In the latter formula, the basic topos Aˆ remains the same in both
sides, it is the category of values that changes from M to the dual
one Mop, whereas in formula (59) = (39), it is the opposite. In terms
of the tautological formula (60) (a particular case of formula (6) p.
385), the not-so-tautological formula relating cosheaves and sheaves
can be reformulated as a formula in terms of sheaves only (due to our
preference for sheaves rather than cosheaves. . . ):

(61) Hom!(Aˆ,M)op u Hom!(Bˆ,Mop), i.e., (A
M̂
)op u B

M̂op ,
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namely M-valued sheaves on the topos Aˆ can be interpreted as sheaves
on the dual topos with values in the dual category Mop, this interpreta-
tion reversing variances. In the homology and cohomology formalism
which is to follow, due to habits of long standing, I prefer systematically
to take as coefficients sheaves rather than cosheaves – hence rule out
cosheaves in favor of sheaves via (60). From this point of view the
relevant basic duality statement is (61) rather than (59).

On the cosheaves side, yesterday’s diagram (58) of equivalences gives
a fourfold description of cosheaves on the topos Aˆ with values in an
abelian category M stable under small direct limits. We could still
enlarge this diagram, by including in it a fifth category equivalent to [p. 408]
the four others, namely

Homaddinf(Addinf(A),M),

the category of infinitely additive functors from the infinitely additive
envelope of A into M (cf. section 99 p. 366 for description of the category
Addinf(A)). Rather than writing down the larger diagram here, I’ll write
down the dual enlarged one, for the dual topos Bˆ and for various
expressions of the category of sheaves on this topos, with values in a
category M stable this time under small inverse limits:

(62)

Hom!((Bˆ)op,M)

Hom!((Bâb)
op,M) Hom(Bop,M)

Hommultinf(Addinf(B)op,M) Homadd(Add(B)op,M)

≈≈

≈

≈

≈

,

where Hommultinf denotes the category of “infinitely multiplicative”
functors from one additive category stable under infinite products to
another. Recalling for the extreme right term of (62) that Bop = A, we
see that this term is identical to the corresponding term in the diagram
(even the enlarged one) (58) – hence, if M is stable under both types
of limits, the ten categories occurring altogether in the two diagrams
are mutually equivalent (as a matter of fact, there are nine only which
are mutually different). It may be noted that there is still another pair
of corresponding terms in the two diagrams for which the equivalence
between them may be viewed as tautological, namely

Homadd(Add(A),M)u Homadd(Add(B)op,M),

due to the tautological equivalence of categories

Add(B)op u Add(Bop) = Add(A).

As emphasized in yesterday’s notes, the canonical pairing (deduced
from (59) by taking M= (Ab))

(63) Aâb × Bâb→ (Ab), (F, G) 7→ F ∗Z G,
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deserves special attention, giving rise to an equivalence between each
of the mutually dual abelian topoi Aâb, Bâb with the category of abelian
cosheaves on the other

(64) Bâb
≈−→ Hom!(Aâb, (Ab)), Aâb

≈−→ Hom!(Bâb, (Ab))

(cf. (49) and (49’) page 399). It should be kept in mind that besides
this duality pairing between two abelian topoi, there is important extra [p. 409]
structure in this abelianized duality context, embodied by the tensor
product structure on both abelian topoi Aâb and Bâb, as contemplated in
section 104 C), in a somewhat more general context. Corresponding
to this extra structure on Aâb say, we saw that this category of abelian
sheaves “operates” covariantly (by an operation denoted byþZ or simply
þ) on any category of M-valued cosheaves on Aâb, and contravariantly
(by an operation denoted by HomZ or simply Hom, if no confusion may
arise) on any category of N-valued sheaves on Aâb, where M, N are
additive categories, stable under small direct resp. inverse limits. The
latter operation (cf. page 392)

(65) (L, K) 7→ HomZ(L, K) : (Aâb)
op × A

N̂
→ A

N̂
,

involving sheaves, will be used in the sequel “tel quel”, its definition is
[“tel quel” = “as is”]of a tautological character, independent of duality. As for the former

operation involving cosheaves, we may view it via the duality relation
(59) as an operation of Aâb on M-valued sheaves on the dual abelian
topos Bâb, and this operation will be denoted by the same symbol þZ:

(66) (L, M ′) 7→ LþZ M ′ : Aâb × B
M̂
→ B

M̂
.

Replacing A by B in (66), we get an operation of Bâb upon A
M̂

,

(67) (M , L′) 7→ M þZ L′ : A
M̂
× Bâb→ A

M̂
.

Whenever convenient, we’ll allow ourselves to write L′ þM instead of
M þ L′ (which doesn’t seem to lead to any trouble), and will henceforth
(unless special need should arise) drop the subscripts Z.

Thus, for a given category A
M̂

of M-valued sheaves on Aâb, there is
a twofold operation on this category, namely Aâb itself operates (the
operation defined by L in Aâb depending contravariantly on L) as well as
the dual abelian topos Bâb (the operation defined by L′ in Bâb depending
covariantly on L′), M being any additive category stable under small
inverse and direct limits (in order to ensure existence of both types of
operations). I would like to dwell a little more on this twofold structure,
as I don’t feel to have understood it thoroughly yet. It is this second
operation mainly which hasn’t become really familiar yet, still less its
relationship to the first, more familiar operation is understood. I’ll have [p. 410]
to play around a little more with it for being really at ease. It’s worth
the while, as the Hom and corresponding Hom operation is the key
operation for expressing cohomology of Aˆ (with coefficients in K),
where the þ and corresponding ∗ operation is the key for expressing
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homology of Aˆ (with coefficients in M , where K and M are the sheaves
occurring in (65) and (67) respectively).

A typical special case is the one when A is the final category, hence
B = A and A

M̂
'M, in which case (65) and (67) are the two familiar

exterior operations of (Ab) on any additive category stable under the
two types of small limits

(L, X ) 7→ HomZ(L, X ) : (Ab)op ×M→M,

and
(X , L) 7→ X ⊗Z L : (Ab)×M→M,

each one of these two operations being deducible from the other by
the usual device of replacing M by the dual category Mop. When M=
(Ab), these are just the usual internal Hom= Hom and tensor product
operations. This very particular case shows at once that we shouldn’t
expect in general the operations HomZ(L,−) of Aâb and − ∗ L′ of Bâb
upon A

M̂
to commute up to isomorphism – we shouldn’t expect, for a

given L in Aâb or a given L′ in Bâb the commutation relation to hold,
except when this object is “projective of finite presentation”, i.e., is a
direct factor of an object of Add(A) resp. of Add(B)u Add(A)op. Another
fact becoming evident by this particular case, is that whereas it is true
that in the equivalence (64)

Bâb u Hom!(Aâb, (Ab))

a projective object L′ in Bâb gives rise to a functor Aâb→ (Ab) which is
exact (besides commuting to small direct limits) – and even to a functor
commuting to small inverse limits if L′ is ultraprojective, i.e., projective
and of finite presentation – the converse to this (as contemplated on
page 381) does not hold true. Indeed, in the particular case A= 0,
when L′ is just an object in (Ab), the exactness property envisioned, i.e,
exactness of the functor M 7→ M ⊗Z L′ from (Ab) to itself, only means
that L′ is a flat Z-module (i.e., torsion-free), which does not imply that
it is projective (i.e., free).

The feeling I had earlier today, that the familiar looking operation [p. 411]
(65) Hom(L, K) of abelian sheaves on Aˆ upon M-valued ones (M an
additive category stable under small inverse limits) was well-understood,
whereas the less familiar one M ∗ L′ in (67) was not, turns out to be
mistaken. In computational terms, and writing F for K in (65) and M
in (67), the three basic data

F in A
M̂

, L in Aâb, L′ in Bâb

should surely be interpreted as just functor

(68) F : Aop→M, L : Aop→ (Ab), L′ : Bop = A→ (Ab),

and the practical question of “computing” Hom(L, F) or F þ L′ thus
amounts to describing, directly in terms of these data, the corresponding
objects in A

M̂
as again a functor

Hom(L, F) or F þ L′ : Aop→M.
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It would seem that neither of the two can be expressed in simplistic
computational terms, via the data (68). I feel I have to come to terms
with this fact and get as close as I can to an explicit expression of
both. The point I want to make first, is that this question of expressing
Hom(L, F), or of expressing the operation Fþ L′, is essentially the same,
via replacement of M by Mop, and mere interchange of A and B. More
accurately, passing from F to the corresponding functor Fop between
the dual categories, we may view the data (68) as being functors

(68’) Fop : Bop→ N, L′ : Bop→ (Ab), L : Aop→ (Ab)
(where N =Mop),

i.e., a set of data like (68), with (A,M) replaced by the dual pair (B,N).
This being understood, we have the tautological isomorphisms

(69)

¨

Hom(L, F)op ' Fop þ L
(F þ L′)op ' Hom(L′, Fop) ,

where the first members involve operations relative to the pair (A,M),
the second members operations relative to the dual pair (B,N). This
makes very clear, it seems to me, that the operations Hom (65) and
þ (67) may be viewed as the same type of operation, simply viewed
with two different pairs of spectacles – one being (A,M), the other the
dual pair (B,N). Thus, if we got a good understanding of one of the
two operations, embodied by a comprehensive formulaire for it, by just

[I’m leaving in “formulaire” (form),
even though “formula” seems to
work better. . . ]

dualizing we should get just as good a formulaire and corresponding
comprehension for the dual operation.

Now, it is clear indeed that it is the operations (65) which is closer to

[p. 412]my experience, it makes sense however, independently of any duality
statements, in the vastly more general context of topoi A (or even only
pseudotopoi satisfying some mild extra conditions, cf. section 104 C))
instead of just Aˆ, provided we make on M the mild extra assumption
of being a pseudotopos, needed in this more general context in order to
ensure equivalence between the category AM of M-valued sheaves, and
the category Hom!(Aab

op,M) (compare (13) p. 388). What I should do
then is, first to write down a basic “formulaire” for the Hom operation
in this general and familiar context, then see how it can be used for
clarifying the computational puzzle raised on the previous page, in
the case of the Hom operation, and finally dualize the formulaire and
computational insight, for getting a hold on the dual operation þ.

We’ll need too the Hom operation (non-bold-face) of (31) p. 392

(70) (L, F) 7→ Hom(L, F) : Aab
op ×AM→M,

with values in M, not AM, where Hom(L, F) denotes the value on L of
the functor

eF : Aab
op→M

defined by F , F being viewed for the time being as an object in Hom!(Aop,M):

(71) F : Aop→M.
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(In case A = Aˆ, we get the description (68) of F by taking the restriction
of (71) to the subcategory A of Aˆ.)

In the following formulaire, L, L′ are objects in Aab, F is an object in
AM, where M is an additive category stable under small inverse limits,
which moreover is assumed to be a pseudotopos (i.e., admits a small
set of objects generating with respect to monomorphisms, and is stable
under small direct limits) in case the topos A is not equivalent to a
category Aˆ. We denote by

X 7→ Z(X ), A→ Aab

the abelianization functor, which in the case A = Aˆ is just “component-
wise abelianization”, i.e.,

Z(X )(a) = Z(X (a)) for a in A.

We recall that the constant sheaf ZA on A with value Z can be also
described as

(72) ZA = Z(e),

where e is the final object of A, and that the sections functor on A is [p. 413]
defined as

(73) ΓA(F)
def
= F(e);

in case A = Aˆ, this can equally be interpreted as the inverse limit
functor for the functor Aop→M defined by F :

(74) ΓA(F)' lim←−
Aop

F(a).

We are now ready to give a basic formulaire for the operations Hom
and Hom, and their relations to the abelianization functor and to the
sections functor (i.e., to inverse limits, in case A= Aˆ).

(75)
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a©
a’)

Hom(Z(X ), F)' F(X )
Hom(Z(X ), F)' (Y 7→ F(X × Y ) : Aop→M)

§

b©
b’)

Hom(L′,Hom(L, F))' Hom(L′ ⊗ L, F)
Hom(L′,Hom(L, F))' Hom(L′ ⊗ L, F)

§

c)
c’)

Hom(ZA, F)' ΓA(F)
Hom(ZA, F)' F

d) Hom(L, F)' ΓA Hom(L, F)










e©

e’)

The functor L 7→ Hom(L, F) : Aab
op→M

commutes to small inverse limits
Similar statement as e) for
L 7→ Hom(L, F) : Aab

op→ AM.

Comments on the formulaire (75). I have limited myself to chose
canonical isomorphisms (a) to d)) and exactness properties (e) and e’))
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which seem to me the most relevant for what follows. Other exactness
and variance properties are commutation of the functors

F 7→ Hom(L, F) : AM→M and F 7→ Hom(L, F) : AM→ AM

to small inverse limits, and compatibility of formation of Hom(L, F) and
Hom(L, F) with functors

u : M→M′

commuting to small inverse limits. As for formulæ for varying topos A,
corresponding to a morphism of topoi, we’ll come back upon this in a
later section, in relation with the homology and cohomology invariants
of maps in (Cat). Also, I am completely disregarding here compatibilities
between canonical isomorphisms (surely the reader won’t complain
about this). All this as far as omissions are concerned.

As for the formulas included in (75), the three basic ones, including [p. 414]
all others in a more or less formal way, are the circled ones a), e) and b).
The properties a) and e) jointly can be viewed as the characterization
up to canonical isomorphism, for fixed F , of the operation Hom(L, F),
i.e., of the functor

eF : L 7→ Hom(L, F) : Aab
op→M,

factoring the functor
F : Aop→M

via the abelianization functor WhA : X 7→ Z(X ). In terms of a), the
formula b) can be viewed as essentially the definition of Hom(L, F) via
Hom(−, F), more specifically we get

(76) Hom(L, F)(X )' Hom(Z(X ),Hom(L, F))' Hom(Z(X ) ⊗ L, F).

Taking L = Z(X ) and using

Z(X ) ⊗Z(Y ) ' Z(X×Y )

((17) page 389), (76) gives a’), whereas b’) follows via (76) applied
to both members, from associativity of the operation ⊗. Formula c) is
the particular case of a) for X = e, in the same way c’) follows from a’).
Formula d) follows from c), b) and the relation

ZA ⊗ L ' L.

The exactness property e’) is equivalent to the similar exactness state-
ment for the functors

L 7→ Hom(L, F)(X )' Hom(Z(X ) ⊗ L, F),

for X in A, and thus reduces to e) with L replaced by Z(X ) ⊗ L.
I would like now to come back to the question of “computation”

of Hom(L, F) and Hom(L, F). We may for this end assume A to be
described by a site A – which, in case the “topology” on A defining
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the site structure is the chaotic one, brings us back to the particular
case A= Aˆ we are mainly interested in at present. Accordingly, we’ll
consider the objects F in AM as being functors

(77) F : Aop→M

satisfying the standard exactness properties for sheaves (with respect
to the given site structure on A). In terms of (71), this is just the
composition of the functor (71) with the canonical functor

(78) A→ A= A∼,

associating to an object a in A the presheaf represented by it, in the most [p. 415]
common case when this presheaf is a sheaf for any choice of a, otherwise
we take the sheaf associated to it. In the first case (which we may reduce
to if we prefer, by suitable choice of the site A for given topos A) the
functor (78) is fully faithful and moreover and embedding, therefore,
we’ll identify an object a in A with the corresponding object in A. Thus,
the description (76) of Hom in terms of Hom may be interpreted, from
this point of view, as a formula with X = a in A, i.e., as describing
the sheaf Hom(L, F) as a functor on Aop. Accordingly, the question of
describing the sheaf Hom(L, F) is reduced to the question of describing
the objects Hom(L′, F) in M, for L′ = Z(X )⊗ L. Thus, the main question
here is to give a “computational” description of the object Hom(L, F) in
M, for L in Aab and F in AM, i.e., F and L being sheaves on A

(79) F : Aop→M, L : Aop→ (Ab).

The rule of the game here is to do so, using just a) in case of X = a in A,
and the exactness property e).

It seems most convenient here to introduce again the additive enve-
lope Add(A) of the category A, which we’ll assume to be small in what
follows, and the canonical additive functor

(80) εab : Add(A)→ Aab,

extending the functor

a 7→ Z(a) : A→ Aab.

For a given F (77), it follows from formula (75 a)) that the composition

eF ◦ εop
ab : Add(A)op

ε
op
ab−→ Aab

op eF
−→M

is just the canonical extension Add(F) of F to Add(A)op, whose value
on the general object

x =
⊕

i∈I

WhA(ai) (I a finite indexing set)

of Add(A) (where WhA(a) = Z(a) as an object in Add(A) ⊂ Aâb) is just

(81) Add(F)(x) =
∏

i∈I

F(ai).
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Now, it is easily checked that for any object L in Aab, i.e., any sheaf
L : Aop→ (Ab), we have a canonical isomorphism in Aab

(82) L ∼←− lim−→
(x , u) in Add(A)/L

εab(x)

(compare with the similar isomorphism on page 403). Using (75 e), we [p. 416]
deduce from this the expression

(83) Hom(L, F) = eF(L)' lim−→
(x , u) in Add(A)/L

Add(F)(x),

which in an evident way is functorial in L for variable L.
This is about the best which can be done in general, it seems to me,

by way of “computational” expression of Hom(L, F) in terms of F and
L given as in (79). Of course, the symbol Add(A)/L is relative to the
canonical functor εab (80), which is a full embedding in case the site
structure on A is the chaotic one, i.e., A= Aˆ. In computational terms,
this category is rather explicit, an object of the category is just a pair

(x , u) =
�

(ai)i∈I , (ui)i∈I

�

where I is a finite indexing set, (ai)i∈I a family of objects of A, and for i
in I , ui is an element of L(ai) – I’ll leave to the reader the description
of maps between such objects. The value of Add(F)(x) is given by (81)
above.

Remark. The expression (83) of Hom(L, F) = eF(L) makes sense, pro-
vided only the additive category M is stable under small inverse limits,
without having to assume that M be a pseudotopos. This makes us
suspect that the functor

P 7→ P ◦Wh : Hom!(Aop
ab,M)→ AM

is an equivalence ((13) p. 388) without this extra assumption, provided
A is an actual topos (not only a pseudotopos as in loc. cit.). Indeed, we
get a reasonable candidate for a quasi-inverse functor

F 7→ eF : AM→ Hom!(Aop
ab,M).

The only point still to check, with (83) defining eF for given F in AM, is
that we get a functorial isomorphism

eF(Z(a))' F(a)

for a in A. In case A = Aˆ, this follows from the fact that (80) is fully
faithful, hence Add(A)/L for L = Z(a) admits a final object – hence the
limit (83) is the value of Add(F) on the latter, namely F(a).

I feel the little program on the Hom and Hom operations, as contem-
plated on page 412, is by now completed; all we’ve got to do still is
to dualize to get corresponding results for ∗ and þ. It’s just a matter
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of essentially copying the formulaire (75), which I’ll do for the sake [p. 417]
of getting more familiar with the more unusual operations ∗ and þ.
Now of course, we’ll have to restrict to the case A = Aˆ, and use the
interpretation (68) of the data F , L′ as functors on Aop and on A with
values in M and (Ab) respectively, where now M is an additive category
stables under small direct limits. By duality, the “sections” or “inverse
limits” functor lim←−Aop

(or “cointegration”) is replaced by the direct limit
functor lim−→Aop

(or “integration”). With this in mind, we get the following
transcription of (75):

(84)











































































§

a)
a’)

F ∗Z(b
op) ' F(b) for any b in A, hence bop in B

F þZ(b
op) ' (a 7→ F(a ∨ b)' lim−→(x ,α) in a∨b\A

F(x))
§

b)
b’)

(F ∗ L′) ∗ L′′ ' F ∗ (L′ ⊗ L′′)
(F þ L′) ∗ L′′ ' F þ (L′ ⊗ L′′)

§

c)
c’)

F ∗ZBˆ ' lim−→Aop
F

F þZBˆ ' F
d) F ∗ L′ ' lim−→Aop

F þ L′














e)

e’)

The functor L′ 7→ F ∗ L′ : Bâb→M

commutes to small direct limits
Similar statement as e) for
L′ 7→ F þ L′ : Bâb→ A

M̂
.

Comments. This formulaire doesn’t look wholly symmetric to (75), due
to the fact that we gave (75) in a somewhat more general context than
topoi of the type Aˆ only. This accounts for the letter X or Y in (75)
(designating there an arbitrary object of Aˆ) being replaced by a small
letter a or b (designating objects in A), which allows the dualization to
be done. A slight trouble then occurs when A is not stable under binary
products a× b, these products are only in Aˆ not in A, which accounts
for the slightly more complicated formula a’) of (84) in comparison to
(75 a’)), whose more explicit form, in the present context of data as in
(68), would be

(85) Hom(Z(a), F)'
�

b 7→ F(a× b)' lim←−
(x ,α) in A/a×b

F(x)
�

.

Accordingly, the symbol a ∨ b (“sum”) in (84 a’)) denotes the element
(aop × bop)op of (Bˆ)op and can be identified with the sum of a and b in
the category A whenever the sum exists in A. Accordingly, the category [p. 418]
a∨b\A, dual to B/aop×bop , can be described as

(86) a∨b\A= category of all triples (x , u, v), with x in A and
u : a→ x , v : b→ x maps in A,

the maps in this category from (x , u, v) to (x ′, u′, v′) being just maps
x → x ′ “compatible” with the pairs α = (u, v) and α′ = (u′, v′) in the
obvious way.
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Remarks. 1) An interesting particular case (although admittedly a
little strange looking in our modelizing context!) is the one when A is
an additive category, hence stable under both binary sum and product
operation, the two operations being canonically isomorphic, and written
as a ⊕ b. In this case, comparison of (85) and (86) shows that for a
given object a in A, hence aop in B, the operation Hom(Z(a),−) on A

M̂

is canonically isomorphic to the operation −þZ(a
op). This immediately

extends to a canonical isomorphism

(87) Hom(L, F)' F þ Ľ for L in Add(A) ⊂ Aâb, F in A
M̂

,

where we have denoted by

(88) L 7→ Ľ : Add(A)op ≈−→ Add(Aop) = Add(B)

the canonical antiequivalence between Add(A) and Add(B). In case A
is the final category, namely an additive category reduced to the zero
object, and if we take moreover M= (Ab), (87) is the familiar formula
of linear algebra, valid when L is a free Z-module of finite type. It
should be noted that A being stable under binary products, it follows
that Add(A) is stable under tensor products, and similarly for Add(B),
and that the equivalence (88) is compatible with tensor products. The
relation (87) is about the only relationship I could think of between the
two types of operations upon a given category A

M̂
.

2) There are still two other, more trivial operations on a category Aˆ,
of a similar nature to the two operations Hom and ∗ considered so far.
The more familiar one is componentwise tensor product

(89) (L, F) 7→ L ⊗ F : Aâb × A
M̂
→ A

M̂
,

defined by
L ⊗ F (a) = L(a)⊗ F(a),

where the second member denotes external tensor product of the abelian
group L(a) with the object F(a) of M (defined when M is additive and
stable under small direct limits). The other, deduced from (89) by
duality [p. 419]

(90) (L′, F) 7→ Hom(L′, F) : Bâb × A
N̂
→ A

N̂

is defined when the additive category N is stable under small inverse
limits, and can be equally described as taking external Hom’s compo-
nentwise

Hom(L′, F)(a) = Hom(L′(a), F(a)).

These operations make sense too when Aˆ is replaced by an arbitrary
topos A, Bâb being replaced by the category of abelian cosheaves on
A. It doesn’t seem worthwhile here to dwell on them, as they don’t
seem to be so relevant for the homology and cohomology formalism we
want to develop in the next sections. I like to point out, though, that in
the cohomology formalism of ringed topoi the tensor product operation
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(89) and the derived operation
L
⊗ on the relevant derived categories D•

play an important role, and it is likely therefore that in a more extensive
development of the homology and cohomology formalism within the
context of topoi Aˆ and maps in (Cat), the same will hold for the dual
operation (90) too.

The reader who may feel confused by the manifold use of the symbol
Hom should notice that there is no possibility of confusion reasonably
between (90) and (65) (p. 409), as the argument L′ in (90) is in Bâb,
whereas the argument L in (65) is in an altogether different category
Aâb. In the case when A is the final category say, hence A = B, and a
confusion might arise, the two operations turn out to be actually the
same (up to canonical isomorphism). A similar remark applies to the
fear of confusion between the kindred operations ⊗ and þ. I daresay I
devoted a considerable amount of attention on terminology and notation
around the abelianization story – and it does seem that a pretty coherent
formalism is emerging indeed.

17.8.

107 F) Extension of ground ring from Z to k (k-linearization). I would Review (4): Case of general ground
ring k.like still to make a quick review of the main facts and formulas of the

last two sections, replacing throughout the ground ring Z by an arbitrary
commutative ring k, and additive categories M and additive functors
between these, by k-additive categories and k-additive functors. This
will allow us to check that the conceptual and notational set-up we got
so far extends smoothly to k-linearization.

Let’s recall that a k-additive category M is an additive category en- [p. 420]
dowed with the extra structure given by a homomorphism of commuta-
tive rings

(91) k→ End(idM),

where the second member denotes the (commutative) ring of all endo-
morphisms of the identity functor of M to itself. Defining accordingly
the notion of k-additive functor between two k-additive categories M,
M′, we’ll denote by

(92) Homk(M,M′) ⊂ Hom(M,M′)

the full subcategory of Hom(M,M′) made up with such functors. Thus,
we get a canonical fully faithful inclusion

(93) Homk(M,M′) ,→ HomZ(M,M′)
def
= Homadd(M,M′).

Wed defined accordingly the categories Homk!, Hom!
k as full subcate-

gories of (92), and the category

Homk(P,Q;M) ⊂ Biadd(P,Q;M)

the full subcategory of Hom(P×Q,M)made up with k-bilinear functors,
namely functors k-additive in each argument (in case k = Z, this is the

[Actually, it was previously denoted
by just Hom(P,Q;M). . . ]



§107 Review (4): Case of general ground ring k. 380

category denoted previously by Biadd), and similarly for the notations
Homk!! and Hom!!

k .
It should be noted that for a given additive category M, there is a

“best” choice for endowed it with a k-linear structure, in such a way that
any k′-linear structure just corresponds to “ground ring restriction” with
respect to suitable (well-defined) ring homomorphism

k′→ k;

we just take the “tautological” linear structure with

k = End(idM),

and (91) the identity.
If A is any small category, we’ll denote by

(94) Ak̂ = Ak̂-Mod ' Hom(Aop, (k-Mod))

the category of objects in Aˆ endowed with a structure of k-module, i.e.,
the category of presheaves on A with values in the category (k-Mod) of
k-modules (in the given basic universe U). This is of course a k-additive
category, which for k = Z reduces to the category of additive presheaves [p. 421]
on A:

AẐ
def
= Aâb.

We have, for a homomorphism of commutative rings

k→ k′,

a corresponding functor between additive topoi

(95) Ak̂ → Ak̂′ , F 7→ F ⊗k k′ = (a 7→ F(a)⊗k k′),

by which we may interpret if we wish, in a rather evident way the
k′-linear topos Ak̂′ as deduced from the k-linear one Ak̂ by “ground ring
extension” k→ k′, namely as the solution of a 2-universal problem with
respect to categories Homk!(Ak̂ ,M), where M is a k′-additive category
stable under small direct limits. The k-abelianization functor

(96) Aˆ→ Ak̂ , X 7→ k(X )
�

' (a 7→ k(X (a)))
�

or WhAˆ,k, is defined as the composition

Aˆ→ AẐ = Aâb→ Ak̂ ,

where the first functor is the familiar abelianization X 7→ Z(X ), and
the second is ground ring extension for Z→ k. If M is any k-additive
category stable under small direct limits, (96) gives rise to a functor
which is an equivalence of categories F 7→ (X 7→ F(k(X )))

(97) Homk!(Ak̂ ,M) ≈−→ Hom!(Aˆ,M) ( ≈−→ Hom(A,M)),
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where the second equivalence is the familiar one of prop. 3 (p. 394),
independent of any abelian assumptions. Dually, we get an equivalence

(98) Hom!
k((Ak̂ )

op,M) ≈−→ Hom((Aˆ)op,M) ( ≈−→ Hom(Aop,M)),

where M is any k-additive category stable under small inverse limits.
From (97) (98) and replacing in (98) A by the dual category B = Aop,
and assuming the k-additive category M is stable under both types of
small limits, we get the duality equivalence

(99) Homk!(Ak̂ ,M)≈ Hom!
k(Bk̂ ,M) (≈ Hom(A,M)).

This may be viewed as giving two alternative descriptions, by the two
members of (99), of the category

B
M̂
= Hom(Bop = A,M)

of M-valued presheaves on B (defined without any use of the k-additive
structure of M). The left-hand side interpretation (99), via M-valued [p. 422]
k-additive cosheaves on the k-additive topos Ak̂ , gives rise to the opera-
tions ∗k and þk of Ak̂ upon B

M̂
(operations previously denoted by ∗ and

þ when k = Z and no confusion would arise from dropping subscripts),
and similarly the interpretation by right-hand side of (99), via M-valued
k-additive sheaves on the k-additive topos Bk̂ , gives rise to the opera-
tions Homk and Homk of Bk̂ upon B

M̂
. Replacing in this comment A by

B, hence Bˆ by Aˆ, namely in terms of operations upon the category of
M-valued sheaves on the topos Aˆ (or M-valued presheaves on A), we
get the mutually dual pair of operations

(100)
(F, L′) 7→ F ∗k L′ : A

M̂
× Bk̂ →M,

(F, L′) 7→ F þk L′ : A
M̂
× Bk̂ → A

M̂

and

(101)
(L, F) 7→ Homk(L, F) : Ak̂ × A

M̂
→M,

(L, F) 7→ Homk(L, F) : Ak̂ × A
M̂
→ A

M̂
.

The operations (100) are ruled by formulaire (84) (with subscripts k
added), whereas the operations (101) are ruled by formulaire (75) with
subscripts (see moreover for the latter comments on page 417, and
formula (85) for (75 a’)); they are valid provided the additive category
is stable under small direct resp. inverse limits. Moreover, we get a
“computational” expression of Homk(L, F) by a formula extending (83)
which we’ll still have to write down, and correspondingly for F ∗k L′ (by
a dual formula, which we forgot to include in the previous section). To
do so, we have to introduce still

(102) Addk(A) ⊂ Ak̂ ,

the k-additive envelope of A, which may be described (beside by the
familiar 2-universal property in the context of k-additive categories and
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functors from A into these) as the full subcategory of Ak̂ generated by
finite sums of objects of the type k(a) with a in A – i.e., the general object
of Addk(A) may be written

⊕

i∈I

k(ai),

where (ai)i∈I is any finite family of objects of A. When the finiteness
condition on I is dropped, we get a larger full subcategory

(103) Addinfk(A) ⊂ Ak̂ ,

which may also be interpreted as “the” solution of the 2-universal prob-
lem of sending A into categories which are k-additive and moreover
infinitely additive, i.e., stable under small direct sums. Enlarging the
subcategories (102) and (103) of Ak̂ by adjoining all objects of Ak̂ iso- [p. 423]
morphic to direct factors of objects in the considered subcategory, we
get to (strictly) full subcategories of Ak̂ containing the latter, which
may be interpreted as being just the subcategory Proj(Ak̂ ) of projec-
tive objects of Ak̂ when starting with (103), and as the subcategory
UlProj(Ak̂ ) of ultraprojective objects, namely objects projective and of
finite presentation, when starting with (102). These may be equally
interpreted as the abstract Karoubi envelops of the categories (103) and
(102), deduced from these formally by adjoining images (=coimages)
of projectors (or equivalently, as 2-universal solutions of the 2-universal
problem of sending the given category (103) or (102) into “karoubian
categories”, namely categories stable under images (=coimages) of pro-
jectors, with maps between these being functors commuting to those
images or coimages of projectors):

(104) Proj(Ak̂ )u Kar(Addinfk(A)), UlProj(Ak̂ )u Kar(Addk(A)).

Accordingly, these two categories may be equally described, directly in
terms of A, as the solutions of the two 2-universal problems, obtained
from mapping A into k-additive karoubian categories, which in the
first case (corresponding to Proj(Ak̂ )) are moreover assume infinitely
additive.

To sum up the situation, we get in Ak̂ a diagram of four remarkable full
subcategories (102), (103), (104), which may be interpreted (as well as
Ak̂ itself) as the solutions of five corresponding “k-additive” 2-universal
problems, in terms of sending A into k-additive categories satisfying
suitable extra exactness assumptions (namely being karoubian for the
two categories in (104), being infinitely additive for the two categories
Addinfk(A) and its Karoubi envelope Proj(Ak̂ ), and being stable for small
direct limits in case of Ak̂ ). Including equally the non-additive categories
A and Aˆ and the functors A→ Addk(A), Ak̂ → Aˆ, we get a seven term
diagram of canonical functors between categories of presheaves upon
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A:

(105)







































A

Addk(A) UlProj(Ak̂ )u KarAddk(A)

Addinfk(A) Proj(Ak̂ )u KarAddinfk(A) Ak̂

Aˆ ,

where the five categories in the two intermediate lines are k-additive as
well as all functors between them in the diagram, which are moreover
fully faithful. For any k-additive category M stable under small direct [p. 424]
limits, taking cosheaves on Aˆ with values in M, and their restrictions
to the six other categories in the diagram (105), we get a transposed
seven term diagram as follows, part of which reduces to the four term
diagram (58) (p. 406) in case k = Z:

(106)











































Hom!(Aˆ,M)

Homk!(Ak̂ ,M) Homaddinfkark(Proj(Ak̂ ),M) Homaddinfk(Addinfk(A),M)

Homaddkark(UlProj(Ak̂ ),M) Homaddk(Addk(A),M)

Hom(A,M)

≈
≈ ≈

≈ ≈
≈

≈

,

where the meaning of the symbols used (such as index k, suffixes “add”
or “addinf” and “kar”) for qualifying Hom and denoting various full
subcategories of Hom categories, is clear from the explanations given
previously. Replacing A by B and Hom!(Aˆ,M) by Hom!(Bˆ,M), we
get a diagram “dual” to (106) (containing the five-term diagram (62)
(p. 408) in case k = Z), which we’ll not write out here, valid for any
k-additive category M stable under small inverse limits. When M is a
k-additive category stable under both types of small limits, then the
last term of the diagram (106) is equal to the last term of the dual one,
hence a system of fourteen mutually equivalent categories (compare p.
408, when we considered ten among them only!), expressing as many
ways for interpreting the notion of an M-valued copresheaf on A, i.e.,
an object of Hom(A,M) (which is one among the fourteen. . . ).

Let’s comment a little on the significance of the various five k-additive
categories appearing in (105). The largest one Ak̂ is there precisely as
the all-encompassing category of k-additive presheaves, where to carry
through all kinds of k-linear constructions between presheaves on A.
The significance of the (second largest) subcategory Proj(Ak̂ ), made
up with all projective objects of Ak̂ , comes mainly from homological
algebra and emphasis upon replacing objects of Ak̂ by projective reso-
lutions; these are chain complexes in Proj(Ak̂ ), which may be viewed
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as being defined (by any given object in Ak̂ ) “up to chain homotopy”.
More sweepingly still, we get from general principles the canonical
equivalence of categories

(*) D−(Ak̂ )
≈←− K−(Proj(Ak̂ )),

where D− designates the “derived category bounded from above” of [p. 425]
a given abelian category (defined in terms of differential operators
with degree +1, and quasi-isomorphisms between complexes with de-
grees bounded from above), whereas K− designates localization of the
category of differential complexes with degrees bounded from above
of a given additive category, localization being taken with respect to
homotopisms.

As any object of Proj(Ak̂ ) is a direct factor of an object in Addinfk(A),
and hence, any object in Ak̂ is isomorphic to a quotient of an object in
Addinfk(A), it follows again from general principles that the categories
in (*) are equally equivalent to K−(Addinfk(A)), hence

(107) D−(Ak̂ )
≈←− K−(Proj(Ak̂ ))

≈←− K−(Addinfk(A)).

The advantage of Addinfk(A) over Proj(Ak̂ ) is that its objects, and maps
between objects, are more readily described in computational terms,
just working with small direct sums of objects of the type k(a) (with
a in A), and corresponding matrices, with entries in free k-modules
k(Hom(a,b)). Thus, if we call cointegrator (with coefficients in k) for A
any projective resolution of the constant presheaf kA with value k, and
denote such object by LA

k , we may view LA
k as an object determined up

to unique isomorphism, either in K−(Proj(Ak̂ )), or in K−(Addinfk(A))
– and it is the latter interpretation which looks the most convenient.
Objects in the first category, namely complexes with degrees bounded
from above and projective components, which happen to be in the first
(i.e., components are in Addinfk(A), i.e., are direct sums of objects of
the type k(a)) may be called “quasi-special” (extending the terminology
previously used for cointegrators and integrators, in case k = Z). We’ll
call them special if the components are even in Addk(A). The category
Addk(A) and its Karoubi envelope UlProj(Ak̂ ) may be viewed both as
embodying finiteness conditions, and similarly for the two corresponding
K− categories, which are of course equivalent:

(108) K−(UlProj(Ak̂ ))
≈←− K−(Addk(A)),

and presumably the canonical functor from (108) to (107) is fully faith-
ful, under suitable coherence conditions at any rate. . .
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22.8. [p. 426]

108 Since last Monday, namely for about one week, I have been mainly Review (5): Homology and cohomol-
ogy (absolute case).taken by a rather dense sequence of encounters and events, the center

of which has been the unexpected news of my granddaughter Ella’s
death at the age of nine, by a so-called health accident. I resumed some
mathematical pondering last night. Today, I got a short letter from
Ronnie Brown, mainly with the announcement of the loss of his son
Gabriel, twenty years old, which occurred about the same time by a
climbing accident. It is a good thing that Ronnie felt like telling me
in a few words about this, while we have never yet seen each other
and our letters so far have been restricted to mathematics, with maybe
sometimes some personal comments about his or my own involvement
in mathematics. It is through these, surely, that a mutual sympathy
has come into being, not merely motivated by a common interest in
mathematics – and this sympathy I feel has been the main force giving
life to our correspondence while mathematically speaking more than
once it has been rather a “dialogue de sourds”. (This is due mainly to

[“dialogue of the deaf”]my illiteracy homotopy in theory, and to my reluctance to get really
involved in any “technical” matters, until I am really forced to by what I
am just doing.)

I want now to go on with the overall review on “abelianization” and its
relation to the homology and cohomology formalism for small categories,
serving as models for homotopy types.

G) Homology and cohomology (absolute case). My aim is to give
a perfectly dual treatment of cohomology and homology, which is one
main reason why I have to take as coefficients for both, not merely
usual abelian presheaves on a given small category A, or sheaves of
k-modules for a given ring k, but more generally sheaves with values
in any abelian category M, stable under small direct or inverse limits
(according as to whether we are interesting in taking homology, or
cohomology invariants). It will then turn out that homology of A for M-
valued presheaves (or complexes of such) is “the same” as cohomology of
the dual category B, with coefficients in the corresponding Mop-valued
ones.

As I am a lot more familiar with cohomology, it is by this I’ll begin
again. Here, as in the case of an arbitrary topos X, the cohomology
invariants Hi(X, F) with values in an abelian sheaf F may be viewed [p. 427]
as being just the invariants Exti(ZX, F) in the category of all abelian
sheaves, where ZX is the constant sheaf on X with value Z. The similar
fact holds when F is any sheaf of modules over a sheaf of rings OX on
X, with ZX being replaced by OX in the interpretation above:

Hi(X, F)' Exti
OX
(OX, F),

which is often quite useful in the cohomology formalism. We are going
to restrict here to the case of a constant sheaf of rings, defined by
a fixed commutative ring k, which will allow us to play around as
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announced with the duality relation between A and B = Aop, provided
moreover we take more general coefficients still, namely (pre)sheaves
with value in a given k-additive category M stable under the relevant
limits. (Presumably, the case of a locally constant commutative sheaf of
rings could be dealt with too, but we’ll not dive into this here!) Another
important (and by now familiar?) conceptual point is that, rather than
the Exti ’s which give only partial information, we are interested in the
object they come from (as the “cohomology objects”), namely the objects
RHomOX

(L, F) in a suitable derived category. In the present case when
X is the topos associated to the small category A, hence the category
of OX-modules has sufficiently many projective (namely direct sums
of sheaves of the type O

(a)
X

with a in A), the RHomOX
(L, F) may be

computed, taking a projective resolution L• of L, by the formula

RHomOX
(L, F)' Hom•

OX
(L•, F)

(an isomorphism in D+(k-Mod) say), and similarly when replacing L
and F by arguments L• and F• in D− and D+ of the category of OX-
modules. As a result, we get a pairing, computable here using projective
resolutions of the argument L•:

(*) (L•, F•) 7→ RHomOX
(L•, F•) : D−(OX)×D+(OX)→ D+(k-Mod),

where k is a commutative ring and OX is endowed with a structure of
k-algebra. Using HomOX

and its total derived functor, we get likewise

(**) (L•, F•) 7→ RHomOX
(L•, F•) : D−(OX)×D+(OX)→ D+(OX),

with
RHomOX

(L•, F•)' Hom••
X
(L•, F•),

where L• is a projective resolution of L•, and Hom•• stands for the
simple complex associated to the double complex obtained by taking [p. 428]
Hom’s componentwise (and we have the similar formula of course for
the Hom’s and RHom’s non-bold-faced).

Taking L• = OX (or any resolution of OX), the RHom invariant (*)
reduces to the total derived functor RΓ of the sections functor

(i) RHomOX
(OX, F•)' RΓX(F

•)

(whereas RHomOX
(OX, F•) ' F• of course), which in turn allows to

give the following familiar expression of RHom in terms of RHom:

(ii) RHomOX
(L•, F•)' RΓX(RHomOX

(L•, F•)),

coming from the similar isomorphism HomOX
' ΓX HomOX

. All this
is standard cohomology formalism, valid on an arbitrary ringed topos
(X,OX), except for the possibility of computing RHom and RHom by
taking projective resolutions of the first argument (rather than injective
ones of the second), which is special to the case when X = Aˆ, to which
we’ll now restrict.
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Let now A be a fixed small category, k a fixed commutative ring, M a
k-additive category, stable under small inverse limits. We want to define
a total derived functor of the functor

(109) (L, F) 7→ Homk(L, F) : Ak̂ × A
M̂
→M,

which should be a functor

(110) (L•, F•) 7→ RHomk(L•, F•) : D−(Ak̂ )×D+(A
M̂
)→ D+(M),

and similarly

(111) (L•, F•) 7→ RHomk(L•, F•) : D−(Ak̂ )×D+(A
M̂
)→ D+(A

M̂
).

For this, in order for D+(A
M̂
) to be defined, we better assume M to be

an abelian category, hence A
M̂

is abelian too. Of course, we’ll write

(112)
Exti

k(L•, F•) = Hi(RHomk(L•, F•)),

Exti
k(L•, F•) = Hi(RHomk(L•, F•)),

these global and local Exti may be viewed as “external” Exti ’s, as con-
trarily to the familiar case, the components of the two arguments L•
and K• are not in the same category – just as the Homk in (109) and
the corresponding

(109’) Homk : Ak̂ × A
M̂
→ A

M̂

has arguments in the two different categories Ak̂ and A
M̂

.
As we don’t know about the existence of enough injective in A

M̂
, [p. 429]

the only way for defining the pairings (110), (111) is now by using
projective resolutions of the first argument, writing

(113)
RHomk(L•, F•) = Hom••k (L•, F•),
RHomk(L•, F•) = Hom••k (L•, F•)

where L• is a projective resolution of L• in Ak̂ . As the latter is defined
up to chain homotopy, it follows that for fixed L• and F•, the second
members of (113) are defined up to chain homotopy, i.e., they may be
viewed as objects in K+(M) and K+(A

M̂
) respectively. They are defined

as such, even without assuming M to be abelian and hence D+(M) and
D+(A

M̂
) to be defined. When we make this assumption, in order to

check that the formulæ (113) do define pairings as in (110) and (111),
we still have to check that for a quasi-isomorphism

F•→ (F ′)•

in A
M̂

, the corresponding maps between RHomk and RHomk are quasi-
isomorphisms too. This will follow immediately, provided we check that
for fixed projective L in Ak̂ and variable F in A

M̂
, the functors

F 7→ Homk(L, F) and F 7→ Homk(L, F)
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from A
M̂

to M and A
M̂

respectively are exact. Now, this is clear for
Homk when L is of the type k(a), hence Hom(L, F) ' F(a), hence it
follows when L is a small direct sum of objects k(ai), hence

Homk(L, F) =
∏

i

F(ai),

provided we make on M the mild extra assumption that a small direct
product of epimorphisms is again an epimorphism. As any projective
object of Ak̂ is a direct factor of a small direct sum as above, the exactness
result we want then follows, hence the looked-for pairing (110). The
same argument will hold for Homk, provided we check exactness of the
functors

F 7→ Homk(k
(a), F) = (b 7→ F(a× b)).

Here it seems we get into trouble when A is not stable under binary
products – in this case there is little chance that the functor above be

exact, even when restricting to the case M= (Ab)k
def
= (k-Mod), hence

A
M̂
= Ak̂ and L, F have values in the same category (namely presheaves

of k-modules). This may seem strange, as we know (and recalled above)
that in this standard case there is no problem for defining a pairing [p. 430]
(111) RHomk. The point here is that, whereas a reasonable RHom
can be defined indeed, it cannot be computed in terms of a projective
resolution of the first argument as in (113); or equivalently, that for
projective L it is not necessarily true that

Exti
k(L, F) = 0 for i > 0;

this in turn relates to the observation that, contrarily to what happens
for the notion of injective sheaves of modules (on an arbitrary topos),
it is not true that the property for a sheaf of modules to be projective
is stable under localization (even for a constant sheaf of rings k on a
topos Aˆ). Indeed, the localization of k(a) with respect to A/b (with a
and b in A) is k(a

′) where a′ is a× b viewed as an object in A/b, and for
any sheaf of k-modules F on A/b we have

Exti
A/a
(k(a

′), F) = Hi(A/a′=a×b, F),

which need not be zero for i > 0. If it was, this would imply that a× b
is k-acyclic (rather, that its connected components are), a rather strong
property indeed when a× b is not in A. . .

Thus, when A is not stable under binary products, it doesn’t seem
that there exists a pairing (111) as I expected, except (possibly) when
there are enough injectives in A

M̂
– a case I do not wish to examine

for the time being, as I am mainly interested now in a formalism using
projective resolutions instead of injective ones. Anyhow, for the purpose
of subsuming the cohomology functor RΓA under the RHomk formalism,
by formula

(114) RΓA(F
•) = RHomk(kA, F•)' Hom••k (L

A
• , F•),
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where

(115) LA
• → kA

is a projective resolution of kA, it is the pairing RHomk and not RHomk
which is the relevant one. Let’s recall that a projective resolution (115)
is called a cointegrator (for the category A, with coefficients in k), as
by formula (114) it allows indeed to express “cointegration” of any M-
valued presheaf or complex of such presheaves (with degrees bounded
from below).

Thus, for the time being we just got the pairing RHomk in (110), and
the corresponding functor

(116) F• 7→ RΓA(F
•) : D+(A

M̂
)→ D+(M),

and not the pairing RHomk in (111), and hence no formula (ii) (p. 428) [p. 431]
relating the two – which makes me feel a little silly! I’ll have to come
back upon this later. At present, let’s dualize what we got, assuming
now that N is a k-additive abelian category stable under small direct
limits, and such that a small direct sum of monomorphisms in N is again
a monomorphism. We then get a pairing

(117) (F•, L′•) 7→ F•
L
∗k L′• : D−(A

N̂
)×D−(Bk̂ )→ D−(N),

defined by the formula (dual to (112))

(118) F•
L
∗k L′• ' F• ∗k L

′
•,

where in the second member L′• is a projective resolution of L• in Bk̂
(B = Aop being of course the dual category of A), and the ∗k denotes the
simple complex associated to the double complex obtained by applying
∗k componentwise. Using the composite equivalence

(119) F• 7→ (F•)op : (D−(A
N̂
))op u D+((A

N̂
)op)u D+(B

M̂
),

with M= Nop,

we get the tautological duality isomorphism

(120)
�

F•
L
∗k L′•)

op ' RHomk(L
′
•, (F•)

op),

where the expression
L
∗k in the first member is relative to the pair (A,N),

whereas the expression RHomk in the second is relative to the dual pair
(B,M). Symmetrically, we get

(120’)
�

RHomk(L•, F•)
�op ' L•

L
∗k (F•)

op,

which is essentially the inverse isomorphism of (120), but for the pair
(B,M) instead of (A,N).

We still should dualize the functor RΓA (116) (defined by (114)),
which we do, recalling that ΓA is just the inverse limit functor lim←−Aop

,
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which is dual to the direct limit functor lim−→Aop
, thus, “integration” of N-

valued presheaves is just (at least morally) the total left derived functor
of the latter, and may be denoted by

(121) Llim−→
Aop

,

while using for RΓA the equivalent notation, dual to (121)

(122) Rlim←−
Aop

= RΓA.

I am not wholly happy, though, with the purely algebraic flavor of these
notations, not really suggestive of the manifold geometric intuitions [p. 432]
surrounding the familiar homology and cohomology notations H• and
H•. This flavor is at least partially preserved, it seems to me, in the
notation RΓA (because of the geometric intuition tied with the sections
functor), whereas there is not yet a familiar geometric notion of a
“cosections functor”. As we would like to have the duality symmetry
reflected as perfectly as possible in the notation, I am going to use the
notations

(123)











RH•(A, F•) = Rlim←−
Aop

(F•) ( = RΓA(F
•)) : D+(A

M̂
)→M

LH•(A, F•) = Llim−→
Aop

(F•) : D−(A
N̂
)→ N.

With these notations, the duality isomorphisms (120,120’) take the form
(as announced):

(124)

�

(RH•(A, F•))op ' LH•(B, (F•)op)
(LH•(A, F•))

op ' RH•(B, (F•)
op) ,

where the first members are defined in terms of cohomology resp. ho-
mology invariants with respect to the pair (A,M) resp. (A,N), whereas
the second members denote homology resp. cohomology invariants with
respect to the dual pairs (B,N) resp. (B,M).

Remarks. This perfect symmetry, or rather essential identity, between
“homology” or “integration” and “cohomology” or “cointegration”, is
obtained here at the price of working with presheaves with values in
rather general abelian categories, subjected to some simple exactness
properties. It should be remembered moreover that for the time being,
RH• has not been defined as the total right derived functor of the sections
of inverse limits functor, therefore the notations (121) and (122) are
somewhat misleading. To feel really at ease, we should still work out
conditions that ensure that A

M̂
has enough injectives and that RHomk

can be defined also using such resolutions – in which case we’ll expect
too to have a satisfactory formalism for the RHomk functor.
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23.8. [p. 433]

109 I still did a little scratchwork last night, about the question of existence Review (6): A further step in
linearization: coalgebra structures
P → P ⊗k P in (Cat).

of enough injectives or projectives in a category

A
N̂
= Hom(Aop,N),

where N is a k-additive abelian category. Introducing the small k-
additive category

P = Addk(A),

and remembering the canonical equivalence

A
N̂
= Hom(Aop,N)u Homk(P

op,N),

the question just stated may be viewed as a particular case of the same
question for a category of the type

(125) P&
N

def
= Homk(P

op,N),

where now P is any small k-additive category. (Compare with the
reflections on pages 403, 404.) It is immediate that in P&

N
exist all types

of (direct or inverse) limits which exist in N, and they are computed
“componentwise” for each argument a in P – from this follows that if N
is abelian, so is P&

N
.

Proposition 4. Assume the k-additive category N is stable under small
direct limits, and is abelian, and that any object of N is isomorphic to
the quotient of a projective object. Then the same holds for P&

N
. Assume

moreover that any projective object x of N is k-flat, i.e., the functor

U 7→ U ⊗k x : Abk → N

is exact, i.e., transform monomorphisms into monomorphisms. Then for
any projective object F in P&

N
, the functor

L′ 7→ F ∗k L′ : Q&→ N (where Q = Pop)

is exact, i.e. (as it is known to commute to small direct limits), it transforms
monomorphisms into monomorphisms.

Comments. Here, the operation ∗k (similar to a tensor product) is
defined as in the non-additive set-up (with P&

N
, Q& being replaced by A

N̂
,

Bk̂ ) reviewed in section 107, and follows from the canonical equivalence
of categories

(*) P&
N

≈←− Homk!(Q
&,N)

(this is formula (**) of page 403 with P,N replaced by Q,M). It should [p. 434]
be noted that the assumptions made in prop. 4 are the weakest possible
for the conclusions to hold (for any k-additive small category P), as these
conclusions, in case P = final category, just reduce to the assumptions.
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Here is the outline of a proof of prop. 4. Using only stability of N
under small direct limits (besides k-additivity) we define a canonical
k-biadditive pairing

(126) P& ×N→ P&
N

, (L, x) 7→ L ⊗ x
def
= (a 7→ L(a)⊗k x)

(NB I recall that P& is defined as

P& = HomZ(P
op, Ab) ≈←− Homk(P

op, Abk),

here we interpret an object of P& is a k-additive functor

L : Pop→ Abk (
def
= (k-Mod)) .)

The relevant fact here for objects of P&
N

of the type L ⊗k x is

(127)
HomP&

N
(L ⊗k x , F)' HomN(x , Homk(L, F))

' HomP&(L, Hom(x , F)),

where in the second term,

Homk(L, F) ∈ ObN

is defined in a way dual to F ∗k L′ (cf. comments above), using the
equivalence (dual to (*) above)

(*’) P&
N
' Hom!

k((P
&)op,N),

which is defined only, however, when N is stable under small inverse
limits (hence the first isomorphism in (127) makes sense only under
this extra assumption); on the other hand, in the third term in (127)

Hom(x , F)
def
= (a 7→ HomN(x , F(a)) in P&,

and the isomorphism between the first and third term in (127) makes
sense and is defined without any extra assumption on N.

We leave to the reader to check (127) (where one is readily reduced
to the case when L is an object a in P, using the commutation of the
three functors obtained (P&)op → Abk with small inverse limits). It
follows, when N is abelian:

(128) L projective in P&, x projective in N⇒ L ⊗k x proj. in P&
N

.

Assume now that any object of N is quotient of a projective one, and
let F be any object in P&

N
. Formula (127) for L = a in P reduces to the [p. 435]

down-to-earth formula

(127’) HomP&
N
(a⊗k x , F)' Hom(x , F(a)).

Now, let for any a in P
xa → F(a)
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be an epimorphism in N, with xa projective. From (127’) we get a map

a⊗k xa → F

in P&
N

, hence a map
F =

⊕

a in P

a⊗k xa → F,

it is easily seen that this is epimorphic (because the maps xa → F(a)
are), and F is projective as a direct sum of projective objects. This proves
the first statement in prop. 4. For the second statement, we’ll use the
formula

(129) (L⊗k) ∗k L′ ' (L ∗k L′) ∗k x

for L in P&, L′ in Q&, and x in N – for the proof, we may reduce to the
case when L is in P, L′ in Q = Pop, say L = a and L′ = bop, in which
case both members identify with HomP(b, a)⊗k x . To prove that for F
projective, L′ 7→ F ∗k L′ takes monomorphisms into monomorphisms,
using that F is a direct factor of objects of the type a⊗k x with a in P
and x in N, we are reduced to the case F = a ⊗k x , in which case by
(129) the functor reduces to

L′ 7→ L′(a)⊗k x ,

which is again exact by the assumption that any projective object in N

(and hence x) is k-flat.

Remark. It is not automatic that a projective object in a k-additive
abelian category be k-flat – take for instance k = Z and N = AbFp

,
where Fp is a finite prime field, then all objects in N are projective,
whereas only the zero objects are Z-flat.

We leave to the reader to write down the dual statement of prop. 4,
concerning injectives in a category P&

M
, where now M is a k-additive

abelian category stable under small inverse limits, and possessing suf-
ficiently many injectives (hence the same holds in P&

M
), and assuming

eventually that these injectives x are “k-coflat”, i.e.,

U 7→ Homk(U , x) : Abop
k →M

is exact (i.e., transforms monomorphisms in Abk into epimorphisms in [p. 436]
M), which implies that for F injective in P&, the functor

L 7→ Homk(L, F) : P&→M

is exact.
To sum up, we get the

Corollary 1. Let P be any small k-additive category, and let M be a
k-additive category which satisfies the following assumptions:

a) M is abelian, and stable under small inverse limits,
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b) M has “sufficiently many injectives”,

c) injective objects of M are k-coflat,

d) any product (with small indexing family) of epimorphisms in M is
an epimorphism.

Consider the k-biadditive pairing

(130) (L, F) 7→ Homk(L, F) : P& × P&
M
→M.

This pairing admits a total right derived functor

(131) (L•, F•) 7→ RHomk(L•, F•) : D−(P&)×D+(P&
M
)→ D+(M),

which can be computed using either projective resolutions of L•, or injective
resolutions of F•, or both simultaneously.

We have a dual statement, concerning the pairing

(130’) (F, L′) 7→ F ∗k L′ : P&
N
×Q&→ N, with Q = Pop,

giving rise to a total left derived functor

(131’) (F•, L′•) 7→ F•
L
∗k L′• : D−(P&

N
)×D−(Q&)→ D−(N),

using projective resolutions of either F•, or L′•, or both. Here, N is a
k-additive category satisfying the properties dual to a) to d) above, i.e.,
such that M = Nop satisfies the properties stated in the corollary. We
have the evident duality relations between the two kinds of operations

RHomk and
L
∗k, embodied by the formulæ (120) and (120’) of page

431, where the categories Ak̂ , A
M̂

, A
N̂

, etc. are replaced by P&, P&
M

, P&
N

,
etc. (where the etc.’s refer to replacement of A by B = Aop and of P by
Q = Pop).

Next question is to extend the RHomk formalism to a RHomk formal-

ism (and similarly from
L
∗k to

L
þk), as envisioned yesterday. To do so,

in the wholly k-additive set-up we are now working in, we still need [p. 437]
(in case of RHomk an (“interior”) tensor product structure on P& (and

dually for
L
þ, requiring a tensor product structure on Q&), so as to give

rise to a k-biadditive pairing

(132) (L, F) 7→ Homk(L, F) : P& × P&
M
→ P&

M
,

(and dually,

(132’) (F, L′) 7→ F þk L′ : P&
N
×Q&→ P&

N
),

for which we want to take the total right derived functor RHomk (or

dually, the total left derived functor
L
þk). As we say yesterday, though,

taking projective resolutions of L will not do (except in very special
cases, such as P = Addk(A)with A in (Cat) stable under binary products),
because for L projective in P&, the functor

F 7→ Homk(L, F) : P&
M
→ P&

M
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has little chance to be exact. Taking injective resolutions of F•, however,
we expected would do in “reasonable” cases – here the question is
whether for F injective, the functor

L 7→ Homk(L, F)
def
= (a 7→ Homk(L ⊗k a, F)) : (P&)op→M

is exact (where L⊗k a denotes the given tensor product within P&), i.e.,
whether the functors (for F in P&

M
, a in P)

(*) L 7→ Homk(L ⊗k a, F) : (P&)op→M

transform monomorphisms of P& into epimorphisms of M. When M

satisfies the conditions dual to a)b)c) in the corollary, hence L 7→
Homk(L, F) is exact when F in P&

M
is injective, exactness of (*) above

will follow from exactness of

L 7→ L ⊗k a : P&→ P&.

Now, this latter exactness holds in the case we are interesting in mainly,
when P = Addk(A) and hence P& u Hom(Aop, Abk) and when tensor
product for presheaves on A is defined as usual, componentwise – then
the objects of Addk(A) = P correspond to k-flat presheaves, hence tensor
product by these is exact. Thus:

Corollary 2. Assume M satisfies the conditions of corollary 1 above, let A
be any small category and P = Addk(A). Then the pairing

Homk : Ak̂ × A
M̂
→ A

M̂

(cf. (109’) page 428) admits a total right derived functor RHomk (111), [p. 438]
which may be computed using injective resolutions of the second argument
F• in RHomk(L•, F•) (but not, in general, by using projective resolutions
of L•), i.e.,

(133) RHomk(L•, F•)' Hom••k (L•,F
•),

where F• is an injective resolution of F• (i.e., a complex in A
M̂

with
degrees bounded from below and injective components, endowed with a
quasi-isomorphism F• ' F•).

Applying now RΓA to both members of (133), and using the similar
isomorphism for RHomk (valid by cor. 2, we get the familiar formula

(134) RHomk(L•, F•)' RH•(RHomk(L•, F•)),

(where in accordance with (124), we wrote RH• instead of RΓA), where
however F• is now a complex of presheaves with values in a k-additive
category M (satisfying the conditions dual to a) to d) in cor. 1), not just
a presheaf of k-modules.

Replacing M by a category N satisfying the assumptions of cor. 1, we
get likewise a total left derived functor

(135) (F•, L′•) 7→ F
L
þk L′• : D−(A

N̂
)×D−(Bk̂ )→ D−(A

N̂
),
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which can be defined using projective resolutions of the first argument
F• (but not by using projective resolutions of L′•), giving rise to the
isomorphism (dual to (134))

(134’) F•
L
∗k L′• ' LH•(F•

L
þk L′•).

The duality relationship between RHomk and
L
þk can be expressed by

two obvious formulæ, similar to (120) and (120’) for RHomk and
L
∗k,

which we leave to the reader.

Remarks. 1) If we want to consider “multiplicative structure” in the
purely “k-linear” set-up, where the data is a small k-additive category
P, rather than a small category A (giving rise to P = Addk(A)), and

corresponding cohomology and homology operations RHomk and
L
þk,

not only RHomk and
L
∗k, the natural thing to do, it seems, is to introduce

a “diagonal map”

(*) P → P ⊗k P,

where the tensor product in the second member can be defined in a
rather evident way (as solution of the obvious 2-universal problem in
terms of k-biadditive functors on P × P), which will give rise in the
“usual” way to a tensor product operation in both P& and Q& (where [p. 439]
Q = Pop). We’ll come back upon this later, I expect. This structure (*)
will be the k-linear analogon of the usual diagonal map

(**) A→ A× A

for a small category A, giving rise by k-linearization to

Addk(A)→ Addk(A× A)u Addk(A)⊗k Addk(A),

namely a structure of type (*). It just occurred to me, through the
reflections of these last days, that the “coalgebra structure” (*) may well
turn out (taking k = Z) to be the more sophisticated structure than a
usual coalgebra structure (cf. p. 339 (27)), needed in order to grasp “in
linear terms” the notion of a homotopy type, possibly under restrictions
such as 1-connectedness, as pondered about in section 94. This looks at
any rate a more “natural” object than the De Rham complex with divided
powers, referred to in loc. cit., and is more evidently adapted to our
point of view of using small categories as models for homotopy types.
The greater sophistication, in comparison to De Rham type complexes,
lies in this, that here the objects serving as models (whether small
categories, or small additive categories endowed with a diagonal map)
are objects in a 2-category, whereas De Rham complexes and the like
are just objects in ordinary categories, without any question of taking
“maps between maps”. This feature implies, “as usual” (or in duality
rather to familiar situations with tensor product functors. . . ) that the
(anti)commutative and associative axioms familiar from linear algebra
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(in the case of usual k-algebras or k-coalgebras), should be replaced by
commutativity and associativity data, namely given isomorphisms (not
identities) between two natural functors

P → P ⊗k P, P → P ⊗k P ⊗k P

deduced from (*). The axioms now will be more sophisticated, they will
express “coherence conditions” on these data – one place maybe where
this is developed somewhat, in the context of diagonal maps (*), might
be Saavedra’s thesis. (The more familiar case, when starting with a ten-

[Saavedra Rivano (1972); see also
in particular Deligne (1990, 2002)
and Deligne and Milne (1982)]

sor product operation on a category, together with associativity and/or
commutativity data, has been done with care by various mathematicians,
including Mac Lane, Bénabou, Mme Sinh Hoang Xuan, and presumably
it should be enough to “reverse arrows” in order to get “the” natural set
of coherence axioms for a diagonal map (*)). The “intriguing feature”
with the would-be De Rham models for homotopy types (cf. p. 341,
342), namely that the latter make sense over any commutative ground [p. 440]
ring k, not only Z, with corresponding notion of ring extension k→ k′,
carries over to structures of the type (*). Indeed, for any k-additive
category P, it is easy to define a k′-additive category

P ⊗k k′, for given homomorphism k→ k′,

for instance as the solution of the obvious 2-universal problem corre-
sponding to mapping P k-additively into k′-additive categories, or more
evidently by taking the same objects as for P, but with

HomP ′(a, b) = HomP(a, b)⊗k k′.

Thus, any “coalgebra structure in (Cat)” (*) over the ground ring k,
gives rise to a similar structure over ground ring k′.

Of course, among the relevant axioms for the diagonal functor (*), is
the existence of unit objects in P& and Q&, which may be viewed equally
as k-additive functors (defined up to unique isomorphism)

Pop→ Abk, P → Abk,

playing the role I would think of “augmentation” and “coaugmentation”
in the more familiar set-up of ordinary coalgebras. Denoting these ob-
jects by kP and kQ respectively (in analogy to the constant presheaves
kA and kB on A and B), RHom(kP ,−) now allows expression of coho-

mology or cointegration, and −
L
∗k (kQ) allows expression of homology

or integration (for complexes in P&
M

say). “Constant coefficients” on P,
i.e., in P& may now be defined, as objects in P& of the type

U ⊗k kP ,

where U is in Abk, i.e., is any k-module, and hence we get homology and
cohomology invariants with coefficients in any such U (or complexes of
such), and surely too cup and cap products. . . Also, quasi-isomorphisms
of structure (*) (with units) can now be defined in an evident way, hence
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a derived category which merits to be understood, when k = Z, in terms
of the homotopy category (Hot). I wouldn’t expect of course that for any
small category A, the abelianization Add(A) together with its diagonal
map allows to recover the homotopy type, unless A is 1-connected. As
was the case visibly for De Rham complexes, if we hope to recover
general homotopy types (not only 1-connected ones), we should work
with slightly more sophisticated structures still, involving a group (or [p. 441]
better still, a groupoid) and an operation of it on a structure of type (*)
(embodying a universal covering. . . ).

Here I am getting, though, into thin air again, and I don’t expect
I’ll ponder much more in this direction and see what comes out. The
striking fact, however, here, is that quite unexpectedly, we get further
hold and food for this thin-air intuition (which came up first in relation
to De Rham structures with divided powers), that there may be a rea-
sonable (and essentially just one such) notion of a “homotopy type over
the ground ring k” for any commutative ring k, reducing for k = Z to
usual homotopy types, and giving rise to base change functors

Hot(k)→ Hot(k′)

for any ring homomorphism k→ k′. And I wonder whether this might
not come out in some very simplistic way, in the general spirit of our
“modelizing story”, without having to work out in full a description of
homotopy types by such sophisticated models as De Rham complexes
with divided powers, or coalgebra structures in (Cat), and looking up
maybe the relations between these. (How by all means hope to recover
a De Rham structure from a stupid structure (*)???)

2) The condition d) in corollary 1 is needed in order to ensure that a
derived functor RHomk(L•, F•) may be defined using projective resolu-
tions of L•, whereas conditions b), c) ensure that a functor RHomk may
be defined using injective resolutions of F•. It is a well-known standard
fact of homological algebra that in case both methods work (namely
here, when all four assumptions are satisfied) that the two methods
yield the same result, which may equally be described by resolving simul-
taneously the two arguments. (NB condition a) is needed anyhow for
Homk to be defined and for P&

M
being an abelian category, which allows

to define D+(P&
M
).) Our preference goes to the first method, which in

case P = Addk(A) and L = kA, conduces to computation of cohomology
RΓA(F•) in terms of a “cointegrator” LA

• on A. However, when it comes
to introducing the variant RHomk, this method breaks down, as we saw,
it is the other one which works. We thus get a satisfactory formalism of
RHomk and RHomk (including formula (134) relating them via RH•)
using only assumptions a)b)c).

3) If we want to extend the RHomk formalism to the set-up when the
data A is replaced by a k-additive category P endowed with a diagonal
map as in remark 1), the proof on page 437 shows that what is needed [p. 442]
is exactness of the functor L 7→ L ⊗ a from P& to P&, for any a in
P – which is a “flatness” condition on a. It is easily checked that his
condition is satisfied provided HomP(b, a) is a flat k-module, for any b
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in P (more generally, an object M in P& is flat for the tensor product
structure in P&, provided M(b) is flat for any b in P). Thus, there will
be a satisfactory RHomk theory provided the k-modules HomP(b, a),
for a, b in P, are k-flat. It is immediately checked that this also means
that any projective object L in P& is “k-flat” (with respect to external
tensor product U 7→ U ⊗k L : Abk → P&, as in prop. 4), or equivalently
still, that this holds when L is any object a in P. In case P = Addk(A),
when any object of P is a finite sum of objects k(x) with x in A, the
modules Hom(b, a) for b, a in L are finite sums of modules of the type
Hom(k(y), k(x)) = k(Hom(y,x)), and hence are projective, not only flat. It
would seem that in the general case of P endowed with a diagonal map,
the “natural” assumption to make in order to have everything come
out just as nicely as when P comes from an A, is that the k-modules
HomP(b, a) (for a, b in P) should be projective, not only flat. Flatness
however seems to be all that is needed in order to ensure that when
L in P& is projective (hence L(a) is flat for any a in P) and F in P&

M
is

injective, then the objects Homk(L, F) and Homk(L, F) in M and P&
M

respectively are injective. This implies that for a k-additive functor

u : M→M′

between categories M, M′ satisfying the assumptions of cor. 1, and u
commuting moreover to small inverse limits (and hence to formation of
Homk(L, F)), we get a canonical isomorphism

(136) Ru(RHomk(L•, F•))' RHomk(L•, RuP(F•)),

where
uP : P&

M
→ P&

M′

denotes the extension of u, and Ru, RuP are the right derived functors.
When u is exact, we may replace Ru, RuP by u, uP (applied componen-
twise to complexes, without any need to take an injective resolution
first). There is a formula as (136) with RHomk replaced by RHomk,
which I skip, as well as the dual formulas.



Part VI

Schematization

24.8. [p. 443]

110 I pondered some more about homotopy types over a ground ring k, just More wishful thinking on “schemati-
zation” of homotopy types.enough to become familiar again with the idea, and more or less con-

vinced that that there should exist such a thing, which should amount,
kind of, to putting a “continuous” structures (namely the very rich
structure of a scheme) upon something usually visualized as something
“discrete” – namely a homotopy type. The basic analogy here is free
Z-modules M of finite type – a typical case of a “discrete” structure.
It gives rise, though, to a vector bundle W (M) over the absolute base
S0 = Spec(Z), whose Z-module of sections is M , and the functor

M 7→W (M)

from free Z-modules of finite type to vector bundles over S0 is fully
faithful. When M is an arbitrary Z-module, i.e., an abelian group,
W (M) still makes sense, namely as a functor

k 7→ M ⊗Z k

on the category of all commutative Z-algebra (i.e., just commutative
rings); it is no longer representable by a scheme over S0 (except precisely
when M is free of finite type), but it is very close still, intuitively and
technically too, to a usual vector bundle (the “vector” structure coming
from the k-module structure on W (M)(k) = M⊗Z k). Again, the functor
M 7→W (M) from Ab to the category of “generalized vector bundles” over
S0 is fully faithful. Working with semisimplicial Z-modules (say) rather
than just Z-modules, and more specifically with those corresponding to
K(π, n) types, and using Postnikov “dévissage” of a general homotopy

[“dévissage” = “decomposition”]type, one may hope to “represent” this type, in a more or less canonical
way in terms of the successive semisimplicial Postnikov fibrations, by a
semi-simplicial object in the topos (say) of all functors fromZ-algebras to
sets which are “sheaves” for a suitable site structure on the dual category
(namely the category of affine schemes over Z) – the so-called “flat”
topology seems OK. (NB To eliminate logical difficulties, we may have
to restrict somewhat the rings k used as arguments, for instance take

400
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them to be of finite type over Z – never mind such technicalities!). This
approach may possibly work, when restricting to 1-connected homotopy
types, or at any rate to the case when the fundamental groups of the
connected components are abelian. If we wish a “schematization” of
arbitrary homotopy types, we may think of going about it by keeping
the fundamental group of groupoid “discrete”, and “schematize” the
Postnikov truncation involving only the higher homotopy groups (πi [p. 444]
with i ≥ 2). This suggests that for any integer n ≥ 1, there may be
a “schematization above level n” for a given homotopy type, leaving
the Cartan-Serre truncation of level n discrete, and “schematizing” the
corresponding total Postnikov fiber (involving homotopy groups πi
for i ≥ n). Maybe such a schematization can be constructed equally
for level 0, even without assuming the fundamental groupoid to be
abelian, only nilpotent – but then we may have to change from ground
ring Z to the considerably coarser one Q (compare comments at the
end of section 94). In any case, the key step in this approach would
consist in checking that, after schematization has been carried through
successfully up to a certain level in the successive elementary Postnikov
fibrations, the next elementary fibration (described by a cohomology
class in Hn+2(Xn,πn+1)) comes from a “schematic” one, and that the
latter is essentially unique; in other words, that the canonical map from
the “schematic” Hn+2 (with “quasi-coherent” coefficients) to the usual
“discrete” one is bijective. Maybe this hope is wholly unrealistic though.
One fact which calls for some skepticism about this approach, comes in
when looking at the case of an “abelian” homotopy type, described by
a semisimplicial abelian group X•, in which case we expect that base
change Z→ k should be just the usual base change

X• 7→ X• ⊗Z k

(if X• has torsion-free, i.e., flat components, at any rate). But when X•
has homology torsion, the universal coefficients formula shows us that
the homology (= homotopy) groups of X• ⊗Z k are not just the groups
Hi(X•)⊗Zk = πi(X•)⊗Zk, as we implicitly were assuming it seems in the
approach sketched above, when schematizing the homotopy groups πi
one by one via W (πi). Thus, maybe Postnikov dévissage isn’t a possible
approach towards schematization of homotopy types, and one will have
to work out rather a comprehensive yoga of reconstructing a homotopy
type from one kind or other of “abelianization” or “linearization” of
homotopy types, endowed with suitable extra structure embodying
“multiplicative” features of the homology and cohomology structure. At
any rate, I did not hit upon any “simplistic way” to define homotopy
types over any ground ring, and I have some doubts there is any, in
terms of the general non-sense we did so far.

Besides this, I spent hours to try and put some order into the mess [p. 445]
of all Hom and tensor product type operations between categories Ak̂ ,
A
M̂

, Bk̂ , B
M̂

(or their &-style generalizations), and the duality and
Cartan-type isomorphisms between these. There are a few more still
than the fair bunch met with in these notes so far – I finally renounced
to get really through and work out a wholly satisfactory set of notations,
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taking into account all symmetries in the situation. I realized this might
well take days of work, while at present there is no real need yet for
it. I sometimes find it difficult to find a proper balance in these notes
between the need of working on reasonably firm ground, and working
out suggestive terminology and notations for what is coming up, and
on the other hand my resolve not to get caught again by the “Eléments
de Géométrie Algébrique” style of work, when it was understood that
everything had to be worked out in complete detail and in greatest
generality, for the benefit of generations of “usagers” (besides my own

[I’m leaving in “usagers” for color,
though “users” would surely do. . . ]

till the end of my life!..). As a matter of fact, this whole “abelianization
story”, going on now for well over a hundred pages and nothing really
startling coming out – just things I feel I should have known for ages, has
been won (so to say) over an inner reluctance against these “digressions”
in the main line of thought, the reluctance of one who is in a hurry to get
through. I know well this old reluctance, feeling silly whenever working
out “trivial details” with utmost care; as I know too that through this
work only would come to a thorough understanding of what is going
on, and new intuitions or relationships would flash up sometimes and
open up unexpected landscapes and provide fresh impetus. The same
has happened innumerable times too within the last seven years, when
“meditating” on personal matters – constantly “the-one-in-a-hurry” has
turned out to be just the servant of the inner resistances against renewal,
against a fresh, innocent look upon things familiar, and consistently
ignores as “irrelevant”. It doesn’t seem the-one-in-a-hurry gets at all
discouraged for not getting his way many times – he seems to be just
as stubborn as the one who likes to take his time and look up things
thoroughly!

25.8. [p. 446]

111 Still about “schematization” of homotopy types! Here is a tentative Complexes of “unipotent bundles” as
models, and “schematic” lineariza-
tion.

approach, without any explicit use of Postnikov fibrations nor abelian-
ization, although both are involved implicitly. If n is any natural integer,
I’ll denote by

Hotn

the full subcategory of the pointed homotopy category Hot•, made up
with n-connected homotopy types, with the extra assumption for n= 0
that the fundamental group be abelian. For any (commutative) ring k, I
want to define a category

(a) Hotn(k),

depending covariantly on k, in such a way that we have an equivalence

(b) Hotn(Z)
≈−→ Hotn,

which should come from a canonical functor

(c) Hotn(k)→ Hotn
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defined for any k, and which should be viewed as ground-ring restriction
from k to Z – more generally, for any ring homomorphism

k′→ k

we expect a restriction functor, beside the ring extension functor

(d) Hotn(k
′)→ Hotn(k) and Hotn(k)→ Hotn(k

′).

Among other important features to expect, is that for any object X
in Hotn(k), the homotopy groups πi(X ) (defined via (c)) should be
naturally endowed with structures of k-modules, and the ring extension
and restriction functors (d) should be compatible with these.

Here is an idea for getting such a theory. For given k, we first define
an auxiliary category

(e) U(k),

whose objects may be called “unipotent bundles over k”. These “bundles”
will not be quite schemes over k, they will be defined as functors

(f) Alg/k → (Sets)

where Alg/k is the category of (commutative) k-algebras (in the basic
universe U). The opposite category may be identified with the category

Aff/k

of affine schemes over k, thus, we’ll be working in the category of [p. 447]
functors (or presheaves over Aff/k)

(f’) (Aff/k)
op→ (Sets)

more specifically, U(k) will be a full subcategory of this category of
functors. We’ll endow Aff/k with one of the standard site structures,
the most convenient one here is the fpqc topology (faithfully flat quasi

[“fidèlement plat et quasi-
compact”]

compact topology), and work in the category of sheaves in the latter. In
terms of the interpretation (f) as covariant functors on Alg/k, this just
means that we are restricting to functors X which 1) commute to finite
products and 2) are “compatible with faithfully flat descent”, i.e., for
any map

k′→ k′′

in Alg/k such that k′′ becomes a faithfully flat algebra over k′, the
following diagram in (Sets)

X (k′)→ X (k′′)⇒ X (k′′ ⊗k′ k′′)

is exact. Thus, U(k) will be defined as a full subcategory of the category
of such functors, or “sheaves”.

One way for defining U(k) is to present it as the union of a sequence
of subcategories Um(k) (m a natural integer). We’ll take U0(k) to be
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just reduced to the final functors (i.e., X (k′) is a one-point set for any k′

in Alg/k), and define inductively Um+1(k) in terms of Um(k) as follows.
For any k-module M , let W (M) be the corresponding “vector bundle”,
defined by

(g) W (M)(k′) = M ⊗k k′,

then an object X is in Um+1(k) iff there exists an object Xm in Um(k),
and a k-module M = Mm+1, in such a way that X = Xm+1 should be
isomorphic to a “torsor” over Xm, with group W (M). I am not too sure,
here, whether we should view the objects of Um(k) as endowed with
the extra structure consisting in giving the modules M1, . . . , Mm used in
the inductive construction, and moreover the successive fibrations – if
so, then of course the categories Um(k), and their union U(k), will no
longer be interpreted as a mere subcategory of the category of sheaves [p. 448]
(of sets) just described. Possibly, both approaches are of interest and
will yield non-equivalent notions of schematization. On the other hand,
although definitely X is not representable by a usual scheme over k
unless the k-modules Mi are projective of finite type (in which case
X will be an affine scheme, and even isomorphic, at least locally over
Spec(k), to standard affine space Ed

k for suitable d), it is felt that X ,
as far as cohomology properties go, should be very close to being an
affine scheme, and that presumably its cohomology groups Hi with
coefficients in “quasi-coherent” sheaves such as W (M) should vanish
for i > 0; consequently, presumably the torsors used for the inductive
construction of X are trivial, which means that X is in fact isomorphic to
the product of all W (Mi)’s. In the case when we disregard the successive
fibration structure, this means that the objects of U(k) are just sheaves
of sets which are isomorphic to some W (M) (where morally M is the
direct sum of the modules Mi which have been used in our inductive
definition). This gives then a rather trivial description of the objects of
U(k) (and all Um(k)’s are already equal to U(k), for m≥ 1!), it should
be remembered, however, that maps in U(k) from a W (M) to a W (M ′)
are a lot more general than just k-linear maps M → M ′ (they may be
viewed as “polynomial maps from M to M ′”).

The category U(k) will be endowed with the sections functor

(h) X 7→ X (k) : U(k)→ (Sets).

Now, let A be any test category, for instance A= , and consider the
functor

(h’) Hom(Aop, U(k))→ Hom(Aop, (Sets))

induced by (h). The second member modelizes homotopy types, which
therefore allows us to define homotopy invariants for objects in the first
member, and hence to define the property of n-connectedness, and (if
n = 0) of 0-connectedness with abelian fundamental group. As a matter
of fact, we would like to define a subcategory Mn(k) of the first member,
so that is should become clear that for an object X∗ in it, its homotopy
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groups are endowed with structures of k-modules, so that for n = 0
the abelian restriction on π1 is superfluous, because automatic. To be
specific, we better restrict maybe to A= , more familiar to us, so that
X∗ may be viewed as a “complex” (n 7→ Xn) with components in U(k).
The kind of restriction I am thinking of for defining the model category [p. 449]
Mn(k) is:

(i) X i = e for i ≤ n,

where e is the final object of U(k), and also maybe, if we adopt the more
refined version of U(k) as a strictly increasing union of subcategories
Um(k),

(i’) X i is in Ui−n, for any i ≥ n.

One may have to play around some more to get “the correct” description
of the model category, which I tentatively propose to define simply as a
suitable full subcategory

(j) Mn(k) ⊂ Hom(Aop, U(k)).

The functor (h’) allows to define a notion of weak equivalence in Mn(k),
hence a localized category Hotn(k), and a functor (c) from this category
to Hotn. The ring extension and restriction functors (d) are equally
defined in an evident way, via corresponding functors on the model
categories (with the task, however, to check that these are compatible
with weak equivalences). The key point here is to check that for k = Z,
the functor (c) (namely (b)) is indeed an equivalence of categories.
Thus, the main task seems to cut out carefully a description of a model
category Mn(k), in terms of semisimplicial objects say, in a category such
as U(k), in such a way as to give rise to an equivalence of categories
(b).

One point which is still somewhat misty in this (admittedly overall
misty!) picture, is how to get, for an object X in Hotn(k), the promised
operation of k on the homotopy groups πi(X ). I was thinking about
this when suggesting the conditions (i) and (i’) above on k-models for
homotopy types – but I really doubt these are enough. On the other
hand, it seems hard to imagine there be a good notion of homotopy
types over k, without the homotopy groups to be k-modules over k,
not just abelian groups. Even more still, there should be moreover a
“linearization functor”

(k) Hotn(k)→ D•(Abk),

with values in the derived category of the category of chain complexes
in Abk = k-Mod of k-modules, presumably coming by localization from
a functor

(k’) Mn(k)→ Ch•(Abk),

and giving rise to a commutative diagram
[footnote “only for k = Z”]

[p. 450]
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(l)

Hotn(k) D•(Abk)

Hotn D•(Ab) ,

where the second horizontal arrow is the usual abelianization functor
for homotopy types, and the second vertical one comes from the ring
restriction functor Abk → Ab= AbZ. In (k’), Ch• denotes the category
of chain complexes, and it looks rather mysterious again how to get
such a functor (k’). We may of course think of the trivial abelianization

X• 7→ k(X•)
def
= (n 7→ k(Xn)),

where for an object X in U(k), or more generally any sheaf on Aff/k,
k(X ) defines a trivial k-linearization of this sheaf, in the sense of the
topos of all such sheaves. Anyhow, k(X ) is a sheaf, not a k-module, so we
should still take sections to get what we want – but this functor looks not
only prohibitively large and inaccessible, but just silly! A much better
choice for k-linearizing objects of U(k) specifically seems the following.
Disregarding the fibration structures, such an object X is isomorphic to
an object W (M), M some k-module. We look for a k-linearization

(m) X (=W (M))→W (L(X )),

where L(X ) is a suitable k-module. Now, among all maps

X →W (N)

of X into sheaves of the type W (N), there is a universal one, which in
terms of M can be described as

N = Γk(M),

where Γk denotes the “algebra with divided powers generated by M”,
the canonical map M → Γk(M) or rather

(n) W (M)→W (Γk(M)), x 7→ exp(x) =
∑

i≥0

x (i)

being the “universal polynomial map” of M with values in a module
N (or rather, of W (M) into W (N)). Here, x (i) denotes the i’th divided
power of x , which is an element of Γ i

k(M). It just occurs to me that
this expression of exp(x), the universal map, is infinite, thus, it doesn’t
take its values in W (N) actually, but in a suitable completion of it – this
doesn’t seem too serious a drawback, though! The point I wish to make
here, is that for given X in U(k), defining [p. 451]

(o) Lk(X ) = Γk̂ (M)
def
=
∏

i≥0

Γ i
k(M), (k-linearization of X ),

where M is any k-module endowed with an isomorphism

u : X 'W (M),
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the k-module Lk(X ) does not depend, up to unique isomorphism, on the
choice of a pair (M , u), because for two k-modules M , M ′, any morphism
of sheaves of sets

v : W (M)→W (M ′)

induces a homomorphism of k-modules

Γk̂ (v) : Γk̂ (M)→ Γk̂ (M
′)

(compatible not with multiplications, but with diagonal maps. . . ), which
will be an isomorphism if v is.

Thus, we do have, it seems to me, a good candidate for k-linearization.
To check it is suitable indeed, the main point seems to check that the
corresponding diagram (l) commutes up to canonical isomorphism,
the crucial case of course being k = Z. This now looks like a rather
down-to-earth question, which seems to me a pretty good test, whether
the intuition of schematization of homotopy types is a sound one. Let’s
rephrase it here. For this, let’s first restate the description of the category
U(k) (coarse version) in the more down-to-earth terms of linear algebra.
Objects may be viewed as just k-modules M , whereas (non-additive)
“maps” from M to M ′ (defined previously as maps W (M)→W (M ′) of
sheaves of sets) are described as just continuous k-linear maps

(p) f : Γk̂ (M)→ Γk̂ (M
′),

which are moreover compatible with the natural augmentations to k,
and with the natural diagonal maps:

ε : Γk̂ (M)→ k, ∆ : Γk̂ (M)→ Γk̂ (M) ⊗̂k Γk̂ (M) (' Γk̂ (M ×M)),

(the latter deduced from the usual linear diagonal map M → M ×M).
When M is looked at as being embedded in Γk̂ (M) by the exponential
map (n), it is identified (if I remember it right) to the set of elements ξ
in Γk̂ (M) satisfying the relations

(q) ε(ξ) = 1, ∆(ξ) = ξ⊗ ξ,

where ε is the augmentation and∆ the diagonal map, hence (p) induces
a map (in general not additive) [p. 452]

(p’) Γ ( f ) : M → M ′

(corresponding to the action of f , viewed as a map W (M)→W (M ′),
on sections of W (M)) – and likewise after any ring extension k → k′,
defining a map

Γ ( f )k′ : M ⊗k k′→ M ′ ⊗k k′

from W (M) to W (M ′) – which is the description of the map of sheaves
W (M)→W (M ′) associated to a map (p). We have thus a description,
in terms of linear algebra, of a category U(k), and of a “sections” functor

(r) Γ : U(k)→ (Sets), X 7→ X (k),

which is essentially the functor (h) above, viewed in a different light.
Now to our
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Question 1. The category U(k) and the functor (r) being defined as
above in terms of linear algebra over the ground ring k, let X∗ = (n 7→ Xn)
be a semisimplicial object in U(k), consider the corresponding semi-
simplicial set X∗(k) = (n 7→ Xn(k)), and the semi-simplicial k-module
L(X∗) = (n 7→ L(Xn)), where, for an object M of U(k), L(M) is defined
as

(s) L(M) = Γk̂ (M),

which depends functorially on M in U(k). Then in the derived category
of (Ab), is there a canonical isomorphism between L(X∗) (with ground
ring restricted from k to Z) and the abelianization Z(X∗(k)) of X∗(k)? [. . . unreadable. . . ] k = Z, and components

Xn projective.
We may have to throw in some extra assumption on X∗, at any rate

(t) X0 = e (final object of U(k)),

giving rise to L(X0) ' k. Also, we may have to restrict to k = Z, or
otherwise correct the obvious drawback that the two chain complexes
don’t have isomorphic H0 (one is k I guess, a k-module in any case, the
other is Z), by truncating accordingly the two chain complexes (“killing”
their H0). There is a natural candidate for a map

(u) Z(X∗(k))→ L(X∗),

by using the functorial map

(u’) Z(M)→ L(M) = Γk̂ (M),

deduced from the inclusion (n)

M ,→ L(M),

and we may still specify the question above, by asking whether (u)
induces an isomorphism for homology groups in dimension i > 0.

I am not too sure whether all this isn’t just complete nonsense – it is [p. 453]
worth getting it clear whether it is or not, at any rate! There is one case of
special interest, the “simplest” one in a way, namely when the simplicial
maps between the Xn’s, each represented by a k-module Mn, are in fact
k-linear, in other words, when X∗ comes from a semisimplicial k-module
M∗ – more specifically still, when this is a K(π, n) type, say the nicest
semisimplicial model of this, using the Kan-Dold-Puppe functor for the
chain complex of k-modules, having π in degree n and zero elsewhere.
Then the left-hand side of (u) gives rise to the Eilenberg-Mac Lane
homology groups

(v) Hi(π, n;Z),

which I guess should be k-modules a priori, because of the operations of
k upon π, and the question then arises whether these can be computed
using the right-hand complex L(X∗). Maybe such a thing is even a
familiar fact for people in the know? If it turned out to be false even for
k = Z, my faith in schematization of homotopy types would be seriously
shaken I confess. . .
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* * *

After a little break for dinner, just one more afterthought. Working with
the completions Γk̂ may seem a little forbidding, and all the more so if
it used for computing homology invariants, not cohomology (the latter
more likely to involve infinite products in the corresponding (cochain)
complexes. . . ). On the other hand, as was explicitly stated from the
beginning, the natural context here seems to be pointed homotopy types,
and hence “pointed” algebraic paradigms for these – an aspect we lost
sight of, when looking for a suitable description of some category U(k)
of “unipotent bundles” over k. It would seem that in the “question”
above, we should therefore insist that X∗ should be a semi-simplicial
object of the category U(k)• of “pointed” objects of U(k), namely objects
X endowed with a section over the final object e (i.e., with an element
in X (k)). This will be automatic at any rate in terms of the condition
(t), X0 = e. The point I wish to make is that the category of pointed
objects of U(k) admits a somewhat simpler description (by choosing
the marked point as the “origin” for parametrization of the given object
X of U(k) by a k-module M), by model-objects which are still arbitrary
k-modules M , but the “maps” now being k-linear continuous maps

(p’) f : Γk(M)→ Γk(M ′)

between the k-modules Γk, without having to pass to completions, sat- [p. 454]
isfying compatibility with augmentations and diagonal maps, and the
extra condition (expressing that Γ ( f )(0) = 0 in exponential notation):

f (1) = 1,

i.e., f reduced to component Γ 0
k (M) ' k of degree zero is just the

identity of k with k ' Γ 0
k (M

′). Accordingly, we have a less awkward
k-linearization functor than L in (s), namely “pointed linearization” Lpt:

(s’) M 7→ Lpt(M)
def
= Γk(M) : U(k)•→ Abk,

which seems to me the better candidate for describing linearization.
Thus, we better rephrase now the “question” above in terms of (s’)
rather than (s). One trouble however is that the comparison map (u)
takes values in L(X∗), not Lpt(X∗), therefore, we may still have to use
the “prohibitive” L(X∗) as an intermediary for comparing the complexes
Z(X∗(k)) and Lpt(X∗). It may be noted now that, while the first chain
complex embodies Eilenberg-Mac Lane homology (v) (in the special
case considered above), the second one Lpt(X∗) (in that same case)
describes the value of the total derived functor of the familiar Γk functor,
on the “argument” π placed in degree n, and the statement that the two
are “the same” does sound like some standard Dold-Puppe type result
which everybody is supposed to know from the cradle – sorry!

* * *

After another break (visit, tentative nap), still another afterthought. The
final shape we arrived at for the “question” above, when working in the
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“pointed” category U(k)• of “pointed unipotent bundles over k”, was
whether for any semisimplicial object X∗ in U(k)• satisfying (t) above,
i.e., X0 = e (final object of U(k)•), the two canonical maps of chain
complexes (in fact, semisimplicial abelian groups)

(w) Z(X∗(k))→ L(X∗)←- Lpt(X∗)

are quasi-isomorphisms (for Hi with i > 0). I am not too sure yet if
some extra conditions on X∗ are not required for this to be reasonable –
I want to review two that came into my mind.

As the maps (w) are functorial for varying X∗, it would follow from a [p. 455]
positive answer that whenever

(x) X∗→ X ′∗

is a map of semisimplicial objects in U(k)• satisfying condition (t), and
such that the corresponding map

(x’) X∗(k)→ X ′∗(k)

is a weak equivalence, and hence the map between the Z-abelianizations
is a weak equivalence too, i.e., a quasi-isomorphism, that the same holds
for the corresponding map

(y) Lpt(X∗)→ Lpt(X
′
∗)

for the “schematic” k-linearizations. Now, this is far from being an
evident fact by itself, except of course in the case when the map (x)
above is a homotopism. Take for instance the case when we start with a
map of chain complexes in Abk

(x”) M•→ M ′•,

hence a map between the associated semisimplicial k-modules

(x”’) M∗→ M ′∗,

which may be viewed as giving rise to a (componentwise linear) map
between the associated semisimplicial objects X∗, X ′∗ in U(k)• via the
canonical functor

Abk → U(k)•;

the corresponding map (y) is then just the componentwise extension of
(x”’) to the enveloping algebras with divided powers

(y’) Γk(M∗)→ Γk(M ′∗).

The map (x’) can now be identified with (x”’), hence it is a weak equiv-
alence iff (x”’) is, i.e., iff (x”’) is a quasi-isomorphism. If we assume
moreover the components of M•, M ′• to be projective objects in Abk,
then from the assumption that (x”) is a quasi-isomorphism it does follow
that it is a chain homotopism, hence by Kan-Dold-Puppe the map (x”’)
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is a semisimplicial homotopism, and hence the same holds for (y’), and
(y’) therefore is indeed a quasi-equivalence. But without the assump-
tion that components are projective, it is surely false that the mere fact
that (x”) is a quasi-isomorphism, implies that (y’) is – otherwise this
would mean that in order to compute the left derived functor of the
non-additive functor [p. 456]

Γk : Abk → Abk,

it is enough, for getting its value on a chain complex M ′• say, to replace
M ′• by M ′∗ and apply the functor Γk componentwise, without first having
to take a projective resolution M• of M ′• – something rather absurd
indeed! Thus, the statement made on page 454, that when taking for
M ′• the k-module π placed in degree n and zero in all other degrees, the
corresponding Lpt(X ′∗) = Lk(M ′∗) embodies the value of the left derived
functor LΓk on M ′•, is visibly incorrect if we don’t assume moreover that
π is projective (flat, presumably, would be enough. . . ). Otherwise, we
should first replace π by a projective (or at any rate flat) resolution,
which we shift by n to get M•, and then take Γk(M∗) to get the correct
value of LΓk(M ′•).

This convinces me that in the question as to whether the maps in (w)
are quasi-isomorphisms (the more crucial one of course being the first
of the two), we should assume moreover that the components of X∗ are
described in terms of projective k-modules Mn, or at any rate k-modules
that are flat. Accordingly, we should make the same restriction on the
semisimplicial schematized model X∗, in order for the description we
gave of “k-linearization” as Lpt(X∗) (or L(X∗), never mind which) to be
topologically meaningful. Very probably, in the whole schematization
set-up, namely in the very definition we gave of U(k) and U(k)•, we
should stick to the same restriction. If I insisted first (with some inner
reluctance, I admit) on taking k-modules M unrestricted, this was be-
cause I was thinking of M , more specifically of the Mi ’s occurring in
the inductive “dévissage” of an object of Um(k) (when thinking of the
more refined version of U(k)), as essentially the homotopy groups of the
homotopy type we want to modelize, or rather, as the components of
the corresponding semisimplicial k-modules (denoted M ′∗ some minutes
ago). I was still thinking of course, be it implicitly, in terms of Postnikov
dévissage, despite yesterday’s remark that to use such dévissage literally
may cause trouble (p. 444). Thus, the feeling which gets into the fore
now is that we should kind of forget Postnikov, and work with semisimpli-
cial “schematic” models built up with k-modules which are projective, or
at any rate flat (namely torsion free, if k = Z).

It may be remarked that if M is any k-module, then the property that [p. 457]
M be projective, or flat, can be described in terms of the isomorphism
class of the corresponding object X in U(k)•, or equivalently, of the
functor W (M) on Alg/k, with values in the category of pointed sets.
Indeed, the isomorphism class of the k-module Γk(M) depends only on
the class of X , and it is easily seen that M is projective, resp. flat, iff
Γk(M) is. (The “only if” is standard knowledge of commutative algebra,
the “if” comes from the fact that M is a direct factor of Γk(M), hence
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projective resp. flat if the latter is.) Using this, one even checks that it
is enough to know the isomorphism class of X in U(k) – because two
objects of U(k)• are isomorphic in U(k)• iff they are in U(k).

* * *

The second afterthought is that in the question on page 452, we should
definitely assume k = Z. Already when asserting hastily (p. 453) that en
Eilenberg-Mac Lane homology group Hi(π, n;Z) should automatically
inherit a structure of a k-module, whenever π had one, I was feeling
uncomfortable, because after all the dependence of this group upon
variable π is not at all additive, thus the operation of k upon this
group stemming from its operations on π was no too likely to come out
additive! To take one example, take n = 1, i.e., we just take ordinary
group homology for π, and assume that k is free of finite type over Z,
and π = M free of finite type over k (for instance M = k), hence free of
finite type over Z too. Then it is well-known that

H∗(M ;Z)'
∧

Z
M ,

the exterior algebra of M over Z, which surely is not endowed with a
structure of a k-module in any natural way! This, if there was any such
structure (natural or not) on the highest non-zero term (corresponding
to the rank d of M over Z), it would follow that we get a ring homomor-
phism from k to Z' EndZ(Hd ' Z), and we may choose k in such a way
that there is no such homomorphism, for instance k = Z[T]/(T 2 + 1).
In this case, there cannot be any isomorphism between the Hd ’s of the
two members of (u)! Another point, which I hit upon first, is that when
X∗ is defined in terms of a semisimplicial object M∗ of Abk, then the
functorial dependence of the first term in (w) with respect to varying M∗, [p. 458]
is that to a direct sum corresponds the componentwise tensor product
over Z, whereas for the last term of (w) we have to take tensor products
over k (in the middle term, completed tensor products over k) – the two
variances are clearly at odds with each other.

Thus, when working with would-be “k-homotopy types” as defined
here via semisimplicial objects in U(k)•, we should altogether drop the
idea that the homology groups of the corresponding semisimplicial set
X∗(k) are k-modules. I wouldn’t really look at them as being “the”
homology groups of the k-homotopy type X∗, these should be rather
given via k-linearization Lpt and they are k-modules, indeed, they come
from a canonical object of D•(Abk), namely Lpt(X∗). In the example
just looked at, presumably we should get the exterior algebra of M
over k (not Z!). This makes me suspect even that, except in the case
k = Z, this semisimplicial set X∗(k) doesn’t make much sense, namely
its homology invariants (and presumably its homotopy groups too) are
not really relevant for the k-homotopy type X∗, which has invariants of
its own which are completely different. Thus, I am not at all convinced
any more that the homotopy groups πi(X∗) carry k-module structures
(as expected at the beginning, p. 446) – but to clear our mind on that
matter, we should take off from the simplistic example when X∗ comes
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from a semisimplicial k-module M∗, in which case of course we have by
Whitehead’s isomorphism

πi(X∗(k))' Hi(M•) (' πi(M∗)),

where M• is the chain complex associated to M∗. Also, it is now becoming
obvious whether weak equivalences for objects X∗ should be defined
(as we did) via X∗(k), as suggested by the “simplistic” example above.
If we define homology of X∗ by the formula

(z) LH•(X∗)
def
= Lpt(X∗) viewed as an object of D•(Abk),

and accordingly, the homology modules

(z’) Hi(X∗)
def
= πi(Lpt(X∗)) = Hi(LH•(X∗)),

maybe the better idea for defining weak equivalences X∗ → X ′∗ is by
demanding that they should be transformed into quasi-isomorphisms by
the total homology functor LH•, or equivalently, induce isomorphisms
for the homology modules (z’). If the answer to our crucial question
is affirmative (with the corrections made, including k = Z), then in [p. 459]
case k = Z, the new definition just given for weak equivalences is
equivalent to the old one in terms of X∗(Z) (taking Z-valued points),
provided at any rate we admit or rather assume that X∗(Z) and X ′∗(Z)
are simply connected, which will be automatic if we work in the category
of (schematized) models M1(k), the condition (t) above (X0 = e) being
replaced by (i) with n= 1, i.e., by

(α) X0 = X1 = e,

to be on the safe side! Under this extra assumption at any rate, I feel
definitely more confident with the new definition of weak equivalence,
via the homology invariants (z’), rather than the old one. At any rate,
the question of the two definitions being equivalent or not should be
cleared up, namely:

Question 2. Let k be any ring, define the category U(k)• of “pointed
unipotent bundles over k” in terms of projective k-modules, with maps
defined as in (p’) page 453. (This is equally the correct set-up for
question 1 on page 452, besides the extra condition k = Z, as we saw
before.) Let

u : X∗→ X ′∗
be a map of semisimplicial objects in U(k), satisfying both the extra
assumptions (α) above. Then is it true that the corresponding map

(β) X∗(k)→ X ′∗(k)

of semisimplicial sets is a weak equivalence, iff the map

Lpt(X∗)→ Lpt(X
′
∗)

is, i.e., iff u induces an isomorphism for the homology invariants Hi
defined in (z’) above (via the abelianization functor Lpt = Γk).
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If instead of (α) we only assume X0 = X ′0 = e, it seems that we may
have to throw in some other extra condition on X∗ and X ′∗, in order
for the definition of weak equivalence in terms of the mere homology
invariants to be reasonable – a condition which, at the very least, and
in case k = Z say, should ensure that the homotopy types defined by
the two terms in (β) should have abelian fundamental groups (which
doesn’t look at first sight to be automatic). At any rate, the conditions
(α) above, which should be viewed as a 1-connectedness assumption,
are natural enough, and it is natural too to try first to push through a
theory of schematization of homotopy types, under this assumption.

26.8. [p. 460]

112 I am continuing the “wishful thinking” about schematization of homo- Postnikov dévissage and Kan condi-
tion for schematic complexes.topy types – a welcome break in the “overall review” on linearization

(in the context of the modelizer (Cat)), which had been getting a little
fastidious lately!

I’ll admit, as one firm hold in all the wishfulness, that in the “Eilenberg-
Mac Lane case” of p. 453, when moreover k = Z and the components
X i of the semisimplicial unipotent bundle X∗ are projective, the two
maps (w) of page 454 are indeed quasi-isomorphisms. From this should
follow the similar statement, when X∗ comes from a chain complex of
k-modules M• with projective coefficients, by reducing to the case when
only a finite number of components of M• are non-zero (by suitable
passage to the limit), and then by induction on the number of these
components, using the fact that the three terms in (w) depend on X∗
in a “multiplicative” way, namely direct sums being transformed into
tensor products. (NB Under the assumptions of projectivity made, we
may as well express the quasi-isomorphisms (w) we start with as being
semisimplicial homotopisms, and remark that componentwise tensor-
product of such homotopisms is again one.) From this, using the relevant
spectral sequences in homology, should follow that the maps (w) are still
quasi-isomorphisms, whenever X∗ can be “unscrewed” (“dévissé”) as a
finite successive fibering with fibers of the type M∗ as above. Another
passage to the limit will yield the same result for an infinite dévissage,
provided the fibers M(i)∗ (i = 1,2, . . .) are “way-out”, i.e., for given n,
only a finite number of components M(i)n are non-zero (it amounts to
the same to demand that the sequence M(i)• of corresponding chain
complexes be “way out”). This will give already, it seems, a fair number
of cases when (w) are quasi-isomorphisms. (Admittedly, working this
out will involve a fair amount of work, especially for getting the relevant
properties of L• and Lpt, which should mimic very closely the known
ones for usual linearization, including spectral sequences or, more neatly,
transitivity isomorphisms in the relevant derived categories. . . ) The
main point here is that those special types of X∗’s (we may call them Kan-
Postnikov complexes in U(k)) are enough in order to modelize, via the
corresponding semisimplicial sets X∗(Z), arbitrary pointed homotopy
types with abelian π1. This is seen of course using Postnikov dévissage [p. 461]
of a given homotopy type, and replacing every homotopy group πi by a
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shifted projective resolution (a two-step resolution will do here) M(i)•,
as indicated on page 456, and using the corresponding semisimplicial
Z-modules M(i)∗ as fibers, in the successive fiberings. To see that
what is being done on the “discrete” level, working with semisimplicial
sets, can be “followed” in an essentially unique way on the “schematic”
level, we hit now of course upon the key difficulty, pointed out on page
444, about the Postnikov cohomology group Hn+2(X (n+1),πn+1) being
isomorphic to the corresponding “schematic” group. Now, that this is
so indeed should follow from the homology isomorphisms (w) I hope,
just dualizing the result to cohomology. All this seems to sound kind
of reasonable, it seems, even that for a given homotopy type in Hot0,
we should be able to squeeze out this way a unique isomorphism type,
at any rate, of semisimplicial unipotent bundles – but to see whether it
does work, or if there is some major blunder which turns the whole into
nonsense, will come out only from careful, down-to-earth work, which
I am not prepared to dive into.

It occurred to me that the “Kan-Postnikov” complexes in U(k) have
some special features among all possible complexes with X0 = e, and
also that some extra feature are needed, if we want the maps in (w) to
be quasi-isomorphisms. I want to dwell upon this a little. First of all,
the condition X0 = e is indeed essential, as we see by taking a constant
complex with value X0, then the homology of the three chain complexes
(w) reduces to degree zero, and the H0’s are respectively

Z(X0(Z)) = Z(M0), L0(X0) = Γb Zˆ(M0), Lpt(X0) = ΓZ(M0),

where M0 is the Z-module giving rise to X0 – and none of the two maps
is an isomorphism, unless M0 = 0.

Take now the next simplest case, when X∗ comes from a monoid
object G in U(k) in the usual way; then what we are after, in dual terms
of cohomology rather than homology (taking the dual complexes of
those in (w)), amounts essentially to asking whether the usual discrete
cohomology of the discrete monoid G(Z) can be computed, using poly-
nomial cochains rather than arbitrary ones. Now, this we did admit as
“well-known” in the most evident case of all, when G is being repre-
sented as an object of U(Z) by a projective (hence free) Z-module M ,
the multiplication law is just usual addition. It still looks reasonable
enough when the monoid G is a group, with M of finite type say. In this
case, the Borel theory of algebraic affine groups over a field (here, the [p. 462]
field of fractions Q of Z) tells us that GQ is a nilpotent algebraic group,
and that therefore it admits a composition series with factors isomorphic
to the additive group GaQ; presumably, the same dévissage then can
be obtained over the base Z, and using induction on the length of the
composition series, and the Hochschild-Serre type of relations (tradi-
tionally expressed by a spectral sequence) between group cohomology
of a group, quotient group and corresponding subgroup, we should get
the wished for quasi-isomorphisms (w).

Take now, however, the simplest case of a monoid which isn’t a group,
namely the multiplicative law on the affine line, given by the polynomial
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law
W (Z)×W (Z)→W (Z) : (x , y) 7→ x y.

the corresponding “discrete” monoid is just Z(×), namely the integers
with multiplication, its H1 with coefficients in Z is just the group of all
homomorphisms

(*) Z(×)→ Z(+) = Z,

and denoting by P the set of all primes and using the prime decomposi-
tion of integers, we find that

Hom(Z(×),Z(+))' ZP,

i.e., a family (np)p∈P of integers being associated the homomorphism

±
∏

p∈P
pαp 7→

∑

p∈P
αpnp.

On the other hand, the schematic H1 consists of all homomorphisms
(*) that can be expressed by a polynomial, hence induce a homomor-
phism of algebraic group schemes Gm→Ga, and it is well-known (and
immediately checked) that there is only the zero homomorphism!

Thus, it turns out that the assumptions made yesterday on X∗, in
order for the “linearization theorem” (!) to hold, namely the maps
(w) to be quasi-isomorphisms, are definitely not strong enough yet!
One may think of throwing in the extra condition X1 = e, so as to rule
out monoids altogether (and even groups, too bad!), but I don’t think
this helps at all (didn’t try though to make a counterexample). On the
other hand, just restricting to Kan-Postnikov complexes seems rather
awkward, we definitely don’t want to drag along Postnikov fibrations
as a compulsory ingredient of the complexes we work with. The idea
which comes up here is just to “drop Postnikov and keep Kan” – namely
introduce a Kan type condition on semisimplicial complexes in U(k). If
we mimic formally the usual “discrete” Kan condition, we get that (for [p. 463]
given pair of integers k, n with 0 ≤ k ≤ n) a certain map from Xn, to
a certain finite projective limit defined in terms of the boundary maps
Xn−1→ Xn−2, should be epimorphic. Now, clearly U(k) is by no means
stable under fiber products, except under very special assumptions
(including differential transversality conditions, at any rate), and on
the other hand one feels that the notion of “epimorphism” one will
have to work with in U(k) will have to be a lot more exacting than the
map X (k)→ Y (k) on sections being surjective, or the usual categorical
meaning within U(k), which looks kind of silly here. Even the most
exacting surjectivity condition on X → Y , namely that it admit a section
doesn’t quite satisfy me – what I really want is that X should be a
trivial bundle over Y , more specifically that X is isomorphic to a product
Y × Z , in such a way that the given map X → Y identifies with the
projection Y × Z → Y . Maybe this is too exacting a condition, however,
and hard to check in computational terms sometimes (?), maybe we
should be content with demanding only that X → Y has a section, and
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moreover is “smooth”, i.e., has everywhere a surjective tangent map
(which may be expressed on the corresponding sheaf on Aff/k by the
familiar condition of “formal smoothness”, namely possibility of lifting
sections over arbitrary infinitesimal neighborhoods. . . ). We’ll have to
choose at any rate some such strong “surjectivity” notion in U(k), which
we’ll call “submersions” say. Thus, I feel a “Kan complex” in U(k) should
have boundary maps which are submersions. What we should do, is to
pin down some simple “Kan condition” on a complex X∗, in terms of
“submersions”, in such a way as to ensure, at any rate

a) that for any pair (n, k) with 0 ≤ k ≤ n, the object X∗(n, k) of
“horns of type (n, k) of X∗”, expressed by the suitable finite inverse
limits (in terms of boundary maps Xn−1→ Xn−2) is representable
in U(k), and

b) the canonical map Xn→ X∗(n, k) is a submersion,
and such of course that all Kan-Postnikov complexes should satisfy this
Kan condition, at the very least.

The first non-trivial case, in view of X0 = e, is n = 2, in which case
X∗(2, k) is trivially representable by X1 × X1, and the condition we get
is that the three natural maps coming from boundary maps

(**) X2 X1 × X1

should be submersions for a “Kan complex”. In case X∗ is defined by a [p. 464]
monoid object G as above, this clearly implies that G is a group – which
rules out the counterexample above!

Of course, the very first thing we’ll expect from a “good notion” of Kan
complexes in U(k), is that for k = Z, it should make the linearization
theorem work, namely that maps in (w) p. 454 are quasi-isomorphisms.
The next thing, very close to this one but for arbitrary ground ring k
now, is that a map

X∗→ X ′∗ (with X0 = X ′0 = X1 = X ′1 = e)

of Kan complexes in U(k) is a homotopism iff it induces an isomorphism
on the homology modules (z’) (p. 458) – which sounds reasonable
precisely because we are working with Kan complexes. If this is so, the
homotopy category Hot1(k) of 1-connected homotopy types over k may
be identified with a category of Kan complexes “up to homotopy”, as
usual (but working now with complexes of unipotent bundles over k).
Third thing, still over arbitrary ground ring, would be a development
of the usual homotopy formalism in the unipotent context, including
(one hopes) homotopy fibers of maps, and Postnikov dévissage. Again,
it is hard to imagine how to get such dévissage, without getting hold
inductively of homotopy invariants πi which are k-modules. This should
come out if we are able to define homotopy fibers as for an (n − 1)-
connected k-homotopy type (defined here as one whose homology
invariants Hi are zero for i ≤ n − 1), πn should be no more, no less
than Hn, which is indeed a k-module. Coming back to k = Z again, this
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should imply that for n≥ 1 at any rate, the canonical functor

(***) Hotn(Z)→ Hotn

induces a bijection between isomorphism classes of schematic and or-
dinary n-connected homotopy types – and it will be hard to believe
this can be so, without this functor being actually an equivalence of
categories – the expected apotheosis of the theory! Maybe to this end,
one may even be able to introduce reasonable internal Hom’s within
the category of schematic Kan complexes, in a way compatible with the
familiar notion in the discrete set-up.

If it is possible indeed to construct Postnikov dévissage of a schematic [p. 465]
Kan complex over any ground ring k, it is clear that this is compatible
with restriction of ground ring, hence it would seem that formation
of the homotopy invariants πi is compatible with restriction of rings
(whereas, as we noticed yesterday, the same does definitely not hold for
the homology invariants Hi). Taking restriction to the ground ring Z,
this shows that the canonical functor (***) from schematic to discrete
homotopy types is compatible with taking homotopy groups (but not
with homology) – thus, the relation between X∗ and the complex of
sections X∗(k) seems to be a rather close one, via the homotopy groups,
which are the same (and thus, the homotopy groups of X∗(k) seem to
turn out to be k-modules after all!). By the way, speaking of “restric-
tion of ground ring” for Kan complexes was a little hasty, in view of
the projectivity condition on the components, which a priori seems to
oblige us to assume k to be a projective k0-module (for a given ring
homomorphism

k0→ k ).

Still, the remark about the sections functor X∗ → X∗(k) makes sense,
without having to assume k to be a projective Z-module! Also, we feel
that, by analogy of what can be done in the linear set-up, when we
define a total derived functor

D•(Abk)→ D•(Abk0
)

without any assumption on the ring homomorphism k0→ k, a notion
of ring restriction for schematic homotopy types should make sense
without any restriction, as was surmised yesterday. As in the linear case,
we should allow ourselves to work with schematic complexes which are
not projective, but be prepared to take “resolutions” (in some sense) of
such general complexes by the more restricted ones (with projective
components).

There is no such difficulty in the case of the ring extension functor,
which transforms projective bundles over k0 into projective bundles over
k. The reflections above suggest that, whereas ring extension is compat-
ible with taking total homology invariants LH•, via the corresponding
functor

D•(Abk0
)→ D•(Abk),

it is compatible too with taking homotopy invariants πi separately.
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27.8. [p. 466]

113 What I was thinking of last night (see last sentence) is that whereas for “Soft” versus “hard” Postnikov dévis-
sage, π1 as a group scheme.total homology (not for the separate Hi ’s) we have the comprehensive

formula

(A) LH•(X∗ ⊗k k′)' LH•(X∗)
L
⊗k k′ (in D•(k

′)),

(where
L
⊗k denotes the left derived functor of the ring extension functor

for k→ k′, and X ′∗ = X∗ ⊗k k′ denotes ring extension for the semisimpli-
cial unipotent bundle X∗), for homotopy modules we should have the
term-by-term isomorphisms

(B) πi(X∗ ⊗k k′)← πi(X∗)⊗k k′.

This however was pretty rash indeed (it was time to go to sleep I guess!).
Whereas the map on sections

X∗(k)→ X ′∗(k
′)

does induce a map

(B’) πi(X∗)' πi(X∗(k))→ πi(X
′
∗)' πi(X

′
∗(k
′))

which surely is k-linear, and hence induces a map (B), this map is
certainly not an isomorphism without some flatness restriction either
on k′ over k, or on the k-modules π j(X∗) for j < i, as we had noted
already three days ago when looking at the case when X∗ comes from a
chain complex M• in (Abk) (with projective coefficients say), and hence
X ′∗ comes from

M ′• = M• ⊗k k′.

If we look at the description of the k-module πi(X∗) = πi in terms of
a Postnikov dévissage of X∗, we should recall that the semisimplicial
group object M(i)∗ which enters into the picture as the i’th step fiber
is not the one defined directly (via the Kan-Dold-Puppe functor) by πi
placed in degree i, but rather by the chain complex M(i)• with projective
components, obtained by taking first a shifted projective resolution of
πi . Thus, by ring extension we get from this dévissage of X∗ another
one of X ′∗, whose successive fibers are

M(i)′∗ = M(i)∗ ⊗k k′,

corresponding to the chain complexes

M(i)′• = M(i)• ⊗k k′.

The latter has πi ⊗k k′ as homology module in degree i (and zero [p. 467]
homology in degree j < i), but the homology modules in degree j > i
need not be zero. In other words, there is a canonical augmentation

(B”) M(i)′∗→ K(πi ⊗k k′, i),
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(where the second member is the semisimplicial k′-module defined by
an i-shifted projective resolution of πi(X )⊗k k′), but this augmentation
need not be a quasi-isomorphism, unless we make the relevant flatness
assumptions. To sum up, the dévissage of

X ′∗ = X∗ ⊗k k′

deduced from a Postnikov dévissage of X∗ is not a Postnikov dévissage of
X ′∗, unless we assume either k′ flat over k, or the k-modules π j(X∗) flat.
This at the same time solves the puzzle raised on page 444, and points
towards a serious shortcoming of the (usual) Postnikov dévissage – namely
that it is not compatible with ground ring extension, or, as we would
say in the language of algebraic geometry, that this construction is not
“geometric” – a harsh thing to say indeed!

At this point the idea comes up that we may define another dévissage,
a lot more natural in the spirit of a theory of “abelianization” of homotopy
types it would seem, and which is “geometric”, namely compatible with
ring extension. Here, we’ll have to work, though, with the “prohibitive”
abelianization functor

U(k)→ Abk, X 7→ L(X ) (= Γk̂ (M))

(where M is a k-module “representing” the object X in U(k)), as we’ll
need the functorial embedding

[see also page 474]
(C) X →W (L(X ))

(where
W : Abk → U(k)

denotes the canonical functor from k-modules to unipotent k-bundles);
this is licit anyhow, if we admit that the canonical map

Lpt(X∗)→ L(X∗)

(cf. page 454 (w)) is a quasi-isomorphism, i.e., a weak equivalence, for
the complexes X∗ we are working with. (This of course should hold over
an arbitrary ground ring, not just Z.) Applying (C) componentwise, we
get for a complex of bundles X∗ a canonical map into its abelianization [p. 468]

(C’) X∗→W (L(X∗)).

Postnikov’s construction, for (n−1)-connected X∗, consists in composing
this map with the “augmentation”

W (L(X∗))→ K(πn, n)

(where πn ' Hn is the first possibly non-trivial homology module of
the chain complex corresponding to L(X∗)), and after this only take the
homotopy fiber, and iterate (the homotopy fiber will be n-connected
now). This process, in a way, breaks the natural abelianization into
pieces, a brutal thing to do one will admit, all the more so as we start with
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a beautiful complex with projective components, and kind of destroy
its unmarred harmony by tearing out of breaking off the most showy
part, Hn to name it, which now looks so lost and awkward we really
can’t just leave it as it is, we first have to take a projective resolution
of it, choosing it as we may. . .But we won’t do all this, will we, and
rather keep abelianization and (C’) as God gave them to us, and take
the homotopy fiber (we hope God will give this too. . . ), and repeat the
process, without even having to care at any stage which πi ’s vanish
and which not. Let’s call this the “soft Postnikov dévissage”, in contrast
to the “brutal one”. In describing the process (which of course makes
sense in the discrete context as well as in the schematic one), I implicitly
admitted that the X∗ we start with is 1-connected, or for the very least
has abelian π1 (a notion we’ll have to come back to, in the schematic
set-up). But we may as well apply it to a (discrete) K(G, 1) type, G
any discrete group, then it amounts to taking the descending filtration
of G by iterated commutator groups, which is a finite filtration iff G
is solvable. Maybe it would be more natural still to take the similar
descending filtration, suitable for the study of nilpotent groups rather
than solvable ones, with

[this second superscript in this
equation is rather hard to read in
the typescript. . . ]

(D) G(n+1) = [G, G(n−1)],

where [A, B] denotes the subgroup of G generated by commutators

(a, b) = aba−1 b−1,

with a in A, b in B. It doesn’t seem there is a similar distinction to make
in case we start with a 1-connected X∗, more specifically if X0 = X1 = e.
There may be some extra caution needed, however, when we assume
only X0 = e without assuming 1-connectedness, even whenπ1 is abelian, [p. 469]
because of the possibility of operation of π1 upon the πi ’s. Maybe, when
trying to modelize usual homotopy types by complexes of unipotent
bundles over Z, we should restrict to homotopy types which are not
only 0-connected and have abelian π1, but moreover with π1 operating
trivially (or for the very least, in a unipotent way) upon the higher
πi ’s. At any rate, as soon as π1 operates non-trivially (on itself, or on
the higher πi ’s) there will presumably be two non-equivalent ways for
defining soft Postnikov dévissage, corresponding to the two standard
descending commutator group series in a discrete group G The more
relevant in view of unipotent schematization would seem to be the
“nilpotent” one.

Restricting for simplicity to the 1-connected case X0 = X1 = e, I would
expect soft Postnikov dévissage to be the key for an understanding as
well of the behavior of theπi(X∗)modules with respect to ring extension,
as of the full relationship between these invariants, and the homology
invariants Hi(X∗).

* * *

I still should have a look upon complexes X∗ in U(k)• satisfying (as
always in this game) X0 = e, but not necessarily X1 = e. Even when
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we make the Kan assumption (plus “smoothness” of the components, by
which I mean that their k-linearization is projective), I don’t feel too
sure yet if they fit into a good formalism, for instance (when k = Z) if
they satisfy the “linearization theorem” (quasi-isomorphy for the two
maps in (w) p. 454). If we start for instance with a group object G of
U(k) and let X∗ be the corresponding semisimplicial complex in U(k)•,
then we get an isomorphism

(E) π1(X∗)
def
= π1(X∗(k))' G(k),

which shows us that π1(X∗) need not be abelian even when k = Z. If we
assume that X1 = G is “of finite presentation” (namely the projective k-
module which describes X1 is of finite presentation), or what amounts to
the same, representable by an actual (group) scheme, it is true, however,
that G and henceπ1 = G(k) is nilpotent (this holds for any k). It looks an
intriguing question whether π1 is nilpotent under the only assumption
that X∗ is a smooth Kan complex with X1 a scheme (without assuming
anymore X comes from a group object). At any rate, it follows from the [p. 470]
Kan condition that π1 may be interpreted as a quotient set of E

def
= X1(k)

(without having to pass to the full free group generated by this set),
with a set of relations

(F) zi = x i yi , i in X2(k) = I ,

indexed by X2(k), where

i 7→ x i , i 7→ yi , i 7→ zi

are the three boundary maps, remembering moreover the Kan condition
that the three maps

I E × E, i 7→ (x i , yi), i 7→ (x i , zi), i 7→ (yi , zi)

are surjective, which implies indeed that any element of the group π
described by the set of generates E and relations (F) comes from an
element in E. Replacing k by any k-algebra k′, we see that we have a
presheaf

k′ 7→ π1(X∗(k
′)) = π1(X∗ ⊗k k′)

on the category Aff/k of affine schemes over k, with values in the category
of groups, which may be viewed (as a presheaf of sets) as a quotient
presheaf of the presheaf on Aff/k defined by X1. We feel that this presheaf
will fit into a reasonable “schematic” set-up, only if it turns out to be a
sheaf, and more exactingly still, if this sheaf is isomorphic (as a sheaf
of sets) to one stemming from an object of U(k), i.e., if it is isomorphic
to a sheaf W (M), for suitable k-module M (not necessarily a projective
one). If we denote by G this object of U(k), it will be endowed with a
group structure, and it is this group object of U(k), rather than just the
set-theoretic group of its sections, i.e., of k-valued “points”, which merits to
be viewed as the “true” π1(X∗). To say it differently, whereas the higher
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πi(X∗)
def
= πi(X∗(k)) (for i ≥ 2), in the cases considered so far, should

be viewed as being not mere abelian groups, but moreover endowed
with a natural k-module structure, in the case when i = 1, i.e., for
the fundamental group π1(X∗), the natural structure to expect on this
(possibly non-commutative) group is a “unipotent schematic” structure,
namely essentially a pointed “parametrization” of this group by elements
of a suitable k-module M1, in such a way that the composition law is
expressed in terms of a polynomial law, making sense therefore not
only for k-valued points, i.e., for elements of M , but for k′-valued
points as well (for any k-algebra k′), namely defining a group law on [p. 471]
W (M)(k′) = M ⊗k k′. If henceforth we denote by π1(X∗) this group
object of U(k), the relevant formula now is

(G) π1(X∗(k
′))' π1(X∗)(k

′),

a group isomorphism functorial with respect to variable k-algebra k′,
which will imply the corresponding isomorphism

(G’) π1(X∗ ⊗k k′)' π1(X∗)⊗k k′

of groups objects in U(k′), i.e., formation of the “schematic” π1 is
compatible with ground ring extension k→ k′ (provided π1 exists, for
a given X∗).

We will expect the map of passage to quotient

(H) X1→ π1(X∗) = G

to be “epimorphic” in a very strong sense, stronger even than just in
the sense of presheaves, the first thought that comes to mind here is
that it should be a “submersion”, in the sense suggested in yesterday’s
reflections in connection with the description of the Kan condition. If,
however, we want to be able to get for π1(X∗(k)) = π1(X∗)(k) any

[in the typescript there is here a
tautological equation, but I think
this is what was meant. . . ]

abelian group beforehand, in the case k = Z say, without demanding
that it be a projective k-module, and still get it via an X∗ with smooth
components, this shows that when defining a notion of “submersion”
for objects of U(k) which may not be smooth, we should not be quite as
demanding as suggested yesterday (cf. page 463), but find a definition
which will include also any map X → Y coming from an epimorphism
M → N of k-modules (which will allow us to take X1 as associated to a
projective k-module admitting the given π1 as its quotient). One idea
that comes to mind here, is to take this property as the definition of a
submersion, as an arrow in U(k) which is isomorphic to one obtained
from an epimorphism in Abk. This, of the three definitions that have
come to my mind so far for this notion, is the one which looks the most
convincing to me. I wouldn’t expect too much from a complex X∗, even
a smooth one and satisfying the Kan condition, unless (in terms of the
three boundary maps from X2 to X1) it gives rise, as just explained, to
a group object G = π1(X∗) in U(k), together with a submersion (H).
Thus, definitely, when defining a schematic model category Mn(k) of n-
connected ss complexes of unipotent bundles over k, I feel like insisting
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in case n= 0 at least upon this extra condition (plus of course X0 = e).
The still more stringent condition one may think of, in order to have
schematic models as close as one may wish to k-modules, is to demand [p. 472]
that moreover G is isomorphic to the object of U(k) defined by a k-
module M1, the group law moreover coming from the addition law in
M . This condition is stronger still than merely demanding that G be
commutative, even when M1 is free of rank one, because one knows that
over a non-perfect field k there may be “forms” of the additive group
Ga which are not isomorphic to Ga; presumably, there should be similar
examples over Z too, with rank larger than one, however.

We feel, however, that the case when G = π1(X∗) is a non-linear or
even a non-abelian group object of U(k) is still worthy of interest. The
first test it would seem, to check if we do have a good notion indeed,
is to see if it does satisfy to the “linearization theorem” in case k = Z,
i.e., the maps (w) on page 454 are quasi-isomorphisms. Another key
test, which now makes sense for arbitrary k, is whether for a smooth
Kan complex in M0(k) (i.e., satisfying the extra assumption involving
G), X∗ is homotopic to a bundle over K(G, 1), with a 1-connected fiber,
or more specifically, a fiber Y∗ satisfying Y0 = Y1 = e. Among other
features to expect is a natural operation of the group object G on the
k-modules πi(X∗), as well as Hi(X∗), If however we wish, for k =
Z, to use models in M0(Z) for describing possibly homotopy types
with nilpotent π1 say, and devise a corresponding equivalence between and moreover unipotent action on the πi ’s

suitable homotopy categories, we should first investigate the question
of the relationship between nilpotent discrete groups, and group objects
of U(k) – a question already touched on earlier in our reflection on
linearization (see end of section 94), and of separate interest.

114 During these four days of reflection on schematization of homotopy Outline of a program.
types, a relatively coherent picture has gradually been emerging from
darkness. How far this image reflects substantial reality, not just day-
dreaming, I would be at a loss to tell now. Maybe some substantial
corrections will have to be made still, besides getting in other ideas for
a more complete picture – I would be amazed at any rate if everything
should turn out as just nonsense! If it doesn’t, there is surely a lot of
work ahead to get everything straightened out and ready-to-use. I will
leave it at that I suppose, for the time being – maybe just finish this
digression by a quick review of the set-up, and of some main questions
which have come out.

For a given ground ring k, the basic category we’ll use of “schematic” [p. 473]
objects over k is the category of unipotent bundles over k, which may be
defined as the category of functors from Alg/k to (Sets) isomorphic to
functors of the type

W (M) = (k′ 7→ M ⊗k k′),

where M is any k-module. We do not restrict, here, M to be projective
or flat, as we definitely want to have, for a ring homomorphism k→ k′,
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a problemless functor “restriction of scalars”

U(k′)→ U(k),

inserting in the commutative diagram

(I)

Abk′ Abk

U(k′) U(k)

restr.

Wk′ Wk

restr. .

Another reason is that we want that the k-modules of the type πi(X∗)
which will come out should be eligible for defining objects in U(k).
We are more specifically interested though in “smooth” objects of U(k),
namely those that correspond to projective k-modules. (We prefer to
call them “smooth” rather than “projective”, in order to avoid confusion
with the notion of a projective object in the usual categorical sense for
U(k).) Another relevant notion is the notion of a submersion, namely a
map in U(k) isomorphic to one coming from an epimorphism M → N
in Abk. (If the latter can be chosen to have a projective kernel, we may
speak of a smooth submersion.) The ring restriction functor transforms
submersions into submersions, and also smooth objects into smooth
ones provided k′ is projective as a module over k. We also have a ring
extension functor from U(k) to U(k′), giving rise to a diagram (I’) similar
to (I) above, it transforms submersions into submersions, smooth objects
into smooth ones.

The smoothness condition is likely to come in in two ways, one is via
flatness (we may call an object of U(k) “flat” when it isomorphic to some
W (M) with M a flat k-module), whereas projectivity is needed in order
to ensure that in certain cases, weak equivalences are homotopisms.
Flatness is the kind of condition which ensure the validity of “naive” uni-
versal coefficients formulæ for homotopy or homology objects, whereas
projectivity may be needed in case of such formulæ for cohomology
rather than homology.

The description I just recalled of U(k) is the one most intuitive to my [p. 474]
mind, other people may prefer the more computational one on page
451 in terms of Γk̂ (M) (endowed with its augmentation to k and its
diagonal map), which is of importance in its own right. It shows the
existence of a canonical k-linearization functor

(J) L : U(k)→ Abk,

giving rise to the commutative diagram (up to can. isom.)

(J’)

Abk U(k)

Abk

W

Γk̂
L

,

where
Γk̂ (M) =

∏

i≥0

Γ i
k(M).
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This linearization is not quite compatible with ring extension, it becomes
so only when we view it as a functor with values, not just in the category
Abk of k-modules, but of separated and complete linearly topologized
k-modules, the ring extension functor for these being the completed
tensor product. This is a little (or big?) technical drawback for this
notion of linearization. We have a canonical embedding

(K) x 7→ exp(x) : X →Wˆ(L(X )) (cf. p. 450, (n))

functorial in X , where for a topological k-module M as above, described
as a filtering inverse limit of discrete ones Mi , we define

(K’) Wˆ(M) = (k′ 7→ lim←−
i

Mi ⊗k k′).

The map (K) has a universal property with respect to all possible maps
X → Wˆ(M) with M a linearly topologized separated and complete
k-module, which accounts for its role as “linearization”. It should be
noted here that the map (C) on page 467 doesn’t quite exist, we have
corrected this point here – definitely we cannot in (K) replace Wˆ by
W . Of course, linearization L (or its variant Lpt) doesn’t commute in
any sense whatever to restriction of ground ring.

The image of X in Wˆ(L(X )) is characterized by the simple formulæ
(q) p. 451. Maps from X to Y may be described as just continuous
k-linear maps from L(X ) to L(Y ), compatible with augmentations and
diagonal maps.

We’ll more specifically work in the category U(k)• of pointed objects [p. 475]
of U(k), namely objects endowed with a section over the final object e,
the so-called pointed unipotent bundles. We now have a functor

(L) W • : Abk → U(k)•

deduced from W using the fact that W (0) = e, and a “pointed lineariza-
tion functor”

(M) L• or Lpt : U(k)•→ Abk,

giving rise to a commutative diagram similar to (J’)

(M’)

Abk U(k)•

Abk

W •

Γk L•

;

the notation L• seems here the most coherent one, but may bring about
confusion with the similar notation for some cochain complex say, there-
fore we had first used the alternative notation Lpt, to which one may
still come back if needed. This time the functor L• commutes to ring
extension without any grain of salt. We have of course a canonical
embedding

(N) L•(X ) ,→ L(X )
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defined via the corresponding embedding for an object M of Abk

(N’) Γk(M) ,→ Γk̂ (M),

by which L(X ) may be viewed as the completion of L•(X ) with respect
to the topology it induces on it, which is a canonical topology on L•(X ).
Maps in U(k)• correspond to k-linear maps

L•(X )→ L•(Y )

which are moreover continuous, and compatible with coaugmentation
(i.e., transforms 1 into 1) as well as with augmentations and diagonal
maps. I wonder if there is any simple characterization of submersions in
U(k)• in terms of the corresponding map between the linearizations. At
any rate, an object X of U(k)• is smooth resp. flat iff L•(X ) is a projective
resp. a flat k-module.

For any natural integer, we want now to define a model category

(O) Mn(k) ⊂ Hom( op, U(k)•),

which should be a full subcategory of the category of semisimplicial [p. 476]
objects in U(k)•. We’ll get a functor

(P) X∗ 7→ X∗(k) : Mn(k)→ Hom( op, Sets•)

from this category to the category of semisimplicial pointed sets. For
n ≥ 1, the only condition, it seems, to impose upon X∗ in the second
member of (O), i.e., upon a semisimplicial pointed unipotent bundle
over k, in order to belong to Mn(k), is

(Qn) X i = e for i ≤ n.

This, for n= 0, reduces to the common condition

(Q0) X0 = e,

which definitely is not enough, though, to get a category of “models”
M0(k) whose objects should have the kind of properties we are after.
There are various kinds of extra restrictions one may want to impose,
according to the type of situations one wants to describe, some hints
along these lines are given on pages 469–472. For a preliminary study,
the case n ≥ 1, and more specifically, the case n = 1, is quite enough,
the latter corresponding to the restrictions

(Q1) X0 = X1 = e.

From P we get a functor

(P’) Mn(k)→ Hot•n = category of pointed n-connected
homotopy types,

we define a map in Mn(k) to be a weak equivalence if its image by (P)
is, i.e., its image by (P’) is an isomorphism, and localizing by weak
equivalences we get the category

(R) Hotn(k)
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of “n-connected schematic homotopy types over k”, together with a
“sections functor” induced by (P)

(R’) Hotn(k)→ Hotn.

One main point in our definitions is that we hope this functor to be an
equivalence of categories, in the case when k = Z, and of course n≥ 1.

The description just given of categories Hotn(k) is suitable for defining
functors of restriction of ground ring for k→ k′

(S) Hotn(k
′)→ Hotn(k),

compatible with the sections functor (R’) for k and k′. It isn’t directly
suited, though, for describing ring extension – as a matter of fact, ring [p. 477]
extension for homotopy types (an operation of greater interest than ring
restriction surely) is not expressed, in general, by just performing the
trivial ring extension operation

X∗ 7→ X∗ ⊗k k′

on models in Mn(k), unless we assume k′ to be flat over k say – but even
in this case it is by no means clear a priori that the operation above trans-
forms weak equivalences into weak equivalences. This is very clearly
shown by the linear analogon, the categories Mn(k) being replaced by
the categories of chain complexes in Abk say, or by Comp−(Abk) or the
like. In order to correctly describe ground ring extension on homo-
topy types, we’ll have first to take a suitable “resolution” of X∗, namely
replace X∗ by some K∗ say, endowed with a weak equivalence

K∗→ X∗,

and K∗ satisfying some extra assumptions. Maybe flatness of the compo-
nents would be enough here. For other purposes, we may have to use
resolutions which are even smooth (componentwise), or which satisfy a
suitable Kan condition (or a type outlined on page 463), or both. Our
expectation is that, when we restrict to the subcategory

sKMn(k)

of the model category Mn(k) made up with smooth Kan complexes,
that the category Hotn(k) may be described simply in terms of such sK-
complexes “up to homotopy”, as usual. If this is so, the ground ring
extension functor follows trivially from a corresponding functor on the
sK-model categories

(T) sKMn(k)→ sKMn(k
′), X∗ 7→ X∗ ⊗k k′,

hence

(T’) Hotn(k)→ Hotn(k
′).

From the sections functor (R’) we get homotopy invariants πi for an
object in Hotn(k), but the relevant k-module structure on these is not
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apparent on this definition. We have a better hold, via linear algebra
over k, upon homology invariants of X∗, which are k-linear objects, and
are definitely distinct (unless k = Z) from the homology invariants of
X∗(k), which for general k are definitely of little interest it seems. The
definition of homology goes via the pointed linearization functor (M)

(U)

¨

LH•(X∗)
def
= Lpt(X∗), viewed as an object in D•(Abk),

Hi(X∗)
def
= Hi(LH•(X∗)) = πi(Lpt(X∗)) in Abk,

where the L in LH• suggests that we are taking something similar to a [p. 478]
total left derived functor, and where definitely in the right-hand member
we had to write Lpt and not L•, in order not to get sunk into a morass
of confusion! In the formulæ (U) we should assume however that X∗
is a smooth Kan complex, which will imply (if indeed Hotn(k) may be
described in terms of sKMn(k) as said above) that LH• may be viewed
as a functor

(U’) Hotn(k)→ D•(Abk),

and likewise the Hi ’s are functors from Hotn(k) to Abk. In order to
compute these homology invariants for an arbitrary complex in Mn(k),
we’ll first have to resolve it by a sK complex, and then apply (U).

We expect that a map X∗→ Y∗ in Mn(k) is a weak equivalence iff the
corresponding map for LH• is a quasi-isomorphism, in other words we
expect the functor (U’) to be “conservative”: a map in the first category is
an isomorphism iff its image in the second one is. A second main feature
we expect from linearization, is that in the case k = Z it corresponds
to the usual abelianization of homotopy types. This statement, when
made more specific as in (w) page 454, decomposes into two distinct
ones. One is of significance over an arbitrary ring k, and states that for
a sK complex X∗, the inclusion (coming from (N))

(V) Lpt(X∗)→ L(X∗)

from Lpt into its completion, when viewed as a map of chain complexes in
Abk (using the simplicial differential operator, or passing to the corre-
sponding “normalized” chain complexes first) is a quasi-isomorphism.
Whether this is always so or not, or whether noetherian conditions on
k or some finiteness conditions for the components of X∗ are needed,
looks like a rather standard question of linear homological algebra! On
the other hand, using the exponential embedding (K) for sections, we
get another map of semisimplicial k-modules

(V’) k(X∗(k))→ L(X∗),

and here the question again (the expectation I might say?) is whether
this is a quasi-isomorphism. This would just mean (if coupled with quasi-
isomorphy of (V)) that the homology invariants (U) are just the usual
homology invariants of the discrete homotopy type modeled by X∗(k),
but with coefficients not in Z, but in k. We certainly do expect this to
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be true for k = Z – which was the content of “question 1” on page 452 [p. 479]
(taken up again on page 454 and following). Of course, in case we
don’t assume k = Z, writing Z(X∗(k)) instead of k(X∗(k)) as we did in (w)
p. 454 now looks kind of silly, and the idea in this k-linear context to
take k-valued homology of X∗(k) rather than Z-valued one is evident
enough! However, I was confused by the misconception that the internal
homology of X∗(k) should carry k-linear structure, as this was what I
expected too for the invariants πi(X∗(k)) (which seems to turn out to be
correct). This misconception was corrected a few pages later (p. 457)
but still I kept dragging along the silly first member of (w). Anyhow, it
now just occurs to me that except in case k = Z, it is definitely false that
(V’) is a quasi-isomorphism, except in some wholly trivial cases. Indeed,
let Hi be the first non-vanishing homology invariant (U) of X∗ (or more
safely still, take i = n+1), then we definitely expect to have a canonical
isomorphism of k-modules

(V) πi(X∗(k))' Hi(X∗) = Hi

but we equally have by Hopf’s theorem, as the lower π j ’s of X∗(k) are
zero

πi(X∗(k)) = Hi(X∗(k),Z),

hence

(V’) Hi ' Hi(S,Z), where S = X∗(k),

which is not compatible with the guess that Hi ' Hi(S, k) (' Hi ⊗Z k).
Presumably, the isomorphism (V’) above is induced by the first map in
(w) above, but (except for k = Z) we should expect in (w) to have an
isomorphism only for the lowest dimensional homology groups which
are occurring in the two first members. Anyhow, it appears after all that
this map in (w) is the more reasonable one compared to (V’) above,
as it yields an isomorphism on homology in the key dimension n+ 1,
whereas (V’) apparently will practically never give an isomorphism.

What is mainly lacking still in this review of the expected main features
of schematization of homotopy types, is description of the k-module
structure on the homotopy groups

(W) πi(X∗)
def
= πi(X∗(k)),

or preferably still, a direct description of those invariants as k-modules,
working within the model category Mn(k). This, as suggested in yester-
day’s notes (p. 464), may be achieved by developing a theory of Postnikov
dévissage within Mn(k) and using (V) in order to pull ourselves by the
bootstraps, defining homotopy finally in terms of homology. At this [p. 480]
point it should be noted that the dévissage we’ll have to use here is the
“brutal” one, which we frowned upon earlier today! To develop such a
formalism, it seems essential to work with smooth Kan complexes and
projective resolutions of the k-modules πi as they appears one by one.
Whether we want to describe “hard” or “soft” Postnikov dévissage (see
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p. 468 for the latter), one common key step is the linearization map
coming from the exponential map (K) applied componentwise

(W) X∗→Wˆ(L(X∗)),

which we would like to look upon as defining a homotopy class of maps
in Mn(k)

(W?) X∗→W (Lpt(X∗)),

where the second member moreover is endowed with its natural abelian
group structure (its components are abelian group objects of U(k) and
the simplicial maps are additive). To pass from (W) to (W?), it is felt
that the essential step is that (V) above be a quasi-isomorphism, hence,
applying the functor W , we should get a weak equivalence, hence an
isomorphism in the derived category Hotn(k), hence (W) implies (W?).
The main flaw in this “argument” comes from the Wˆ in the second
member of (W), which isn’t quite the same as W definitely. Thus, some
further amount of work will be needed, presumably, to get (W?) from
(W). Of course, we can’t possibly just keep (W) as it is, as for getting
dévissage we need a map in Mn(k), whereas the map (W) is just a map
of semisimplicial sheaves on Aff/k, where the second member is not in
Mn(k), i.e., its components are not in U(k). Once we got (W?) factoring
(W) up to homotopy (NB of course we assume X∗ to be an sK complex
in all this), we still need a reasonable notion of homotopy fibers of maps
in Mn(k), in order to push through the inductive step.

Thus, a large part of the weight of the work ahead may well lie upon
developing the standard homotopy constructions within the model category
Mn(k), as contemplated on page 464. This should be fun, if it can be
done indeed! One difficulty here seems to be that Quillen’s standard
machines won’t work, not “telles quelles” at any rate, because of the
category U(k) failing to be stable under finite limits – it doesn’t even have
fiber products. But I think I’ll stop my ponderings on schematization
here. . .

28.8. [p. 481]

115 For the last four days, while reflecting on “schematization”, each time L(X ) as the pro-quasicoherent sub-
stitute for Ok(X ).I think I am going to be through with that unforeseen green apple

within an hour or two, and get back to “l’ordre du jour” – and overnight
something else still appears I feel I should still look into just a little; and
there I am again, sure enough, with some extra reflection on “schematic
linearization” which I hadn’t quite understood yet, it appears to me now.
These last days I had given up numbering formulas as usual by Arab
ciphers (1), (2), etc., as I didn’t want to “cut” the numbering of that
unending “review” of section 104 to 109 which wasn’t quite finished
yet, got it only till formula (136). But now I will stop this nonsense
with numberings (a), (b) and (A), (B), after all even if there are in-
between “Arab” formulas now, this doesn’t prevent me, when it comes
to it, to start a “review” section with formula (137) and go on till (1000)
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if I like. . .And now to the schematic linearization functor again, for
unipotent bundles!

When writing up that schematization program yesterday, some tech-
nical difficulties appeared at the end (see page before) for a proper
understanding of the relationship between the two linearizations Lpt
and L, in order to define, in a suitable derived category, a map

X∗→W (Lpt(X∗))

using the canonical term-by-term exponential map

X∗→WˆL(X∗).

It seems to me that the exact significance of the objects L(X∗) or WˆL(X∗)
isn’t quite understood yet, and that the confusion which occurred be-
tween which usual kind of linearization we should compare this with,
whether X 7→ Z(X ) as I did first, or X 7→ k(X ) as it occurred to me yes-
terday (pages 478–479) , is quite typical of this lack of understanding.
It now occurred to me that neither term, for a general ground ring k
(namely, not assuming k = Z), is reasonable, whereas the reasonable
“usual” kind of linearization comparing with L(X ) (when X is a unipotent
bundle or a ss complex of such) is

(1) X 7→ O
(X )
k ,

where Ok is the basic quasicoherent sheaf of rings over k, i.e., over Aff/k,
given by the tautological functor

(2) Ok : (Aff/k)
op u Alg/k → (Rings), k′ 7→ k′,

associating to any affine scheme S = Spec(k′) over k the ring of sections [p. 482]
of its usual Zariski structure sheaf, which ring is canonically isomorphic
to k′ itself! The operation (1) is the usual linearization operation with
respect to this sheaf of rings, working in the topos of fpqc sheaves of
sets over k which we described at some length in section 111 (p. 447).
As I was fearing that working in such a thing would cause anguish to
a number of prospective readers, I took pains to translate unipotent
bundles from the geometric language which is the suggestive one, to
the language of commutative algebra which is more liable to hide than
to disclose geometrical meaning; so much so that in the process I myself
lost contact somewhat with the geometric flavor, and more specifically
still with this basic fact, that in our context of unipotent bundles and
complexes of such, the “natural” coefficients for cohomology (such as
the Hn+2(X (n)∗,πn+1) groups occurring in Postnikov dévissage) are by
no means “discrete” ones such as Z or k, but quasi-coherent ones, namely
provided by quasi-coherent sheaves of Ok-modules or complexes of such.
Thus, in the above Postnikov obstruction group, πn+1 does not stand as
a constant group of coefficients (if it was, this would drag us into the
niceties and difficulties of étale cohomology for the components X (n)i
of the semisimplicial unipotent bundle X (n)∗); but using the k-module
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structure of πn+1 for defining a quasi-coherent sheaf of modules W (πn+1)
“over k”, i.e., over Aff/k, it is this “continuous” sheaf (or “vector bundle”)
over k, lifted of course to the various components X (n)i , which yields the
correct answer. This was kind of clear in my mind the very first day when
I started reflecting on schematization, even before introducing formally
unipotent bundles (pages 443–444), but this instinctive understanding
later became dulled somewhat, largely due, it seems to me, to the
concession I had made to algebra, giving up to some extent the language
of geometry.

Let’s recall that the operation (1) may be defined as the solution of
a universal problem, namely sending the non-linear object X into a
“linear” one, namely into a sheaf of Ok-modules (or a Ok-module, as
we’ll simply say). This is expressed by a canonical map of sheaves of
sets

(3) X → O
(X )
k

(which I am tempted to call the “exponential” map for X , and denote
by a corresponding symbol such as expX ), giving rise, for every module
(over Ok) to a corresponding map which is bijective [p. 483]

(4) HomOk
(O(X )k , F)' Hom(X , F) (' Γ (X , FX )),

where in the last member (included as a more geometric interpretation
of the second) FX denotes the restriction of F to the object X , more
accurately to the topos (or site) induced on X by the ambient topos
(or site) we are working in. Thus, we may indeed view (1) as the
most perfect notion of linearization, as far as generality goes – it makes
sense of course in any ringed topos (without even a commutativity
assumption!). The only trouble is that, even for such a down-to-earth
X as a unipotent bundle, the standard affine line E1

k say, the sheaf O(X )k
in (1) is not quasi-coherent and therefore not too amenable it seems
to computations – thus, we get easily from (4) a canonical map (for
general X )

k(X (k))→ Γ (k,O(X )k ) (= O
(X )
k (k))

(where the Γ in the second member denotes sections over k, i.e., value
of a functor on Alg/k on the initial object k, and remembering in the
first member that the ring of sections of Ok is k), but I would be at a
loss to make a guess as for reasonable conditions for this map to be
an isomorphism! This may seem a prohibitive “contra” against using
at all such huge sheaves as O(X )k , the point though is that in most ques-
tions where such linearizations are introduced (mainly questions where
interest lies in computing cohomology invariants), one is practically
never interesting in taking the groups of sections of these, but rather
in looking at their maps into sheaves of modules F precisely, which is
achieved by (4), or taking more generally their Exti with such an F ,
which is achieved by the similar familiar formula

(5) Exti
Ok
(O(X )k , F)' Hi(X , FX ),
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more neatly

(5’) RHomOk
(O(X )k , F)' RΓX (FX ),

valid of course again for any ringed topos. In the present context how-
ever, the “coefficients” F we are interested in, as was just pointed out,
are not arbitrary Ok-modules, but rather quasi-coherent ones. Thus, if
we get a variant of (1)

(6) X → L(X )

with L(X ) some quasi-coherent module, giving rise to (4), or even to
(5) and (5’), this would be for us a perfectly good substitute for (3),
which would deserve the name of a “quasicoherent envelope” of X . Of [p. 484]
course, this module L(X ) would be unique up to unique isomorphism,
as the solution of a universal problem embodied by (4), namely as the
quasi-coherent module representing the functor

(7) F 7→ Hom(X , F)' Γ (X , FX )

on the category this time of all quasicoherent Ok-modules.
For the unipotent schematization story, we are more specifically inter-

ested in the case when X comes from a quasicoherent module itself, by
forgetting its module structure. Now, as well-known, the functor

(8) M 7→W (M) : Abk = (k-Mod)→ category of quasicoherent
Ok-modules, Qucoh(k) say

is an equivalence of categories. Thus, for X defined by such an M , the
question of representability of (7) within the category of quasicoherent
modules, amounts to the similar question in Abk for the functor

(7’) N 7→ Hom(W (M), W (N)),

where the Hom denotes homomorphisms of sheaves of sets of course.
Now, as suggested first, somewhat vaguely still, in section 111 (page
450), we have an alternative expression of this functor, via

(9) Hom(W (M), W (N))' Homcontk(Γk̂ (M), N)

' lim−→
i

Homk(Γk(M)(i), N),

where in the second member, Homcontk denotes the set of k-homomor-
phisms which are continuous on

(10) Γk̂ (M) =
∏

i≥0

Γ i
k(M)

(endowed with the product of discrete topologies), and in the third we
have written

(10’) Γk(M)(i) =
∏

j≤i

Γ
j

k (M)
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for the product of the i first factors occurring in (10). The map (9) is
deduced in the evident way from the exponential map

(11) M →WˆΓk̂ (M)
def
= lim←−

i

W (Γk(M)(i)).

(NB The relation between the description (9) of maps W (M)→W (N)
with the description given p. 451 in terms of maps (p) from Γk̂ (M) to
Γk̂ (N), is by associating to such a map f its composition with the projec-
tion of the target upon its factor N . . . ). An incorrect way of expressing
(9), which I slipped into in section 111 and kind of remained in till now,
is by pretending that the k-module Γk̂ (M) represents the functor (7’), [p. 485]
this is clearly false, as we do not have any canonical map from W (M)
into W (Γk̂ (M)), only into WˆΓk̂ (M) – we have an embedding

(12) W (Γk̂ (M)) ,→WˆΓk̂ (M),

but it is clear that in general, the exponential map (11) does not factor
through the first term in (12). (It does of course when we look at
sections over k only, but when we go over to a general k′, we hit into
the trouble that formation of inverse limits does not commute with
ring extension ⊗kk′!) We may however express (9) by stating that the
functor (7’) is “prorepresentable” by the pro-object

(13) Pro Γk(M)
def
= (Γk(M)(i))i≥0 in Pro(Abk),

this is even a strict pro-object (the transition morphisms are epimor-
phisms), which implies that the functor it prorepresents is representable
iff this projective system is “essentially constant” in the most trivial
sense, which means here

Γ i
k(M) = 0 for large i,

a condition which presumably is satisfied only for M = 0! Thus, the “cor-
rect” interpretation of non-pointed quasi-coherent linearization seems
to me to be the corresponding functor, which I would like now to call
Lk or simply L as before but with slightly different meaning:

(14) L or Lk : U(k)→ Pro(Abk)u Pro(Qucoh(k)),

where Qucoh(k) is defined in (8). In computational terms, I would like
to view L(X ) (for a unipotent bundle X ) to be a pro-k-module, but in
terms of geometric intuition, I would see it rather as a pro-Ok-module,
i.e., essentially as an inverse system of quasicoherent modules. It is
in these latter terms that the construction we just gave generalizes to
unipotent bundles over arbitrary ground schemes, not necessarily affine
ones. As for the “pointed” quasicoherent linearization functor

(15) Lpt or Lkpt : U(k)•→ (Abk)u Qucoh(k),

which I like best to view as taking values Lpt(X ) which are quasicoherent
sheaves, it maps into L by

(16) Lpt(X ) ,→ L(X ),
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interpreting objects of a category as special cases of pro-objects. We’ll
denote by

(17) W L(X ) ∈ Pro(U(k))

the pro-unipotent bundle defined in terms of L(X ) via the canonical [p. 486]
extension

Pro(W ) or simply W : Pro(Abk)→ Pro(U(k))

of W (cf. (8)) to pro-objects. Thus, instead of the map (6) which doesn’t
quite exist, we get a canonical “exponential” map

(18) X →W L(X )

in Pro U(k), which has of course little chance to factor through

(16’) W Lpt(X )→W L(X )

deduced from (16) by applying W . It is via this map (18) that we may
declare that L(X ) prorepresents the functor (7’) – it may be viewed as
the universal map of the type

X →W (N),

where now N is (not just a k-module, but) a variable object in Pro Abk.
Whereas the pro-object L(X ) is of a “k-linear” nature and may be viewed
as the (quasi-coherent) k-linearization of the unipotent bundle X , the pro-
object W L(X ) of U(k) has lost its k-linear nature, we would rather view
it as the canonical “abelianization” of X , retaining mainly its additive
structure (plus maybe operation of k on it, which is a lot weaker, though,
than structure of an Ok-module. . . ).

I would like now to examine if the quasi-coherent pro-object L(X ),
which has been obtained as the suitable quasi-coherent substitute for
O
(X )
k in order to get the basic isomorphism (4) for quasicoherent F , may

serve the same purpose for RHomOk
, in analogy to (5), (5’). Quite

generally, if
Γ = (Γα)

is any pro-Ok-module, let’s define for any module F

(19) RHomOk
(Γ , F)

def
= HomOk

(Γ , C•(F)),

where C•(F) is an injective resolution of F – thus, the definition extends
the usual one when Γ is just an Ok-module. Our expectation now would
be

(20) RHomOk
(L(X ), F) ∼−→ RΓX (FX ),

giving rise to

(20’) Extn
Ok
(L(X ), F) ∼−→ Hn(X , FX ),
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for any unipotent bundle X over k, and any quasicoherent sheaf [p. 487]

F =W (N),

where N is any k-module. Of course, (19) yields (for general Γ )

(19’) Exti
Ok
(Γ , F)' lim−→

α

Exti
Ok
(Γα, F),

so that (20’) may be rewritten more explicitly, if X 'W (M), as

(21) Hn(X , W (N)X )'
⊕

i≥0

Extn
k(Γ

i
k(M), N).

At any rate, we have a canonical map (20) in D+(Abk), hence maps
(20’), in view of the isomorphism (5) and the canonical map

(*) O
(X )
k → L(X )

deduced from (18), and the question now is whether these are isomor-
phisms. We may of course assume in (21)

X =W (M), n≥ 1.

If M is projective, so are the modules Γ i
k(M), and hence the second

member in (21) is zero, so we should check the first member is too. This
is clear when M is of finite type, hence X representable by an affine
scheme, whose quasicoherent cohomology is well-known therefore to
vanish in dim. n> 0. The general case should be a consequence of this,
representing X as the filtering direct limit of its submodules which are
projective of finite type – this should work at any rate when M is free with
a basis which is at most countable, using the standard so-called “Mittag-
Leffler” argument for passage to limit. Thus, in case M projective, (21)
and hence (20) seems OK indeed. When M is not projective, however,
there must be some k-module N such that Ext1

k(M , N) 6= 0, and hence
the second member of (19) is non-zero for n= 1, which should imply
rather unexpectedly

H1(X , F) = H1(W (M), W (N)W (M)) 6= 0,

whereas till this very moment I had been under the impression that
quasi-coherent cohomology of unipotent bundles should be zero, just as
for affine schemes! Maybe it has been familiar to Larry Breen for a long
time that this is not so? Maybe also for what we want to do it isn’t really
basic to find out whether (21) is true in full generality, as for the purpose
of studying Postnikov type dévissage, the unipotent bundles X we are [p. 488]
going to work with will be smooth, i.e., M projective (and we may
even get away with free M ’s, if we need so). The natural idea here for
getting (20) via (21) in full generality, is to use a projective resolution
of M (even a free one), but I’ll not try to work this out now. The main
impression which remains is that for the more relevant cases (involving
cohomology groups of a smooth unipotent bundle X at any rate, with
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quasicoherent coefficients), the quasicoherent “pro”-linearization L(X )
is just as good for computing cohomology invariants, as the forbidding
O
(X )
k modules we were shrinking from.
If now we take an X∗ instead of just X , namely a ss complex in

U(k), and assuming the components Xn to be smooth (to be safe), the
isomorphisms (20’) should give rise to isomorphisms (for F =W (N))

(22) Hn(X∗, F)' Extn
Ok
(L(X∗), F)' Extn

k(L(X∗), N),

where the Extn should be viewed as hyperext functors (not term-by-
term), and where in the last member L(X∗) may be interpreted as a
chain complex in Pro(Abk). The first member of (22) is the kind of
group occurring as obstruction group in the Postnikov-type dévissage
of X∗ into linear structures W (M(i)∗). The chain-pro-complex L(X∗)
may still look a little forbidding, our hope, though, now is that in the
“pointed” case we are really interested in, we may replace L(X∗) by
Lpt(X∗), which is just a true honest chain complex in Abk. Now, from
(16) we get indeed a canonical map

(23) Extn
k(L(X∗), N)→ Extn

k(Lpt(X∗), N)

and we hope that this is an isomorphisms, under suitable assumptions
on X∗, the most basic one I can think of now being

X0 = e.

The map (23) was defined as the transposed of a map of chain complexes
in ProAbk

(24) Lpt(X∗)→ L(X∗),

deduced from (16) by applying it componentwise. We recognize here,
but with a different interpretation (which seems to me “the correct”
one), the second map in the often referred-to diagram (w) of page 454,
or (V) in yesterday’s reflections (p. 478). To say that it gives rise to
isomorphisms (23), for any n and any module N , should be equivalent
to saying that (24) is a quasi-isomorphism – but to make sure I should
demand a little work on foundations matters on pro-complexes I guess;
also, to see if the assumption that (24) is a quasi-isomorphism should [p. 489]
imply the same statement with L(X∗) replaced by its componentwise
projective limit – namely that (V) on p. 478 is, which we’ll need of
course in case k = Z for the so-called “linearization theorem”. Thus, we
get three isomorphism or quasi-isomorphism statements, concerning
(23), (24) and (V) in yesterday’s notes, which are at any rate closely
related, and which one hopes to be true, because this seems needed
for a schematization theory of homotopy types to work. But I should
confess I have not tried even to get any clue as to why this should be
true, under the only assumptions, say, that the components of X∗ should
be smooth (and possibly the Kan assumption?), plus X0 = e say.
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Now to the second ingredient of the looked-for “linearization theo-
rem”, which previously was the first map in (w) p. 454, or (V’) on page
478, involving maps of

either Z(X∗(k)) or k(X∗(k))

into what was previously called L(X∗), and which we would now rather
denote by

lim←− L(X∗) (' Γk̂ (M∗) if X∗ =W (M∗)).

We made sure that, unless k = Z, none of the two had any chance
to be a quasi-isomorphism. The only positive thing that came out in
this direction was that the first one of these maps would induce an
isomorphism on Hi in the critical dimension (namely i = n+ 1 in the
n-connected case). We now understand why, for k 6= Z, we would
not get any actual quasi-isomorphism – namely, the “correct” naive
linearization which compares reasonably with L(X∗) should not be
relative to a constant ring such as Z or k, but relative to Ok, via the map
(*) (p. 487) giving rise now to

(25) O
(X∗)
k → L(X∗).

The more reasonable question now, making good sense really for any
ground ring k, is whether this map (under the usual assumptions say on
X∗) is a quasi-isomorphism. I wouldn’t really but it is, as I have some
doubts as to whether the homology sheaves of the first member (both
members of course being viewed as chain complexes of Ok-modules or
“pro” such) are quasi-coherent – but for the time being I am not sure
either if those of the second member are essentially constant pro-objects!
But even if (25) isn’t a quasi-isomorphism, it does behave like one for
all practical purposes of computing quasi-coherent cohomology it would
seem, as this boils down indeed to the isomorphisms (20) or (20’).

7.9. [p. 490]

116 For ten days I haven’t written any notes, and the time when I stopped The need and the drive.
looks a lot more remote still. For two days still after I last wrote on
the notes, I kept pondering about schematization of homotopy types
– it were rather lively days, first day I found the amazingly simple de-
scription of the homotopy groups in the schematic set-up, which got me
quite excited; next day, from a phone call to Illusie, it turned out that
the key assumption in all my ponderings on schematization, namely the
“abelianization theorem” (sic) asserting isomorphism between discrete
and schematic (namely quasi-coherent) homology (or equivalently, co-
homology) invariants, was definitely false: consequently, the canonical
functor from schematic to discrete homotopy types turns out definitely
not to be an equivalence. This completely overthrows the idyllic pic-
ture in my mind about the relationship between schematic and discrete
homotopy types – but the reflection on schematic homotopy types “in
their own right” had by then proceeded far enough, the very day before,
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so that my faith in the relevance of schematic homotopy types wasn’t
seriously shaken – rather, I got excited at drawing a systematic “bilan”

[“bilan” translates as “assessment”,
“results”, “balance sheet”, or even
“death toll”. . . ]

from the evidence now at hand, about the prospects of developing a
theory of “schematic homotopy types” satisfying some basic formal prop-
erties, whether or not such theory be based on semisimplicial unipotent
bundles as models, or on any other kind of models making sense over
arbitrary ground rings. Before reverting to a review of the more formal
properties of abelianization in the context of the basic modelizer (Cat),
I would like still to write down with some care what had thus come up
Monday and Tuesday last week. . .

The next days I felt a great fatigue in all my body, and I then stopped
(till yesterday) any involvement in mathematical reflection. I am glad I
followed this time the hint that had come to me through my body, rather
than brush it aside and go on rushing ahead with the work I was so
intensely involved in, as had been a rule in my life for many years. This
time, I understood that the reluctance of the body to follow that forward
rush, even though I was taking good care of myself with sleep and food,
had strong reasons, which had nothing to do with neither sleep or food
nor with my general way of life. Rather, during the weeks before and
also during those very days, a number of things had occurred in my life,
not all visibly related and of differing weight and magnitude, to none
of which I had really devoted serious reflection, nor even a minimum
of time and attention needed for giving me a chance to let these things [p. 491]
and their meaning “enter”. In lack of this, there was little chance my
response to current events would be any better than purely mechanical,
and my interaction with some of the people I love would be in any
way creative. There was this need for being attentive, an urgent need
springing from life itself and which I was about to ignore – and there
was this drive, this impatience driving me recklessly ahead, with no look
left nor right. Of course, I did know about the need, “somewhere” – and
in my head too I kind of knew, but the head was prejudiced as usual and
would take no notice, not of the need and not of the conflict between
an urgent need and a powerful, ego-invested passion. The head was
prejudiced and foolish – so it was my body finally which told me: now
you stop this nonsense and you take care of what you well know you
better take care first, and now! And its language was strong and simple
enough and cause me to listen.

Thus, the main work I was involved in for these last seven days was to
let a number of things “enter” – mainly things that were being revealed
through the death of my granddaughter Ella. It surely was “work”,
taking up the largest part of my nights and my days, – so much so that
I can’t really say there is any less fatigue now than seven days ago. It
seems to me, though, it isn’t quite the same fatigue – this time it is the
fatigue coming from work done, not from work shunned. The “work
done” wasn’t really done by me, I feel, rather work taking place within
me, and “my” main contribution has been to allow it to take place, by
providing the necessary time and quietness; and of course, also, to allow
the outcome of this work to become conscious knowledge, rather than
burying it away in some dark corner of the mind. The rough material,
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as well as the outcome of this work, have not been this time new facts
or new insights; rather, things which I had come to perceive and notice,
for some time already, over the last two years, without granting them
the proper weight and perspective – somehow as if I didn’t quite believe
what I was unmistakingly perceiving, or didn’t take it quite seriously.
Such a thing, I noticed, happens quite often, not only with me, and
takes care of making even the most lively perceptions innocuous, by
disconnecting them at all price from the image of reality and of ourselves
we are carrying around with us, that the image remains static, unaffected
by any kind of “information” flowing around or through us.

10.9. [p. 492]

117 Maybe the best will be to write up (and possibly develop some) my “Schematic” versus “formal” homol-
ogy and cohomology invariants.reflections (of the two days after I stopped with the notes) roughly in

the order as they occurred.
There were some somewhat technical afterthoughts. One was about

the logical difficulty coming from the site Aff/k on page 446 not being
a U-site (where U is the universe we are working in), hence strictly
speaking, the category of all sheaves on this site is possibly not even a
U-category (i.e., the Hom objects need not be small, i.e., with cardinal
in U), still less a topos, and hence the standard panoply of notions and
constructions in a topos does not apply. This doesn’t look really serious,
though, one way out is to limit beforehand the “size” of the unipotent
bundles we are allowing, i.e., of the k-modules describing them, in
terms say of cardinality of a family of generators of the latter – and then
restrict accordingly the size of the k-algebras k′ taken as “arguments”
for our sheaves, i.e., as objects of the basic site we are working on. For
instance, when working with unipotent bundles of finite type only (i.e.,
corresponding to k-modules of finite type – a rather interesting and
natural finiteness condition anyhow on the components of a schematic
model X∗), it is appropriate to work on the “fppf site”, where the argu-

[“fidèlement plat de présentation
finie”]

ments k′ are k-algebras of finite presentation. If we should be unwilling
to be limited by a fixed size restriction on the unipotent bundles we are
working with (and hence also on the corresponding homotopy types),
we may have to work with a hierarchy of size restrictions and passage
from one to any other less stringent one – a technical nuisance to be
sure, if we don’t find a more elegant way out, but surely not a substantial
difficulty. At the present heuristic stage of reflections, it doesn’t seem
worth while really to dwell on such questions any longer.

Another afterthought is about the functor

M 7→W (M) : Abk = (k-Mod)→ (Ok-Mod)

from k-modules to Ok-modules – a fully faithful functor we know, whose
essential image by definition consists of the so-called quasi-coherent
sheaves. A little caution is needed, as this functor is right exact, but not
exact, i.e., it does not commute with formation of kernels, because for a
k-algebra k′ which isn’t flat, the functor

M 7→ M ⊗k k′
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doesn’t. When we wrote down a formula such as (21) on page 487, we [p. 493]
were implicitly making use of the assumption that for k-modules M , N
we have a canonical isomorphism

(1) RHomk(M , N) ∼←− RHomOk
(W (M), W (N)),

at any rate such a formula is needed if we want to view (21) as a more
explicit way of writing (20) or (20’). Using a free resolution L• of M ,
and the fact that

Exti
Ok
(Ok, W (N))' Hi(Spec(k), W (N)) = 0 if i > 0,

stemming from the cohomology properties of flat descent, we easily
get a map (1), but I did not check that this map is an isomorphism,
the difficulty coming from the fact that W (L•) need not be a resolution
of W (M), unless M is flat. This perplexity already arises in the fppf
context – surely Larry Breen should know the answer. For what we are
after here it doesn’t seem to matter too much, as the computations of
loc. cit. were of interest mainly (maybe exclusively) in the case when M
is projective or at any rate flat, i.e., when working with flat unipotent
bundles – in which case (1) is indeed an isomorphism.

The interpretation of polynomial maps between k-modules M , N in
terms of the topological augmented coalgebras Γk̂ associated to these
may seem a little forbidding to some readers. In the all-important and
typical case when M and N are projective and of finite type, things
become quite evident, though, by just dualizing the more familiar con-
cepts around polynomial functions and homomorphisms between rings
of such. Thus, W (M) is just a usual vector-bundle, hence also a true
honest affine scheme over k, whose affine ring is the ring of polynomial
functions on M , which can be identified with Sym∗k(M

op), the symmetric
algebra on the dual module:

[To make sense of these formulæ I
have added some ops to denote dual
modules. I hope this matches AGs
intentions. . . ]

(2) W (M)' Spec(Sym∗k(M
op)),

and similarly for W (N). Polynomial maps from M to N , i.e., maps
from the k-scheme W (M) to the k-scheme W (N), just correspond to
k-algebra homomorphisms

(3) Sym∗k(N
op)→ Sym∗k(M

op)

(irrespective of the graded structures). As each of these algebras, as a
k-module, is a filtering direct limit of its projective submodules of finite
type such as

(4) Symk(M
op)(i) =

⊕

j≤i

Sym j
k(M),

the dual module [p. 494]

Γk̂ (M)' (Sym∗k(M))ˇ '
∏

j

(Sym j
k(M)' Γ

j
k (M))
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may be viewed as the inverse limit of the duals of those submodules
(compare p. 484 (11)), and topologized accordingly; linear maps (3)
may be interpreted in terms of continuous maps between the dual
structures (or, equivalently, between the corresponding pro-objects)

(3’) Γk̂ (M)→ Γk̂ (N),

and compatibility of (3) with multiplication and units is expressed by
compatibility of (3’) with “comultiplication”, i.e., diagonal maps, and
with augmentations. On the other hand, maps W (M)→W (N) respect-
ing the “pointed structures” coming from zero sections, correspond to
map (3’) transforming 1 into 1, besides the other requirements. Such
maps, it turns out, automatically induce a map between the submodules

(4) Γk(M)→ Γk(N)

which is rather evident indeed, if we remind ourselves of the fact that the
submodule Γk(M) may be viewed as the (topological) dual of Sym∗k(M),
topologized by the powers of the augmentation ideal

Sym+k (M) =
⊕

i>0

Symi
k(M),

or equivalently of the corresponding adic completion

(5) Sym∗kˆ(M) = lim←−
i

Sym∗k(M)(i)'
∏

j≥0

Sym j
k(M),

and correspondingly for N . The “pointed” assumption on a map W (M)→
W (N) in terms of the corresponding homomorphism of k-algebras (3),
just translates into compatibility with the augmentations, or equivalently,
with the corresponding ideals Sym+k , which implies that it induces a
homomorphism of the corresponding adic rings, and hence by duality a
homomorphism (4) on their duals.

These reminders bring near that working with the (discrete) k-algebras
Sym∗k(M), or equivalently, with the topological coalgebras Γk̂ (M), amounts
to working with “unipotent bundles” (projective and of finite type),
which are just usual schemes (of a rather particular structure of course),
whereas working with the topological k-algebras Sym∗kˆ(M), or equiv-
alently, with the discrete coalgebras Γk(M), amounts to working with
formal schemes, namely essentially, with the formal completions of the
former along the zero sections. (Of course, the topological objects just
considered may be equally viewed as being pro-modules endowed with [p. 495]
suitable extra structure.) Correspondingly, we will expect the cohomol-
ogy invariants constructed in terms of (the apparently more forbidding)
Γk̂ to express quasi-coherent cohomology of the corresponding schemes,
or semisimplicial systems of such; whereas, working with the (appar-
ently more anodyne!) Γk will lead to cohomology invariants of formal
schemes and semisimplicial systems of such. Both types of invariants
are of interest it would seem, the one however which looks the more
relevant in connection with studying ordinary homotopy types in terms
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of schematic ones, is surely the first. On the other hand, there isn’t any
reason whatever to believe that under fairly general conditions, these
two types of invariants are going to be isomorphic, by the evident map
from “schematic” to “formal” quasicoherent cohomology. To say it dif-
ferently, I do no longer expect that under reasonably wide assumptions,
the map (24) of p. 488

(6) Lpt(X∗)→ L(X∗),

is a quasi-isomorphism, nor behaves like one with respect to taking
Exti ’s with values in a quasicoherent module, as I was hastily surmising
for about one week, while loosing track of the geometric meaning of the
algebraic objects I was playing around with. To give just one example,
take X∗ to be the standard semisimplicial unipotent bundle associated
to the group-object Ga in U(k), namely just the usual affine line with
addition law. The Exti ’s of the two members of (6) with values in the
k-module k may be interpreted as either schematic or formal Hochschild
cohomology of the additive group, with coefficients in Ok = Ga. The
map of the former into the latter is not always an isomorphism, already
in dimension 1, where the two groups to be compared are just the groups
of endomorphisms of Ga, and of the corresponding formal group. If k
is of char. p > 0, a prime, then the latter group can be described as the
group of all formal power series of the type

F(t) =
∑

i≥0

ci t
(pi),

whereas for the first group we must restrict to those F which are poly-
nomials, i.e., only a finite number of the coefficients ci are non-zero.

One may of course object to this example, because the X∗ we are
working with is not simply connected, and because the example does
not apply over a ring such as Z, which is the one we are interested in
most of all. I am convinced now, however, that even when assuming
X1 = X0 = e and k = Z, (6) is very far from being a quasi-isomorphism,
even for such basic structures as K(Z, n) with n ≥ 2. At any rate, the [p. 496]
“way-cut” argument I have finally been thinking of, in order to check
(6) is a quasi-isomorphism, rests on vanishing assumptions which (as I
was informed by Illusie the next day) are wholly unrealistic. This finally
clears up, it would seem, a tenacious misconception which has been
sticking to my first heuristic ponderings about the homology and coho-
mology formalism for schematic homotopy types: one should be very
careful not to substitute the “pointed” linearization Lpt(W (M))' Γk(M)
for the non-pointed one L(W (M))' Γk̂ (M), in computing homology and
cohomology invariants of schematic homotopy types. To say it differently,
in order to be able to compute (or just define) the “schematic” homol-
ogy and cohomology invariants, we do need as a model a full-fledged
semisimplicial unipotent bundle, not just the corresponding formal one,
giving rise to invariants of it’s own, namely “formal” homology and
cohomology, which are definitely distinct from the former.



§118 The homotopy groups πi as derived functors of the “Lie . . . 445

118 It is all the more remarkable, in view of the preceding findings, that the The homotopy groups πi as derived
functors of the “Lie functors”. Lack
of satisfactory models for S2 and S3.

homotopy invariants
πi(X∗), i ≥ 0,

of a pointed semisimplicial unipotent bundle X∗ (still assuming the
components Xn to be smooth, i.e., to correspond to projective modules)
turn out to be invariants of the corresponding “formal” object, and,
more startling still, of the corresponding “infinitesimal” object of order
1. More specifically, consider the “Lie functor” or “tangent space at the
origin”

(7) Lie : U(k)•→ Abk, X =W (M) 7→ M ,

which we’ll need only for the time being for smooth X , when the ge-
ometric meaning of it is clear. This functor transforms semisimplicial
pointed bundles into semisimplicial k-modules Lie(X∗), thus we should
get, besides abelianization, another remarkable functor, from M1(k) say
to D•(Abk):

(8) Lie : M1(k)→ D•(Abk), via X∗ 7→ Lie(X∗),

granting that X∗ 7→ Lie(X∗) transforms quasi-isomorphisms into quasi-
isomorphisms. Now, that this must be so follows from the really startling
formula

(9) πi(X∗)' πi(Lie(X∗)) (' Hi of the associated chain
complex in Abk),

where the left-hand side, I recall, is defined as

(10) πi(X∗) = πi(X∗(k)).

I don’t have, I must confess, any direct description of such an isomor- [p. 497]
phism (9), valid for any semisimplicial bundle X∗, say, satisfying the
assumptions

X0 = X1 = e, Xn smooth for any n (maybe flat is enough),

plus possibly (if needed) a Kan type condition. However, we have such
isomorphisms (9) in a tautological way, when X∗ comes in the usual
way from a chain complex in Abk with projective components, hence
also when X∗ admits a Postnikov-type dévissage into “abelian” pieces as
above. If we admit that any X∗ satisfying the assumptions is homotopic
to one admitting such a dévissage, the isomorphisms (9) should follow,
except of course that extra work would be still needed to get naturality
of (9).

I have the feeling however that, besides the specific abelianization
functor in the schematic context, formula (9) should be made a corner-
stone of a theory of schematic homotopy types, and serve as “the” natural
definition of the homotopy invariants of a model X∗, within the context of
schematic models and without any need a priori to tie them up with, let
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one subordinate their study to, invariants of the corresponding discrete
homotopy type X∗(k). Accordingly, weak equivalences should be de-
fined (for semisimplicial bundles satisfying the suitable assumptions at
any rate) as maps inducing isomorphisms for the πi invariants, namely
inducing quasi-isomorphisms for the corresponding Lie chain complexes.
It is immediately checked that this implies that the corresponding map
for “formal homology”, namely

Lpt(X∗)→ Lpt(X∗)

is then a quasi-isomorphism too, when viewed as a map of chain com-
plexes and hopefully the same should hold for “schematic homology”

L(X∗)→ L(X∗),

and of course one would expect converse statements to hold too.
I would like to comment a little on the significance of formula (9).

As far as I know, this is the only fairly general formula, not reducing
to an “abelian” case, where the homotopy groups πi appear as just the
Hi invariants of a suitable chain complex, defined up to unique isomor-
phism in the relevant derived category. This chain complex comes here,
moreover, with an amazingly simple description, of immediate geomet-
rical significance, and suggestive of relationships with the homology [p. 498]
invariants a lot more precise, presumably, than those currently used so
far. Of course, the significance of (9) for the study of the usual, “discrete”
homotopy types, will be subordinated to how difficult it will turn out
for such a homotopy type to be a) realizable by a schematic over Z, and
b) to get hold of a more or less explicit description of such a schematic
homotopy type, via say a semisimplicial bundle as a model. One is of
course thinking more specifically of the case of the spheres Sn, the first
case (besides the trivial S1 case) being S2, the sequence of homotopy
groups of which (as far as I know) it not understood yet. Viewing the
spheres Sn as successive suspensions of S1, where S1 is fitting nicely into
the formalism of schematic homotopy types as a K(Z, 1) (except that
the 1-connectedness condition X1 = e is not satisfied), this brings near
the question of defining the suspension operation in a relevant derived
category M0(k) or M1(k) (whereas before we had met with the “dual”
question of constructing homotopy fibers of maps, such as loop spaces).
Thus it would seem that a breakthrough in getting hold of the standard
homotopy constructions within the schematic context, assuming that these
constructions do still make a sense, may well mean a significant advance
for the understanding of the homotopy groups of spheres. This looks like
a very strong motivation for trying to carry through those constructions
(possibly even construct a corresponding “derivator” embodying any
kinds of finite “integration” and “cointegration” operations on schematic
homotopy types) and at the same time warns us that such work, if at all
feasible, will most probably be a highly non-trivial one.

The question of “schematizing” the homotopy types of S2 and S3

reminds me of a fact which struck me a long time ago (maybe J. P. Serre
or someone else pointed it out to me first). Namely, in some respects
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there doesn’t seem to be really satisfactory algebraic models for these
homotopy types, taking into account the basic relationship between the
two, namely: the 2-sphere (or, equivalently, the projective complex line)
is a homogeneous space under the quaternionic group S3 (or, equivalently,
under the complex linear group SL(2,J)). This relationship, and its

[I’m guessing that SL(2,J) is an-
other notation for SU(2). . . ]

manifold “avatars” in the realms of discrete groups, Lie groups, algebraic
groups or group schemes etc., is one of the few key situations met
with, and of equal basic significance, in the most diverse quarters in
mathematics, from topology to arithmetic. Thus, SL(2) as a simple Lie
(or algebraic) group of minimum rank 1, plays the role of the basic [p. 499]
building block for building up the most general semisimple groups,
whereas P1 may be viewed as being the most significant homogeneous
space under this group, namely the first and most elementary case of
flag manifolds. In view of this significance of S2 and S3, it is all the
more reasonable that no simple, non-plethoric semisimplicial model
say in [unreadable], in terms say of a semisimplicial group having the
homotopy type of

S3 ∼ SL(2,C) = G,

and a subgroup having the homotopy type of

S1 ∼ C× = GL(1,C)∼ K(Z, 1)

and playing the part of a Borel subgroup or a maximal torus, in such a
way that the quotient will have the homotopy type of

S2 = P1
C ' S3/S1 ' G/B.

It would be tempting now to try and construct such a model of the
situation in terms of semisimplicial unipotent bundles over Z – which
would at the same time display the homotopy groups of S2 and S3

(not much of a difference!) via formula (9). All the more tempting
of course, as it is felt that the geometric objects and their relationship,
the homotopy shadow of which we want to modelize schematically, are
themselves already, basically, most beautiful schemes over Spec(Z)!

Another way of getting a display of the homotopy groups of S2 and S3

would be in terms of a (discrete) model of the situation above, in terms
of “hemispherical complexes” rather than semisimplicial ones. On the
other hand, there is no reason why a theory of schematic homotopy types
could not be carried through as well, using hemispherical complexes
rather than semisimplicial ones. The latter kind of complexes have the
advantage that they have become thoroughly familiar through constant
use by topologists and homotopy people for thirty years or so – the former
however are newcomers, have the advantage of still greater formal
simplicity (just two boundary operations, and just one degeneracy), and
more importantly still, of allowing for a direct computational description
of the homotopy invariants, in the discrete set-up. When working with
hemispherical complexes of unipotent bundles as models for schematic
homotopy types, we’ll get then two highly different descriptions of
the homotopy invariants πi , one by the “infinitesimal” formula (9)
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interpreting them as derived functors of the Lie functor, the other one
via the hemispherical set X∗(k), handled as if it came from an actual [p. 500]∞-groupoid (by taking its source and target operations etc.) even if
it does not. (I confess I did not check that this process does correctly
describe the homotopy groups of a hemispherical set, even without
assuming it comes from an ∞-groupoid or an ∞-stack, but never mind
for the time being. . . ) Among the interesting things still ahead (once
we get a little accustomed to working with hemispherical complexes) is
to try and understand how these two descriptions relate to each other,
which may be one means for a better understanding of the basic formula
(9), in the context of hemispheric schematic models.

26.9.

119 After the last notes (of September 10) I was a little sick for a few days, Breakdown of an idyllic picture – and
a tentative next best “binomial” ver-
sion of the “comparison theorem” for
schematic versus discrete lineariza-
tion.

then I was taken by current tasks from professional and family life,
which left little leisure for mathematical reflection, except once or twice
for a couple of hours, by way of recreation. It would seem now that
in the days and weeks ahead, there will be more time to go on with
the notes, and I feel eager indeed to push ahead. Also, I more or less
promised the publisher, Pierre Bérès, that a first volume would be ready
for the printer by the end of this calendar year, and I would like to keep
this promise.

I still have to tie in with the reflections and happenings of the end
of last month, as I started upon with the last notes (of Sept. 10). Next
thing then to report upon is the “coup de théâtre” occurring through the

[a sudden or unexpected event in a
play. . . ]

phone call to Luc Illusie. When I told him about what by then still looked
to me as the key assumption for a theory of schematization of homotopy
types, namely that the homology of K(π, n) should be computable in
terms of derived functors of the “divided power algebra”-functor ΓZ, he
at once felt rather skeptical, and later he called me back to tell me it
was definitely false. He could not give me an explicit counterexample
for Hi(n,Z;Z), say, with given n and i, rather he said that when suitably
“stabilizing” the assumption I had in mind, it went against results of
Larry Breen on Exti functors ofGa with itself over prime fields Fp. I don’t
know if I am going some day to give into Illusie’s argument and into
Larry Breen’s results – however, even before I got Illusie’s confirmation
that definitely my assumption was wrong, I convinced myself that at
any rate it was false for n = 1. This is a non-simply connected case and
hence not entirely conclusive maybe, but still it was enough to shake [p. 501]
my confidence that the assumption was OK. The counterexample is in
terms of cohomology

H2(1,Z;Z) = H2(Z,Z) = H2(BZ,Z)

rather than homology, as usual. As the classifying space BZ = S1 of
Z is one dimensional, its cohomology is zero in dimensions i ≥ 2.
On the other hand, H2 classifies central extensions of Z by Z, and an
immediate direct argument shows indeed that such extensions (indeed,
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any extension of Z by any group) split. If we take the schematic H2,
defined by Hochschild cochains which are polynomial functors, we get
the classification of central extensions of Ga by Ga, as group schemes
over the ring of integers. Now, it is easy to find such an extension which
does not split, the first one one may think of being the group scheme
representing the functor

k 7→W2(k) = group of truncated power series 1+ at + bt2

in k[t]/(t3),

where a, b are parameters in the commutative ring k, the group structure
being multiplication. These parameters define in an evident way a
structure of an extension of Ga by Ga upon W2, a splitting of which
would correspond to a group homomorphism

Ga→W2, a 7→ 1+ at + P(a)t2,

with
P ∈ Z[t].

Expressing compatibility with the group laws gives the condition

P(a+ a′) = P(a) + P(a′) + aa′,

which has, as unique solutions in Q[t], expressions

P(t) = t(t − 1)/2+ c t

with c in Q, none of which has coefficients in Z. This argument shows
in fact that for given ring k, (W2)k is a split extension iff 2 is invertible
in k, in which case a splitting is given by

a 7→ 1+ at + (a(a− 1)/2)t2.

This example brings near one plausible “reason” why the expected
comparison statement about discrete and schematic linearization could
not reasonably hold true, and in particular why we shouldn’t expect
discrete and schematic Hochschild cohomology (for group schemes over
Z such as Ga or successive extensions of such) to give the same result. [p. 502]
Namely, the latter is computed in terms of cochains which are polynomial
functions with coefficients in Z, whereas there exist polynomial functions
with coefficients in Q (not in Z) which, however, give rise to integer-
valued functions on the group of integer-valued points. Such are the
binomial expressions

Pn(t) = t(t − 1) . . . (t − n+ 1)/n! (for n ∈ N).

These (in the case of just one variable t) are known to form a basis
of the Z-module of all integer-valued functions on Z, and these is a
corresponding basis for integer-valued functions on Zr , for any natural
integer r. Thus, the hope still remains that a sweeping comparison
theorem for discrete versus “schematic” linearization might hold true,
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provided it is expressed in such a way that the “schematic models” we
are working with should be built up with “schemes” (of sorts) described
in terms of spectra not of polynomial algebras Z[t] and tensor powers of
these, but rather of “binomial algebras” Z〈t〉 built up with the binomial
expressions above, and tensor powers of such. If we want to develop a
corresponding notion of homotopy types over a general ground ring k,
we should then require upon k an extra structure of a “binomial ring”
(as introduced in the Riemann-Roch Seminar SGA 6 in some talks of
Berthelot), namely a ring endowed with operations

[Berthelot, Grothendieck, and Il-
lusie (SGA 6)]

x 7→
�

x
n

�

: k→ k (n ∈ N),

satisfying the formal properties of the binomial functions x 7→ Pn(x)
in the case k = Z or Q. Whereas linearization of homotopy types via
De Rham complexes with divided powers relies on a “commutative alge-
bra with divided powers” (which was developed extensively by Berthelot
and others for the needs of crystalline cohomology), linearization via
unipotent bundles (assuming it can be done in such a way as to ensure
that any discrete homotopy type can be “schematized” in an essentially
unique way) might well rely on the development of a “binomial com-
mutative algebra” and a corresponding notion of “binomial schemes”.
There should be a lot of fun ahead developing the necessary algebraic
machinery, which may prove of interest in its own right. It should be See comments next section p. 506–507.

realized, however, that for a ring k to admit a binomial structure is a
rather strong restriction – thus, for a given prime p, no field of char. p
(except possibly the prime field?) admits such a structure. This remark
may temper somewhat the enthusiasm for pushing in this direction,
even granting that a “binomial comparison theorem” for discrete versus
“binomial” linearization holds true.

Maybe it is worthwhile to give a down-to-earth formulation of such a [p. 503]
comparison statement. For any free Z-module M of finite type, let

SymbinZ(M) ⊂ Sym∗Q(MQ) (where MQ = M ⊗Z Q)

be the subalgebra of the algebra of polynomial functions on MQ̌ '
(Mˇ)Q which are integral-valued on Mˇ = dual module of M . Now let
L∗ be any semisimplicial Z-module whose components are free of finite
type, and consider the canonical map of cosemisimplicial Z-modules

SymbinZ(L∗̌ )→Maps(L∗,Z),

described componentwise in an obvious way. The question is whether
this is a weak equivalence, i.e., induces a quasi-isomorphism for the
associated cochain complexes, under the extra assumption that L∗ is
0-connected, i.e., the associated chain complex has zero H0 (and possi-
bly, if needed, assuming even 1-connectedness, i.e., H0 and H1 of the
associated chain complex are both zero). Presumably, by easy dévis-
sage arguments one should be able to reduce to the case when L∗ is
a K(Z, n) type, and more specifically still, that it is the semisimplicial
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abelian complex associated to the chain complex reduced to Z placed
in degree n (where n ≥ 1). Thus, the question is whether Eilenberg-
Mac Lane cohomology (with coefficients in Z) for K(π, n) types (or
more specifically, K(Z, n) types) can be expressed in terms of derived
functors of the Symbin(Mˇ) functor. At any rate, whether Symbin is
just the right functor to fit in or not, it looks like an interesting question
whether Eilenberg-Mac Lane cohomology (or, more relevantly still, ho-
mology) can be expressed in terms of the derived functor of a suitable
non-additive contravariant (resp. covariant) functor B from (Ab) (or
from the subcategory of free Z-modules) to itself. If so, there should
be a way of defining a (possibly somewhat sophisticated) notion of “B-
schematic homotopy types” (over a ground ring k endowed with suitable
extra structure, such as a binomial structure), in terms of “unipotent B-
bundles”, in such a way that any “discrete”, namely usual homotopy type,
satisfying a suitable 1-connectedness restriction, admits an essentially
unique “B-schematization”.

I don’t feel like pursuing these questions here, which would take me
too far off the main line of investigation I’ve been out for. At any rate,
whether or not Eilenberg-Mac Lane homology may be expressed in terms
of the total left derived functor of a suitable functor from (Ab) to itself,
it would seem that the somewhat naive approach towards schematic
homotopy types we have been following, valid over an arbitrary (com-
mutative) ground ring k without any extra structure needed on it, is
worthwhile pursuing even for the mere sake of studying ordinary homo- [p. 504]
topy types. The main reason for feeling this way is the amazingly simple
description of the homotopy modules πi of a homotopy type defined
in terms of a semisimplicial (or hemispherical) unipotent bundle, as
derived functors (so to say) of the Lie functor (cf. previous section 118).
The main test for deciding whether there is indeed a rewarding new tool
to be dug out, is to see whether or not in the model categories Mn(k)
we have been working with so far, the standard homotopy constructions
(around loop spaces and suspensions) make sense, and in such a way of
course that the canonical functor from schematic to discrete homotopy
types should commute to these operations. It may well turn out that
to get a handy formalism, one will have still to modify more or less the
conceptual set-up of unipotent bundles I’ve been tentatively working
with so far. I already lately hit upon suggestions of such modifications,
and presumably I’m going to discuss this still, before leaving the topic
of schematizations.

Another reason which makes me feel that there should exist a notion
of homotopy types over more general ground rings k than Z, is that
for a number of rings, such a notion has been known for quite a while.
If I got it right, already in the late sixties (even before I withdrew
from the mathematical milieu) I heard about such things as homotopy
types over residue class rings Z/nZ, or over rings (such as Q) which are
localizations of Z, or over rings such as Zˆ or Zp (p-adic integers) which
are completions of Z with respect to a suitable linear topology. Last
week, which was the first time I was at a university after the Summer
vacations, I took from the library the Bousfield-Kan Lecture Notes book

[Bousfield and Kan (1972)]
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on homotopy limits (which had been pointed out to me by Tim Porter in
June, when he had taken the trouble to tell me about “shape theory” and
its relations to (filtering) homotopy limits), and while glancing through
it, I noticed there is a systematic treatment of such homotopy types.

At this very minute I had a closer look upon the introduction of part
I, it turns out that Bousfield and Kan are working with an arbitrary
(commutative) ground ring k, and they are defining corresponding
k-completion k∞X of a homotopy type X , rather than a notion of “ho-
motopy type over k”. But the two kinds of notions are surely closely
related, the k-completion of BK presumably should have more or less the
meaning of ground ring extension Z→ k.† At any rate, for 1-connected †definitely not, in general!

spaces and k = Z the completion operation seems to be no more no
less than just the identity, thus it would seem that the implicit notion of
“homotopy type over Z” should be just the ordinary “discrete” notion
of homotopy types – unlike the notion of schematic homotopy types [p. 505]
(over k = Z) defined via semisimplicial unipotent bundles. Definitely,
an understanding of schematic homotopy types will have to include
the (by now classical) Bousfield-Kan ideas, and these are also relevant
for my reflections on “integration” and “cointegration” operations (in
connection with the notion of a derivator (section 69)), called in their
book “homotopy direct limits” and “homotopy inverse limits” (in the
special case of the derivator associated to ordinary homotopy types, if I
got it right). It came as a surprise that in their book, these operations
are developed mainly as technical tools for developing their theory of k-
completions, whereas in my own reflection they appeared from the start
as “the” main operations in homotopical as well as homological algebra.
There had been quite a similar surprise when Tim Porter had sent me
a reprint (in July, just before I stopped with my notes for a month or
so) of Don Anderson’s beautiful paper “Fibrations and Geometric Real-
izations” (Bulletin of the Amer. Math. Soc. September 1978), where a

[Anderson (1978)]very general and (as I feel) quite basic existence theorem for integration
and cointegration operations in the set-up of closed model categories of
Quillen of the type precisely I was after, is barely alluded to at the end
of the introduction, and comes more or less as just a by-product of work
done in view of a result on geometric realizations which (to an outsider
like me at any rate) looks highly technical and not inspiring in the least!

It is becoming clear that I cannot put off much longer getting ac-
quainted with the main ideas and results of Bousfield-Kan’s book, which
definitely looks like one of the few basic texts on foundational matters
in homotopy theory. Still, before doing some basic reading, I would like
to write down the sporadic reflections on schematic homotopy types I
went into during the last weeks, while they are still fresh in my mind!
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28.9. [p. 506]

120 Yesterday (prompted by the reflections from the day before, cf. section Digression on the Lazare “analyzers”
for “binomial” commutative algebra,
λ-commutative algebra, etc.

119), I pondered a little on the common features of the various set-ups
for “commutative algebra” (possibly, too, for corresponding notions of
“schemes”) one gets when introducing extra operations on commuta-
tive rings or algebras, such as divided power structure (on a suitable
ideal) or a λ-structure with operations λi paraphrasing exterior powers,
or a binomial structure with operations x 7→

�x
n

�

paraphrasing bino-
mial coefficients, or an S-structure with operations S i of Adams’ type
paraphrasing sums of ith powers of roots of a polynomial (a weakened
version of a λ-structure). It seems that the unifying notion here is the
notion of an “analyzer” (analyseur) of Lazare, “containing” the Lazare
analyzer for commutative rings (not necessarily with unit), so that the
components Ωn (n≥ −1) are commutative rings (not necessarily with
unit). In case the extra operations we want to introduce on commutative
rings are to be defined on rings with units (not just on a suitable ideal of
such a ring, as is the case for the divided power structure), and they all
can be defined in terms of operations involving just one argument, the
reasonable extra axiom on the corresponding analyzer (as suggested by
the examples at hand) is that for n≥ 1, Ωn can be recovered in terms of
Ω0 and Ω−1 = k0 (the latter acting as a ground ring for the theory) as
the (n+1)-fold tensor power of Ω0 over k0. Thus, the whole structure of
the analyzer may be thought of as embodied in the system Ω = (k0,Ω0),
where k0 is a commutative ring (with unit, now), Ω0 a commutative
k0-algebra with unit, endowed moreover with a composition operation
(F, G) 7→ F ◦ G, satisfying a bunch of simple axioms I don’t feel like
writing down here. The simplest case of all of course (corresponding to
usual commutative algebra “over k0” as a ground ring, with no extra
structure on commutative algebras with unit over k0) is Ω0 = k[T ], with
the usual composition of polynomials, T acting as the two-sided unit
for composition. In the general case, Ω0 and its tensor powers Ωn over
k0 are going to play the part played by polynomial rings in ordinary
commutative algebra. There should be a ready generalization, in this
spirit, of taking the symmetric algebra of a k0-module (which, for a
module free and of finite type will yield an Ω-structure isomorphic to
one of the Ωn’s). An Ω-structure on a set k amounts to giving a structure
of a commutative k0-algebra with unit on k, plus a map

Ω0→Maps(k, k), F 7→ (x 7→ F(x))

compatible with the structures of k0-algebras as well as composition [p. 507]
operations, and satisfying moreover two conditions for

F(x + y), resp. F(x y)

in terms of two diagonal maps

Ω0 Ω1 = Ω0 ⊗k0
Ω0

∆a

∆m
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(which may be described in terms of the composition structure on Ω0,
as expressing the compositions F ◦ (G′ + G′′) resp. F ◦ (G′G′′)), and
moreover one trivial condition for F(λ) when λ in k comes from k0,
namely compatibility of the map k0→ k with the operations of Ω0 on
both k0 and k. (NB the operation of Ω0 on k0 is defined by

F(λ) = F ◦λ,

where k0 is identified to a subring of Ω0.)
I didn’t pursue much further these ponderings, just one digression

among many in the main line of investigation! I also read through the
preprint of David W. Jones on Poly-T -complexes, which Ronnie Brown

[Jones (1983)](acting as David Jones’ supervisor) had sent me a while ago. There
he develops a notion of polyhedral cells, with a view of using these
instead of simplices or cubes for doing combinatorial homotopy theory.
As I had pondered a little along this direction (cf. sections 91, topic
8), and section 93), I was hoping that some of the perplexities I had
been meeting would be solved in David Jones’ notes – for instance that
there would be handy criteria for a category M made up with such
polyhedral cells to be a weak test category, namely that objects of Mˇ
may be used as models for homotopy types; also, that the “standard”
chain complex constructed in section 93 is indeed an “abelianizator” for
M , i.e., may be used for computing homology of objects of Mˇ. David
Jones’ emphasis, however, is a rather different one – he seems mainly
interested in generalizing the theory of “thin” structures of M. K. Dakin

[Dakin (1977)]from the simplicial to the more general polyhedral set-up and prove a
corresponding equivalence of categories. Thus, my perplexities remain
– they are admittedly rather marginal in the main line of thought, and I
doubt I’ll stop to try and solve them.

121 The tentative approach towards defining and studying “schematic” ho- The basic pair of adjoint functors
eK : Hotab0� Hot0 : LeH∗.

[p. 508]

motopy types I have been following lately relies heavily on a suitable
notion of “linearization” of such homotopy types. One can imagine that
many different approaches (for instance via De Rham complexes with
divided powers, or additive small categories with diagonal maps) may
be devised for “schematic” homotopy types, but in any case it seems
likely that a suitable notion of linearization will play an important role.
It may be worthwhile therefore to try and pin down the wished-for main
features of such a theory, with the hope maybe of getting an axiomatic
description for it, with a corresponding unicity statement. Before doing
so, the first thing to do seems to review some main formal features of
linearization for ordinary (“discrete”) homotopy types.

Recall the definition

(1) Hotab
def
= D•(Ab) = derived category of the category of

abelian chain complexes, with
respect to quasi-isomorphisms,
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and the two canonical functors

(2) Hot Hotab
LH•

Kπ
,

Where LH• is the “abelianization functor”, and Kπ is defined via the Kan-
Dold-Puppe functor, associating to a chain complex the corresponding
semisimplicial abelian group. The diagram (2) may be viewed (up to
equivalence) as deduced from the corresponding diagram

(2’) ˆ âb

W

DP
(u Ch•(Ab))

by passing to the suitable localized categories Hot and Hotab. In the
diagram (2’) W is left adjoint to DP, which is now just the forgetful
functor. One main fact about (2) is

(3) Kπ is right adjoint to LH•,

which is just a neater way for expressing the familiar fact that for given
abelian group π and natural integer n, the object K(π, n) in Hot (namely
the image by Kπ of the chain complex π[n] reduced to π in degree n)
represents the cohomology functor

X 7→ Hn(X ,π)' HomHotab(LH•(X ),π[n]).

The functor Kπ may be called the “Eilenberg-Mac Lane functor”, as its
values are immediate generalizations of the Eilenberg-Mac Lane objects [p. 509]
K(π, n). As any object in Hotab is isomorphic to a product of objects
π[n], it follows that in order to check the adjunction formula between
LH• and Kπ it is enough to do so for objects in Hotab of the type π[n],
which is the “familiar fact” just recalled. The notation Kπ in (2) is
meant to suggest the Eilenberg-Mac Lane K(π, n) object generalized
by the objects Kπ(L•), and also to recall that we recover the homology
invariants of L• from Kπ(L•) via the πi invariants, by the formula

(4) πi(Kπ(L•))' Hi(L•),

which implies by the way that the functor Kπ is “conservative”, i.e., a map
in Hotab which is transformed into an isomorphism is an isomorphism.
This should not be confused with the stronger property of being fully
faithful, or equivalently of the left adjoint LH• being a localization
functor, or equivalently still, the adjunction morphism

(5) LH•(Kπ(L•))→ L•

being an isomorphism in Hotab, which is definitely false!
The other adjunction morphism

(6) X → Kπ(LH•(X ))
def
= Xab
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is still more interesting, its effect on the homotopy invariants πi are the
Hurewicz homomorphisms

(7) πi(X )→ Hi(X )
def
= πi(Xab)' Hi(LH•(X ));

introducing the homotopy fiber of (6) (in the case of pointed homotopy
types) and denoting by γi(X ) its homotopy invariants, we get the exact
sequences of J. H. C. Whitehead (as recalled in a letter from R. Brown I
just got)

(7’) · · · → γi(X )→ πi(X )→ eHi(X )→ γi−1(X )→ ·· · ,

where eHi denotes the “reduced” homology group of a pointed homotopy
type, equal to Hi for i 6= 0 and to Coker(H0(pt)→ H0(X )) ' H0(X )/Z
for i = 0.

The case of pointed homotopy types seems of importance for schematic
homotopy types, and deserves some extra mention and care. We may
factor diagram (2) into

(8) ˆ ˆ• âb

α

β

fW

ÝDP
,

where ˆ• is the category of pointed semisimplicial complexes, β the
forgetful functor from these to non-pointed complexes, and α its left
adjoint, which may be interpreted as [p. 510]

(9) α(X∗) = X∗ q e∗,

where e∗ is the final object of ˆ, and the second member is pointed by
its summand e∗. The functor ÝDP comes from applying componentwise
the obvious functor from (Ab) to (Sets•) (pointed sets), fW is its left
adjoint. Passing to the suitable localized categories, we get from (8)

(10) Hot Hot• Hotab
α

LH•

β

LeH•

eKπ

Kπ

,

factoring (2), where α is now defined by the formula similar to (9)

(9’) α(X ) = X q e,

where e denotes the final object of Hot, and is used for defining the
pointed structure of the second member. The functor fW in (8) can be
described (as is seen componentwise) as

(11) fW (X∗) =W (β(X∗))/ Im W (e∗),

where
W (e∗)→W (X∗), i.e., Z(e)→ Z(X )
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is deduced from the pointing map e∗ → X∗. Accordingly, we get an
expression

LeH•(X )' LH•(X )/LH•(e),

more accurately, an exact triangle

(12)

LeH•(X )

LH•(e) = Z[0] LH•(X ) ,

where X is any object in Hot• and LH•(X ) is short for LH•(β(X )). Of
course, the functors LeH and eKπ are still adjoint (one hopes!), hence for
any pointed homotopy type X an adjunction map in Hot•

(6’) X → eKπ(LH•(X )),

and (7) and (7’) are deduced from (6’) and its homotopy fiber, rather
than from (6) where it doesn’t really make sense because of lack of
canonical base points for taking γi ’s and homotopy fibers.

2.10. [p. 511]

122 Since the last notes, I have been doing three days’ scratchwork (including Rambling reflections on LeH∗, Post-
nikov invariants, S(H, n)’s – and
on the non-existence of a “total
homotopy”-object Lπ∗(X ) for ordi-
nary homotopy types.

today’s) on various questions around abelianization in general (for
discrete homotopy types) and on Postnikov dévissage, in connection with
the review on some main formal properties of abelianization, started
upon in the previous section 121. I didn’t get anything really new for
me, rather it was just part of the necessary rubbing against the things, in
order to get a better feeling of what they are like, or what they are likely
to be like – what is likely to be true, and what not. The most interesting,
maybe, is that I got an inkling of a fairly general version of a Kan-
Dold-Puppe kind of relationship, in terms of derived categories, valid
presumably for any local test category, and in particular for categories
like /X , with X in ˆ. It would be untimely, though, to build up still
more the (already pretty high) tower of digressions, and for the time
being I’ll stick to what is relevant strictly to my immediate purpose –
namely getting through with the wishful thinking about schematization!
Thus, I’ll be content to work with the category in order to construct
models for homotopy types and perform constructions with them (such
as abelianization), without getting involved at present in looking up
how much is going over (and how) to the case of more general small
categories A. . .

It occurred to me that the variant fW or LeH• for the abelianization
functors W and LH•, introduced in the previous section using a pointed
structure for the argument X in ˆ or Hot•, could be advantageously
defined without this extra structure. The construction for fW which
follows goes through indeed in any topos whatever (not only ˆ). Let
X be an object in ˆ, then there is a canonical augmentation map

ε : W (X ) = Z(X )→ Z
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towards the constant semisimplicial group Z , corresponding to the
constant map

X → Z

with value 1. We thus get a functorial exact sequence

(1) 0→fW (X )→W (X )
ε
−→ Z→ 0,

where fW (X ) denotes the kernel of the augmentation above, hence an
extension of Z by fW (X ), or (what amounts essentially to the same) a
torsor under the group object fW (X ), which we’ll denote by

(2) W (X )(1) = ε−1(1).

Moreover, the canonical map [p. 512]

X →W (X ) = Z(X )

factors (by construction) through

(3) X →W (X )(1) (,→W (X )),

and this map is universal for all maps of X into torsors under abelian
group objects of ˆ. It is an immediate consequence of Whitehead’s the-
orem that a weak equivalence X → Y in ˆ induces weak equivalences
in ˆ

(4) fW (X )→fW (Y ), W (X )(1)→W (Y )(1)

(and also W (X )(n)→W (Y )(n) for any n ∈ Z), and accordingly that the
map between the normalized chain complexes corresponding to fW (X )
and fW (Y ), namely by definition

(4’) LeH•(X )→ LeH•(Y )

is a quasi-isomorphism. Thus, we get a functor

LeH• : Hot→ Hotab,

whose composition LeH• ◦β with the forgetful functor

β : Hot•→ Hot

is canonically isomorphic to the functor LeH• of p. 510 (formula 9). More
specifically, when X is in ˆ•, then the map

Z= Z(e)→ Z(X ) deduced from e→ X

defines a splitting of the extension (1), i.e., an isomorphism

(5) Z(X ) =W (X )'fW (X )⊕Z,

and accordingly, fW (X ) may be interpreted, at will, as a quotient group
of W (X ) (which we did on p. 510), or as a subobject of W (X ), which
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is the better choice, because it makes good sense without using any
pointed structure. Again, without using the pointed structure, we get a
canonical exact triangle in D(Ab) interpreting (1)

(6)

Z

LeH•(X ) LH•(X )

replacing ((12) p. 510), which (in the case considered there, namely X
pointed) should be replaced by the more precise relationship

(5’) LH•(X )' LeH•(X )⊕Z,

an isomorphism functorial for X in Hot•.
Truth to tell, these generalities are more interesting still for an ar- [p. 513]

gument X in a category like ˆ/Y u ( /Y )ˆ, where Y is an arbitrary
object in ˆ, rather than in ˆ itself. In the latter case, X always admits
a pointed structure, i.e., a section over the final object (provided X is
non-empty), hence there always exists a splitting for (1), and hence one
for (6); whereas for an object X over Y , there does not always exist a
section over Y , and accordingly it may well happen that the extension
similar to (1) (but taken “over Y ”) does not split, i.e., that the torsor
W/Y (X )(1) is not trivial. The class of this torsor is an element

(7) c(X/Y ) ∈ H1(Y,fW/Y (X )),

a very interesting invariant indeed, giving rise to the Postnikov invariants
when Y is one of the Xn’s occurring in the Postnikov dévissage of X .
It was while trying to understand the precise relationship between a
cohomology group as in (7), with “continuous” coefficients (by which I
mean to suggest that fW/Y (X ) is viewed intuitively as a fiberspace over
the “space” X , whose fibers are topological abelian groups which are
by no means discrete, but got a bunch of non-vanishing πi ’s!), and a
cohomology group with “discrete” coefficients, more accurately with
coefficients in a complex of chains in the category of abelian sheaves
over X , i.e., over /X whose homology sheaves are definitely of a
“discrete” nature (for instance, they are locally constant if X → Y is a
Kan fibration, and their fibers are Z-modules of finite type provided
we make a mild finite-type assumption on the fibers of X → Y ), that
I got involved in a more general reflection on a Kan-Dold-Puppe type
of relationship. I hope to come back to this when getting back to the
general review of linearization begun in part V of these notes, and
abruptly interrupted after section 109, when getting caught unwittingly
by the enticing mystery of schematization!

Another afterthought to the previous notes is that I am going to denote
by K , eK , the functors

(7) K : Hotab→ Hot, eK : Hotab→ Hot•, K = β ◦ eK ,
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denoted by Kπ, eKπ in section 121. This gives a formula such as

(8) K(π[n]) = K(π, n),

where π[n] denotes the chain complex in (Ab) which is π placed in
degree n. I was intending to complement the former notation Kπ by a
similar notation KH (where H stands for “homology”, as π was stand-
ing for “homotopy”, and K means “complex”), but I finally found the [p. 514]
notation S (suggestive of “spheres”) more congenial, giving rise to

(8’) S(H[n]) = S(H, n) = sphere-like homotopy type whose LeH•
is isomorphic to H[n].

But I am anticipating somewhat on some of the wishful thinking still
ahead, involving the would-be description (preferably in the schematic
set-up, but more elementarily maybe in the discrete one of ordinary
homotopy types) of a functor

S : Hotab= D•(Ab)→ Hot,

whose most important formal property should be

LH•(S(L•))' L•,

compare with formula (8’) for L• = π[n]. However, such a formula
[in (8’), the H[n] was originally
written π[n]. I’m not sure what to
make of this. . . ]

cannot hold for any L•, i.e., an arbitrary chain complex in (Ab) is not
quasi-isomorphic to an object LH•(X ) with X in (Hot), as a necessary
condition for this is that H0(L•) should be free. Thus, we better restrict
to the 0-connected case, and take L• subject to

H0(L•) = 0, i.e., L• in D≥1(Ab)
def
= Hotab(0-conn),

and describe S, or better still eS, as a functor

(9) eS : Hotab(0-conn)→ Hot(0-conn) ,→ Hot•,

subject to the condition

(10) LeH•(eS(L•))' L•,

giving rise to

(10’) eHi(eS(L•))' Hi(L•),

which should be compared to the familiar formula

(11) πi(eK(L•))' Hi(L•).

Maybe formula (10) is not quite enough for characterizing the functor
eS up to unique isomorphism, and I confess I didn’t try to construct
in some canonical way a functor (9) satisfying (10) – and I am not
quite sure even whether such a functor exists. One main evidence for
existence of such a functor would be the existence and unicity (up to
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unique isomorphism) of the homotopy types S(H, n) in (8’) – and I
have a vague remembrance of having looked through a paper, fifteen
or twenty years ago, where such spaces were indeed introduced and
studied. Thus, a functor eS is perhaps nowadays more or less standard
knowledge in homotopy theory. I was led to postulate the existence of [p. 515]
a functor eS in the context of schematic homotopy types, by reasons of
symmetry in the LH• and Lπ• formalism, which I’ll try to get through
a little later. It should be clear from the outset, though, that in the
schematic set-up, even the mere existence of (schematic) homotopy
types S(Z, n) (corresponding to ordinary spheres), and even for n= 2
or 3 only, is very far from trivial, and as a matter of fact isn’t even
known (in the set-up of semisimplicial unipotent bundles). This shows
at the same time that if such a functor eS can actually be constructed in
the schematic case, it is likely to be a lot more interesting still than in
the discrete case, as it will presumably give information on homotopy
groups of spheres (via the description of the πi ’s of a semisimplicial
unipotent bundle via the Lie functor (cf. section 118)).

There is a fourth tentative functor in between the categories Hotab
and Hot, or more accurately, from a suitable subcategory Hot•(0) of
Hot• (corresponding to 0-connected pointed homotopy types whose
π1 is abelian and acts trivially on the higher πi ’s) to Hotab(0-conn) =
Hotab(0), strongly suggested by the schematic case of section 118,
namely a functor

(*) Lπ• : Hot•(0)→ Hotab•(0)???,

whose main functorial property should be

(12) Hi(Lπ•(X ))' πi(X ).

To play really safe, one might hope such a functor to be defined at
any rate for 1-connected pointed homotopy types. Another equally
important property, suggested by the schematic set-up as well as by (11)
and (12), is the formula

(13) Lπ•(eK(L•))' L•,

similar to formula (10) (with the pair (eS, LeH•) replaced by the pair
(eK , Lπ•)). Of course, for X of the type eK(L•), (12) follows from (13)

3.10.
We’ll see, though, that a functor Lπ• as in (*), satisfying the properties

above, does not exist. Indeed, applying Lπ• to the adjunction morphism

X → eK(LeH•(X ))

(cf. p. 509, (6)), and using (13), we should get a Hurewicz homomor-
phism [p. 516]

(14) Lπ•(X )→ LeH•(X )



§122 Rambling reflections on LeH∗, Postnikov invariants, . . . 462

more precise than the separate homomorphisms

πi(X )→ eHi(X ),

and applying this to an object eK(L•) and applying (13) again, we should
get a functorial homomorphism

(15) L•→ LeH•(eK(L•))

in opposite direction from the adjunction morphism

(16) LeH•(eK(L•))→ L•

(p. 509, (5)), the composition of the two being the identity in L•. In other
words, (15) should be a canonical splitting of the natural adjunction
morphism (16). Take for instance L• = π[n], then the first member
of (16) is the Eilenberg-Mac Lane homology LeH•(π, n), whose first
non-vanishing homology group is π, and (16) is just the canonical
augmentation

LeH•(π, n)→ π[n],

and taking the Exti
Z of both members with M[n] (M any object in (Ab))

yields the transposed canonical homomorphism

(17) Exti
Z(π, M)→ Hn+i(π, n; M),

which is an isomorphism for i = 0 (whereas for i < 0 both members are
zero). For i = 1, we get an exact sequence (“universal coefficients”)

(18) 0→ Exti
Z(π, M)→ Hi+1(π, n; M)→ HomZ(Hi+1(π, n), M)→ 0.

A canonical splitting of (15) would yield a canonical splitting of this
exact sequence, which definitely looks somehow as “against nature”!
Surely, it shouldn’t be hard to find, for any given integer n≥ 1, suitable
abelian groups π and M , such that there does not exist a splitting of
(18) stable under the action of the group

G = Aut(π)×Aut(M)

(acting by “transport de structure” on the three terms of (18)); pre-
sumably even, looking at Aut(π) should be enough. As I am not at all
familiar with Eilenberg-Mac Lane cohomology, except a little in the case
n = 1, i.e., for usual group cohomology, I didn’t try to construct an
example for any n, only one for n= 1, i.e., in a non-simply connected
case, which again is a little less convincing as if it was one for n= 2. . .

Thus, let’s take n = 1, a vector space of finite dimension over the
prime field F2, and M = F2, in this case standard calculations show [p. 517]
that the exact sequence (18) can be identified with the familiar exact
sequence

(18’) 0→ V ′→ Sym2(V ′)→
2
∧

V ′→ 0,
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where the first arrow associates to every linear form on V its square,
i.e., the same form (!) but viewed as being a quadratic form on V ; and
the second arrow associates to every quadratic form on V the associated
bilinear form, which is alternate because of char. 2. It is well-known I
guess that for dim V ≥ 2, there does not exist a splitting of (18’) which
is stable under Aut(V )' Aut(V ′).

Remark. If we admit that a similar example can be found for non-
splitting of (18), with n≥ 2 (which shouldn’t be hard I guess for some-
one familiar with Eilenberg-Mac Lane homology), this shows that there
does not exist (as was contemplated at the beginning, cf. section 111)
an equivalence of categories between the schematic 1-connected ho-
motopy types (defined via the model category M1(Z) of semisimplicial
unipotent bundles over Z satisfying X0 = X1 = e) and 1-connected
pointed usual homotopy types, as this would imply the existence of a
functor Lπ•, hence of a canonical splitting of (18). The same argument
will show that the once hoped-for comparison theorem between usual
Eilenberg-Mac Lane homology (or cohomology), and the schematic one,
is false, because in the schematic set-up Lπ• does exist, and the direct
construction of (15) (a functorial splitting of (16)) is then anyhow a
tautology. Thus after all, we don’t have to rely on delicate results of
Breen’s on Exti(Ga,Ga) over the prime fields Fp (as suggested by Illusie),
in order to get this “negative” result, causing unreasonable expectations
to crash. . .

4.10. [p. 518]

123 For the last few days – since I resumed the daily mathematical ponderings The hypothetical complexes nΠ∗ =
Lπ∗(Sn), and comments on homo-
topy groups of spheres.

(interrupted more or less for nearly one month), the wind in my sails
has been rather slack I feel. It has been nearly six weeks from now that I
started pondering on schematization and on schematic homotopy types
– in the process I got rid of some misplaced expectations, very well. Still,
the unpleasant feeling remains of not having really any hold yet on
those would-be schematic homotopy types, due mainly to my incapacity
so far of performing (in the model category of semisimplicial unipotent
bundles say) the basic homotopy operations of taking homotopy fibers
and cofibers of maps. In lack of this, I am not (“morally”) sure yet
that there does exist indeed a substantial reality of the kind I have been
trying to foreshadow. I am not even wholly clear yet of how to define the
notion of “weak equivalence” in t he model category M0(k) (or in the
smaller one M1(k), to play safe, as even the definition of M0(k) isn’t too
clear yet) – there are three ways to define weak equivalences, using LH•,
or Lπ•, or the sections functor from M1(k) to ordinary semisimplicial
complexes, and it isn’t clear yet whether these are indeed equivalent. We
may of course call “weak equivalence” in M1(k) a map which becomes
an isomorphism by any of these three functors. But I wouldn’t say I am
wholly confident yet that there exists a localization Hot1(k) of M1(k),
with respect to this notion of weak equivalence or some finer one, in
such a way that in Hot1(k) one may introduce the two types of “fibration”
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and “cofibration” sequences with the usual properties, and the sections
functor

Hot1(k)→ Hot1

should respect this structure, and moreover give rise to functorial iso-
morphisms

Hi(Lπ•(X∗))' πi(X∗(k)),

nor even do I feel wholly confident that a theory of this kind can be
developed, possibly with different kinds of models for k-homotopy types
from the ones I have been using. At any rate, it seems to me that the
two kinds of conditions or features I have just been stating, are indeed
the crucial ones, plus (I should add) existence in Hot1(k) of an object

S2
k = S(2, k),

standing for the 2-sphere, with

LeH•(S
2
k)' Z[2],

whose image in Hot1 (in case k = Z say) should be the (homotopy [p. 519]
type of the) ordinary 2-sphere. Taking suspensions, we’ll get from this
the n-spheres Sn

k = S(n, k) over k, for any n ≥ 2. (NB In case the
relevant homotopy theoretic structures can be introduced in a suitable
larger Hot0(k), containing the objects eK(L•) for L• a 0-connected chain
complex of k-modules, Hot0(k) contains an object S(1, k) = eK(1, k), and
S2

k may be simply described as its suspension.) One main motivation for
trying to push through a theory of schematic homotopy types may be
the hope that this may provide new insights into the homotopy groups
of spheres. A first interesting consequence would be that for any given
sphere Sn (in the set-up now of ordinary homotopy theory), the series
of all its homotopy groups πi(Sn) = HomHot(S i , Sn) may be viewed as
being the homology modules of an object of D•(Ab), namely Lπ•(Sn

Z),
canonically associated to Sn. As was seen by an example in the previous
section, the existence of such a canonical representation is by no means
a trivial or innocuous fact, it is indeed definitely false for arbitrary
homotopy types – here then it would turn out as a rather special feature
of the full subcategory of Hot• made up with the spheres Sn (n ≥ 2).
Thus, for any α ∈ πi(Sn), i.e., for any map

α : S i → Sn

in Hot•, there should be an induced map

Lπ•(α) : Lπ•(S
i)→ Lπ•(S

n)

with associativity condition for a composition

S i α
−→ Sn β

−→ Sm.

If we write
nΠ•

def
= Lπ•(S

n),
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this defines on the set of chain complexes (more accurately, abelian
homotopy types) nΠ• (n ≥ 2) quite a specific structure, which merits
to be investigated a priori (under the assumption, of course, of the
existence of a reasonable theory of schematic homotopy types, satisfying
the criteria above). Maybe after all, it will turn out that the homotopy
groups of spheres cannot be fitted into such an encompassing structure
– so much the better, as this will show that the kind of theory I started
trying to dig out doesn’t exist, which will clear up the situation a great
deal! But if there does exist such a canonical structure, it surely shouldn’t
be ignored, and it should be pleasant work to try and pin down exactly
what extra information on homotopy groups of spheres is involved in [p. 520]
such extra structure. It may be noted for instance that, when taking i = n
hence πi(Sn) = Z, we get an operation of the multiplicative monoid
Zmult on nΠ•, whose action on the homology groups of nΠ•, i.e., on
the homotopy groups π j(Sn), is surely an important extra structure on
these, which I hope has been studied by the homotopy people extensively.
Surely it has been known, too, for a long time (at any rate since Artin-
Mazur’s foundational work on profinite homotopy types) that when
π j(Sn) is finite (i.e., practically in all cases except j = n) this action
comes from a continuous action of the multiplicative monoid

M = Zˆmult,

where Zˆ is the completion of Z with respect to the topology defined
by subgroups of finite index:

Zˆ = limZ/nZ'
∏

p

Zp,

where in the last member the product is taken over all primes, and Zp
denotes p-adic integers. Taking homotopy types over the ring k = Zˆ,
we should get that this monoid M operates on the object

nΠ•

� l
⊕

ZZˆ
�

in D•(AbZˆ),

as this may be interpreted as Lπ•(Sn
k ), and kmult operates on Sn

k = S(n, k)
for any ring k (if indeed S(n,π) depends functorially on the variable k-
moduleπ). At any rate, it is surely well-known that M = Zˆmult operates
on the profinite completions of all spheres. For the odd-dimensional
spheres, and taking the restrictions of this operation to the largest
subgroup

M× = Zˆ× '
∏

p

Z×p

of M , this group may be viewed as the profinite Galois group of the
maximal cyclotomic extension of the prime fieldQ (deduced by adjoining
all roots of unity), and its action on the profinite completion Snˆ of
Sn may be viewed as the canonical Galois action, when Sn=2m−1 is
interpreted as the homotopy type of affine (complex) m-space minus
the origin (which makes sense as a scheme over the prime field Q). This
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was the interpretation in my mind, when stating that the action of Zmult

and of its completion Zˆmult on the homotopy groups of spheres was in
important extra structure on these.

124 I guess I’ll skip giving a more or (rather!) less complete axiomatic descrip- Outline of a program (second ver-
sion): an autodual formulaire for
the basic “four functors” LeH∗, Lπ∗,
eK, eS.

[p. 521]

tion of Hot•0 or of Hot•0(k), in terms of the pair of adjoint functors LeH•
and eK and Postnikov dévissage, although I did go through this exercise
lately – it doesn’t really shed new light on the approach we are following
here towards “schematic” homotopy types over arbitrary ground rings.
In contrast with the two other approaches I have been thinking of before
(namely De Rham complexes with divided powers, and small categories
with diagonal maps, cf. sections 94 and 109 respectively), the charac-
teristic feature of this approach seems to be that it takes into account
the existence of the canonical functor eK : D•(Ab)→ (Hot), paraphrased
by a functor

(1) eK : D•(Abk)(0-conn)→ Hot0(k)

compatible with ring extension k→ k′; while all three approaches have
in common that they yield a paraphrase

(2) LeH• : Hot0(k)→ D•(Abk)(0-conn)

of the (total) homology functor, in a way again compatible with exten-
sion of ground rings. In the two earlier approaches this latter functor
comes out in a wholly tautological way, whereas in the present approach
via semisimplicial schemes, it isn’t quite so tautological indeed. If we
want to define a functor eK in the context say of De Rham algebras
with divided powers, one may think of associating first to a chain com-
plex in Abk the corresponding semisimplicial k-module, view this as a
semisimplicial set, and take its De Rham complex with divided powers
and coefficients in k (as we want an object over k). But this is visibly
silly, except possibly for k = Z, as the result doesn’t depend on the
k-module structure of the chain complex we start with. It is doubtful,
anyhow, that in this context, the tautological functor (2) admits a right
adjoint (which we then would call eK of course). – Another noteworthy
difference between the present approach towards defining “schematic”
homotopy types, and the two earlier ones (“earlier” in these notes, at
any rate!) is that for k = Z say, the category of “homotopy types over
Z” we get here maps into the category of ordinary homotopy types,
whereas it was the opposite with the two other approaches.

What, however, I still would like to do, is a little more daydreaming
about the expected formal properties of the basic functors in between the
two categories appearing in (1) and (2) – namely, essentially, between
“schematic homotopy types” and “abelian” ones. It will be convenient to [p. 522]
denote the category of the latter by

(3) Hotab0(k)

rather than D•(Ab)(0-conn), the subscript 0 denoting the 0-connectedness
condition. The reason for this change in notation is that, according to
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the choices made in the basic definitions, the “k-linear” algebraic in-
terpretation of this category may vary still. Strictly speaking, in the
approach we have been following in terms of semisimplicial unipotent
bundles, the category (3) cannot really be described as the subcategory
of 0-connected objects of D•(Abk), we have seen, rather, that in order to
define a functor LeH•, we have to work with chain complexes in Pro(Abk)
rather than in (Abk); cf. section 115, where this point is made rather
forcefully. (Recall that taking projective limits instead wouldn’t help,
because then the linearization functor LeH• would no longer commute
to ground ring extension!) The trouble then is that in order to define

eK : Hotab0(k)→ Hot0(k),

we are obliged to enlarge accordingly the category of models used for
describing Hot0(k), namely take semisimplicial pro-unipotent bundles,
rather than just semisimplicial unipotent bundles. This sudden invasion
of the picture by pro-objects may appear forbidding – but maybe it
will appear less so, or at any rate kind of natural and inescapable, if
we recall that when it will come to working with homotopy types of
general topoi, these are anyhow “prohomotopy types” rather, and they
can be described only by working systematically in terms of pro-objects
of various categories. We’ll see, however, that there may be a way out of
the “pro”-mess, by using a slightly different, more or less dual approach
towards the idea of “unipotent bundles”. Of course, one may also think
of using the “pointed linearization” Lpt for LH•, instead of L, but as
was pointed out in section 117, this will lead to “formal” homology and
cohomology invariants rather than to “schematic” ones, and the relation
between these and corresponding invariants for ordinary homotopy
types will be looser still; at any rate, it is suited for describing Postnikov
dévissage in the set-up of “formal schematic” homotopy types only, not
for schematic homotopy types. Still, the theory of the former may
have an interest in its own right, even though its relation to ordinary
homotopy types isn’t so clear at present. Thus, we may state that there
are around at present three or four different candidates for possibly
fitting the daydreaming I want to write down. With this in mind, we [p. 523]
shouldn’t be too specific (for the time being) about the exact meaning
to be given to the symbols Hotab0(k) and Hot0(k). It may be safer to
replace these by Hotab1(k) and Hot1(k) (where the subscript 1 means
“1-connected”), all the more so as we haven’t been able yet, in the
context of unipotent bundles, to give even a tentative precise definition
of Hot0(k), i.e., of M0(k) (mimicking the condition of abelian π1 with
trivial action on the higher πi ’s), except by expressing things via the
associated ordinary homotopy type (passing over to X∗(k)), which looks
kind of stupid indeed! But nothing is “safe” here anyhow, and the
subscript 0 looks definitely more natural here than subscript 1, so we
may as well keep it!
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5.10.
What we are mainly interested in, for expressing the relationships

between the non-additive category Hot0(k) and its additive counterpart
Hotab0(k), is an array of four functors in between these, two of which
being LeH• ((total) “homology”, or “linearization”) and eK (Eilenberg-
Mac Lane functor) in (1) and (2), the two remaining ones being Lπ•
(“total homotopy”) and eS (the “spherical functor”, compare p. 514 (9)),
fitting into the following diagram

(4) Hotab0(k) Hot0(k)
eK

eS

LeH•

Lπ• .

I would now like to discuss the main formal properties to be expected
from this set of functors.

A) Adjunction properties:

(5)

�

a) (LH•, eK) is a pair of adjoint functors,
b) (eS, Lπ•) is a pair of adjoint functors.

Thus, we get adjunction homomorphisms (for L• in Hotab0(k) and X
in Hot0(k))

(6a)

¨

X → eK(LeH•(X )) (
def
= fW (X ) (“pointed linearization”))

LeH•(eK(L•))→ L• ,

and [p. 524]

(6b)

¨

eS(Lπ•(X ))→ X
L•→ Lπ•(eS(L•)) .

The adjunction formulas for the two pairs in (5) are

(7)

�

a) Hom(LeH•(X ), L•)' Hom(X , eK(L•))
b) Hom(L•, Lπ•(X ))' Hom(eS(L•), X ) .

The first-hand side of a) should be viewed as cohomology of X with
coefficients in L•. More specifically, as eH0(X , L•), and in case L• = π[n],
posing

(8a) K(π[n])
def
= K(π, n),

we get that the Eilenberg-Mac Lane objects K(π, n) represents the coho-
mology functor

X 7→ eH0(X ,π[n]) = Hn(X ,π).
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Symmetrically, the first-hand side of (7b) should be viewed as a
“mixed homotopy module” of X (relative to the “co-coefficient” L•), I
am tempted to denote it as

π0(X , L•), resp. πn(X , H) if L• = H[n];

thus, posing

(8b) eS(H[n])
def
= S(H, n) (sphere-like object for H, n),

we get that the H-sphere S(H, n) over k represents the (covariant)
functor on Hot0(k)

X 7→ πn(X , H).

In case H = k, we get

πn(X , k) = Hom(k[n], Lπ•(X )) = Hn(Lπ•(X ))
def
= πn(X ),

and we get that the “usual” homotopy module functor

X 7→ πn(X )

is represented by the “usual” n-sphere (over k however!) S(n, k), as it
should. (This is of course the main justification why we expect (eS, Lπ•)
to be a pair of adjoint functors, whereas adjunction for the pair (LeH•, eK)
is already fairly familiar from the set-up of ordinary homotopy types.)

The adjunction formulæ (7) show that the objects K(L•) in Hot0(k) are
group objects, whereas the objects eS(L•) are co-group objects. This gives
some inner justification for calling fW (X ) = eK(LeH•(X )) the (pointed) [p. 525]
“linearization” of the schematic homotopy type X , which maps into the
former by the first adjunction morphism in (6a). Dually, we may call
eS(Lπ•(X )) the (pointed) “co-linearization” of X , it maps into X by the
first adjunction morphism in (6b).

The source LeH•(eK(L•)) in the second adjunction map (6a) may be
viewed as Eilenberg-Mac Lane type (total) homology, corresponding to
the chain complex L• = π[n] (but in the schematic sense of course!),
whereas the target Lπ•(eS(L•)) in the second adjunction map (6b) may
be viewed as “total homotopy” of a sphere-type space, reducing in case
L• = π[n] to the total homotopy of the standard n-sphere over k, S(n,π).
In case k = Z, we expect of course the homology groups of this chain
complex to be the ordinary homotopy groups of the usual sphere Sn –
cf. G) below.

B) Inversion formulæ: two functorial isomorphisms

(9)

�

a) Lπ•(eK(L•))
∼−→ L• ,

b) LeH•(eS(L•))
∼−→ L• .

Maybe we should have begun with these, as they kind of fix the
meaning of the two functors eK , eS in terms of LeH•, Lπ•, which may be
viewed as embodying respectively the two main sets of invariants of a
homotopy type, namely homology and homotopy.
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C) Hurewicz map:

(10) Lπ•(X )→ LeH•(X ).

We get such a map by applying Lπ• to the linearization map in (6a),
and using (9a); symmetrically, we may apply LeH• to the colineariza-
tion map (6b), and use (9b). We get a priori two maps (10), and the
statement is that these two maps are the same. Moreover, we have
the all-important Hurewicz theorem: The first non-vanishing homology
objects for Lπ•(X ) and LeH•(X ) occur in the same dimension, n say, and
(10) induces an isomorphism for Hn, an epimorphism for Hn+1.

D) Exactness properties: they can be stated shortly by saying that
in each one of the two pairs of adjoint functors (5), the left adjoint
one respects cofibration sequences, whereas the right adjoint respects
fibration sequences. This may be detailed as four exactness statements,
one for each one of the four basic functors.

Thus, LeH• respects cofibration sequences, which means essentially [p. 526]
that for such a sequence in Hot0(k)

Y → X → Z , Z the homotopy cofiber of Y → X ,

we get a corresponding exact triangle in Hotab0(k)

(11b)

LeH•(Z)

LeH•(Y ) LeH•(X )

i

,

which is the most complete and elegant way, I guess, for expressing
behaviour of homology with respect to homotopy cofibers and suspen-
sions. Dually, Lπ• respects fibration sequences, which means that for
such a sequence in Hot0(k)

Z → X → Y, Z the (connected) homotopy fiber of X → Y ,

we get a corresponding exact triangle in Hotab0(k)

(11a)

Lπ•(Z)

Lπ•(X ) Lπ•(Y )

i

,

which is a more complete and elegant way of stating the exact homotopy
sequence of a fibration, in terms of total homotopy.

Formula (11b) implies that LeH• commutes with suspension functorsΣ,
the latter in Hotab0(k) (visualized as a derived chain complex category)
is just the shift functor

Σab : L• 7→ L•[1] (L[1]n = Ln−1,
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which is a fully faithful functor. Dually, formula (11a) implies that Lπ•
commutes to the loop-space functors Ω0; the latter in Hotab0(k) cannot
be described as just a shift in opposite direction

L• 7→ L•[−1],

as this will get us out of 0-connected chain complexes, we have to
truncate, moreover, at dimension 1 (afterwards, or at dimension 2
beforehand). This functor is not fully faithful therefore – we loose
something when passing from L• to Ω0

ab(L•).
As for the two functors eK , eS in the opposite direction, from Hotab0(k)

(i.e., essentially chain complexes) to Hot0(k), that the first one respects
fibration sequences is surely quite familiar a fact (and kind of tautolog-
ical) in the set-up of ordinary homotopy types. That the second, less
familiar functor eS should respect cofibration sequences should be useful [p. 527]
in order to give a more or less explicit construction of eS(L•), for given
L•, in terms of the “spheres over k” S(H, n).

Remarks. 1) The superscript 0 for the loop functor Ω0 or Ω0
ab should

not be confused with the subscript n in the iterated loop-space functor
Ωn, it is added here to suggest that we are taking the neutral connected
component of the “true” full loop-space, this being imposed by the re-
striction of working throughout with 0-connected objects; likewise, the
“homotopy fiber” operation in the present context should be viewed as
meaning “connected component at the marked point of the full homo-
topy fiber”. These necessary readjustments of the usual notions is being
felt as an unwelcome feature (of which I have become aware only at this
very moment, I confess, through the writing of the notes). Intuitively,
the restriction to 0-connected (pointed) homotopy types doesn’t seem
to imperative, technically, however, when working with semisimplicial
schematic models, we had felt like introducing the condition X0 = e,
which may be viewed as a strong form of a 0-connectedness condition.
Truth to tell, it isn’t so clear that this condition is going to be of great
utility – anyhow, it isn’t enough to ensure what we’re really after at
present (namely abelian π1 and trivial action on the higher πi ’s), a
condition which is anyhow independent of any 0-connectedness type
assumption, and is moreover (it would seem) stable under the basic fiber
and cofiber operations. To sum up, it may well turn out that we better
replace the categories of 0-connected homotopy types Hotab0(k) and
Hot0(k), by slightly larger ones, so as to get rid of the 0-connectedness
restriction. This, however, is at present a relatively minor point, and
therefore we’ll leave the notations as they are.

2) Behaviour of LeH• with respect to fibration sequences (instead of
cofibration sequences) is a relatively delicate matter, it is governed by
the Leray spectral sequence, whose initial term is the homology of the
base Y with “coefficients” in the homology of the fiber. I wonder if there
is anything similar for the behavior of Lπ• with respect to cofibration
sequences?

3) In the display of the main expected properties of the four basic
functors, there is a striking symmetry, which we tried to stress by the
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way of presented the main formulæ. One way to express this symmetry
is to say that things look as if there was an auto-duality in the pair of cat-
egories (Hotab0(k),Hot0(k)), namely a pair of contravariant involutive
functors (Dab, D), each of which interchanges fibration and cofibration [p. 528]
sequences, i.e., transforms fibers into cofibers and vice versa, and the
pair of functors interchanging LeH• and Lπ• on the one hand, eK and
eS on the other. This heuristic formulation is compatible with all we
have stated so far, except one thing – namely, the suspension functor
Σab in Hotab0(k) is fully faithful, whereas the (supposedly “dual”) loop-
space functor Ω0

ab is not. Thus, it will be more accurate to say that, if
we view the formulaire developed so far as being the description of
a certain structure type, whose basic ingredients are two categories
Hab and H, endowed with fiber and cofiber operations, tied by four
functors as above satisfying a bunch of properties, then the axioms
are autodual in an obvious sense; namely if they are satisfied for a
system (Hab,H, LeH•, eK , eS, Lπ•), they are equally satisfied by the system
(Hop

ab ,Hop, Lπ•, eS, eK , LeH•). (Of course, among the properties of the struc-
ture type, we are not going to include that the suspension functor in
Hab is fully faithful!) As already stated before, the main reason for
introducing the fourth functor eS in the picture, was because it was felt
that this was lacking in order to round it up. Thus for any kind of notion
or statement in this set-up, suggested by some kind of geometric insight,
it becomes automatic to look at its dual and see whether it makes sense.

As for formal autoduality, we already noticed there is none, even in
Hotab0(k) just by itself. Thinking of this category as D•(Abk), namely
as a full subcategory of the derived category D(Abk), we cannot help,
though, but thinking of the standard “dualizing” functor

L• 7→ RHom(L•, k) : D−(Abk)→ D+(Abk),

inducing a perfect duality within the category of “perfect” objects in
D(Abk), namely objects which are isomorphic to those which may be
described by complexes in Abk having a bounded span of degrees, and all
of whose components are projective of finite type. But this autoduality
of course transforms chain complexes into cochain complexes – we have
to shift these in order to get chain complexes again. This suggests that
maybe we’ll hit upon an actual autoduality, provided we go over from
Hot0(k) to a suitable “stabilized” category, the suspension category say
(deduced from the initial one by introducing formally a quasi-inverse
for the suspension functor). The homology functor LeH• extends to a
functor from the suspension category to the corresponding category for
Hotab0(k), say D−(Abk). The Lπ• functor, though, is lost on our way – [p. 529]
I am afraid I am confusing the kind of duality I am after here, with a
rather different type of duality, kin to Poincaré duality, and discovered
I believe by J. H. C. Whitehead, in the context of spaces having the
homotopy type of a finite complex. For such a complex, the idea (as far
as I remember) is to embed X into a large-dimensional sphere, and to
take the complement Xˇ of an open tubular neighborhood of X . Up to
suspension, the homotopy type of Xˇ does not depend on the choices
made and (shifting back by n) we thus get a canonical object in the
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suspension category, depending contravariantly on X . The functor X 7→
Xˇ (if I got it right) is an autoduality of the relevant full subcategory of
the suspension category, and the (reduced) homology functor LeH• maps
this subcategory into perfect complexes, and commutes to autodualities.
The whole story seems tailored towards a study of duality relations for
the functor LeH• exclusively – without any reference to the homotopy
invariants πi . I don’t know if one can devise a similar story for Lπ•,
by stabilizing with respect to the loop space functor (or is this just
nonsense?). At any rate, there doesn’t seem any autoduality in view,
exchanging homology and homotopy invariants. . .

E) Conservativity properties: The functors LeH• and Lπ• are both
conservative, i.e., a map in Hot0(k) which by either of these functors
becomes an isomorphism, is an isomorphism. (Here of course the 0-
connectedness assumption for the homotopy types we are working with
is essential, as far as the functor Lπ• is concerned at any rate.)

F) Base change properties: All four functors, and the adjunction and
inversion maps (7) and (9), are compatible with ring extension k→ k′,
it being understood that such a ring homomorphism defines functors

(12) Hotab0(k)→ Hotab0(k
′), Hot0(k)→ Hot0(k

′)

compatible with the fibration and cofibration structures.
In opposite direction, there should be, too, a “restriction” functor

(less important, though, I feel), I didn’t try to find out what its formal
properties should be with respect to the formalism developed here.

G) Comparison with ordinary homotopy types: We got functors

(13) Hotab0(k)→ Hotab= D•(Ab), Hot0(k)→ Hot0,

(the first being interpreted as “forget k” functor, the second as a sections
functor on semisimplicial schematic models). This pair of functors is [p. 530]
compatible with the functors eK , but (even if k = Z) definitely not with
their left adjoints LeH•, namely with homology. Despite this fact, we
hope if k = Z that the functors (13) are compatible with the functors eS
(assuming that eS can actually be constructed in the discrete set-up too),
so that spheres are transformed into spheres. Compatibility with Lπ•
doesn’t have a meaning strictly speaking, as this functor is not defined
on ordinary homotopy types, however, the functors πi are defined in
both contexts, and the sections functor should commute to these (for
arbitrary k). Thus, the only serious incompatibility trouble concerns
the homology functor LH• and should not arise, however, for sphere-
like objects S(H, n). I forgot to state from the outset that the two
functors (13) are expected to respect fibration and cofibration sequence
structures, of course.
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13.10.

125 During the last eight days, I have been busy with a number of things, Digression on Baues’ cofibration and
fibration categories, and on weak
equivalences alone as the basic data
for a model category.

which left little leisure for mathematical ponderings. I got a letter from
H. J. Baues, who had seen my notes, which induced him to send me
his preprint “On the homotopy classification problem” (Chapters I to V

[I’m not sure what this refers to;
perhaps Baues (1985). . . ]

+ chapter Ext). I spent two evenings looking through parts of these,
where Baues carries as far as possible (namely quite far indeed) the
homotopy formalism in the context of his so-called “cofibration (or fibra-
tion) categories”, using as his leading thread his ideas on “obstruction
theory”. He makes the point that he tried by his basic notion to pin-
point the weakest axiomatic set-up, sufficient however for developing
all the major familiar (and even some not at all familiar!) notions,
operations and statements of usual homotopy theory. In his letter, he
suggested that maybe in any “universe” where homotopy constructions
make sense, one or the other of his two mutually dual set-ups should be
around. Such suggestion was of course quite interesting for my present
reflections, as I do have the hope indeed that there exists a “universe”
of schematic homotopy types, which may be described in terms of the
models (namely semisimplicial unipotent bundles) I have been using
so far, or at any rate by closely related kinds of models. More specifi-
cally, I do hope for the two kinds of operations to make sense, namely
“integration” (including homotopy cofibers and suspensions) and “coin-
tegration” (including homotopy fibers and loop objects), which in Baues’
set-up should correspond on the category of models to a structure of a
cofibration category and a fibration category, respectively. As the kind
of models I have been working with don’t allow for an amalgamated [p. 531]
sum (or “push-out”) construction, except in the trivial case when one of
the two arrows to be amalgamated is an isomorphism, it is clear that
we cannot hope to get with these models a cofibration category. There
may be, however, a fibration category structure, and I started playing
around a little with a possible notion of Kan fibration – without coming
to a definite conclusion yet, however. I feel I shouldn’t dwell much
longer still, for the time being, on getting off the ground a theory of
schematic homotopy types, maybe I’ll come back upon it later, after
next chapter, when (hopefully) I’ll be a little more “in the game” of Kan
type conditions, closed model category structures and Baues’ “halved”
variants of these.

At any rate, whether or not a homotopy cofiber construction can be
carried through for schematic homotopy types, it seems rather clear to
me that Baues’ suggestion or expectation, about the set-up of cofibration
and fibration categories he ended up with, is not quite justified. Already
by the time (in the late sixties) when I first heard from Quillen about his
approach (and the same applied to Baues’ ones), when applied say to
semisimplicial objects in some category A as “models”, is pretty strongly
relying on the existence of “enough” projectives (or dually, of enough
injectives, if working with cosemisimplicial objects) in A. When A is a
topos say, then the category Hom( op, A) of semisimplicial objects of
A doesn’t carry, it seems (except in very special cases, say of a totally



§125 Digression on Baues’ cofibration and fibration . . . 475

disconnected topos), a reasonable structure of a Quillen model category,
nor even (I would think) of a cofibration or a fibration category in the
sense of Baues; however, I am pretty sure that the derived category (with
respect to the notion of weak equivalence introduced by Illusie) has

[AG wanted to insert a refer-
ence, but didn’t, probably to Illusie
(1971, 1972). . . ]

important geometric meaning and is indeed a “universe for homotopy
types” – and the first steps in developing such theory have been taken
by Illusie already in Chapter I of his thesis. Quite similarly, if A is an
abelian category, Verdier’s derived category D(A), deduced from the
category C(A) of complexes in A by localizing with respect to the set
W of quasi-isomorphisms, does allow for a homotopy formalism (as
does any “triangulated category” in the sense of Verdier), however, it
doesn’t seem that this formalism may be deduced from a structure
of a cofibration category or a fibration category on C(A). The same I
guess holds for the subcategories C−(A) and C+(A), giving rise to D−(A)
and D+(A), which are more important still than D(A) in the everyday
cohomology formalism of “spaces” of all kinds (namely, essentially, of
ringed topoi). When A admits enough projectives or enough injectives, [p. 532]
respectively, these categories (as pointed out by Quillen) are associated
to closed model structures on C−(A) and C+(A), respectively, but (it
seems) not otherwise.

It strikes me that nobody apparently so far has tried to develop homo-
topy theory, starting as basic data with a category of models M together
with a set W of weak equivalences in M , satisfying suitable assumptions,
without giving moreover a notion of “fibration” or of “cofibrations” in
M . Various examples, including the all-important case (from my point
of view) of (Cat), suggest that the choice of the notion of fibration or
cofibration isn’t really so imperative, that it is to a certain extent ar-
bitrary, different choices (compatible with the basic data W ) leading
to essentially “the same” homotopy theory. This is due to the fact that
they lead to the same notions of “integration” and “cointegration” of
homotopy types, which depends indeed only on W and which, in my
eyes, are the two main operations of homotopy theory (compare sec-
tion 69). They seem to me the key for defining such a thing as a specific
“homotopy theory”, independently of any particular choice of a category
of models (+ extra structure on it, and notably, weak equivalences)
used for describing it. The precise technical notion achieving this is of
course the notion of a “derivator” – and I do hope that it shouldn’t be
too awfully hard to construct, for instance, the “derivator of schematic
homotopy types”, and maybe even characterize it axiomatically (as well
as the derivator of usual homotopy types), without having to make any
mention of models for such characterization. One may say that, after
the one major step in the foundations of homological algebra, consisting
in introducing the derived category of an abelian category (and sys-
tematically working with derived categories for stating the main facts
about cohomology of all kind of “spaces”, namely topoi, such as usual
topological spaces, schemes and the like. . . ), the work on foundations
more or less stopped short, while the next step to take was to come
to a grasp of the full structure involved in derived categories, namely
the structure of a derivator. And it turns out that as well the step of
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taking derived categories (namely localizations of suitable model cat-
egories), as the next, namely introducing the corresponding structure
of a derivator, make good sense also in non-abelian set-ups, namely for
doing “homotopy theory”, thus viewed as a non-commutative version of
homology theory. [p. 533]

126 Let’s come back, though, to schematic homotopy types. Last thing we Dissymmetry of LeH∗ versus Lπ∗ (no
filtration dual to Postnikov dévis-
sage).

looked at was the four basic functors between “schematic homotopy
types” and “linear schematic homotopy types” over a given ground ring
k, making up the two basic categories

Hotab0(k) and Hot0(k).

We have been dwelling somewhat on the remarkable formal symmetry
to be expected for these relations. It is tempting, then, to try and
dualize any kind of basic notion or construction which makes sense in
terms of the basic data, namely the four functors and the adjunction
and inversion maps relating them. Maybe the very first thing which
forces attention is the Postnikov dévissage of an object of Hot0(k), which
had been (together with abelianization) the very starting point for our
approach towards schematic homotopy types. One main ingredient of
this dévissage is the “tower” of the Cartan-Serre type functors

(1) X 7→ Xn

and maps

(2) X → Xn

(with n a natural integer), where Xn is deduced from X by “killing its
πi ’s for i > n”. We may call an object Y of Hot0(k) n-co-connected (a
notion in a way symmetric to n-connectedness) if πi(X ) = 0 for i > n,
and denote by

(3) Hot0(k)/n

the full subcategory of Hot0(k) made up with these objects, which is
therefore the inverse image by the functor

Lπi : Hot0(k)→ Hotab0(k)

of the corresponding full subcategory

(4) Hotab0(k)≤n

of Hotab0(k). The most natural way for defining Xn in terms of X (in
an axiomatic set-up with the four functors as basic data), together with
the canonical “fibration” (2), is by describing (2) as the “universal” map
(in Hot0(k)) of X into an n-co-connected object. In other words, we are
surmising that the inclusion functor

Hot0(k)≤n ,→ Hot0(k)
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admits a left adjoint, and the latter is denoted by X 7→ Xn. This de- [p. 534]
scription gives rise at once to the familiar “tower” structure for variable
n

(5) Xn+1→ Xn→ ·· · → X1→ X0(= e).

Intuitively, the maps in (5) are viewed as being (surjective) fibrations
between (connected) “spaces”, X being viewed as a kind of inverse limit
of the Xn’s. Dually, we would expect to get a sequence of inclusions

(*) 0X ,→ 1X ,→ ·· · ,→ nX ,→ n+1X ,→ ·· · ,

with X appearing as a kind of direct limit. In the set-up of ordinary
homotopy types, modelized by semisimplicial sets, one will think at once
of the filtration by skeleta – which however isn’t quite the right thing
surely, because if we dualize the familiar Cartan-Serre requirement on
(2) (namely that it induces an isomorphism for πi for i ≤ n), we see
that the “inclusion”

nX ,→ X

should induce an isomorphism for Hi for i ≤ n, which isn’t quite true
for the skeletal filtration (it is OK for i ≤ n− 1 only); the condition

Hi(nX ) = 0 for i > n

is OK, though, for this filtration. So the next idea would be to modify a
little the n-skeleton nX , to straighten things out. I played around some
along these lines, and after some initial optimism, came to the feeling
that there does not exist (in the discrete nor in the schematic set-up) such
an increasing canonical filtration of a homotopy type. I didn’t make any
formal statement and proof for this (in the set-up of ordinary homotopy
types, say), however, in the process of playing around in became soon
clear that in various ways, there is some essential dissymmetry between
the seemingly “dual” situations, when trying to get the two types of
“filtrations” of the object X . One dissymmetry occurs already in the
very definition of the subcategory (3), and of the corresponding “dual”
subcategory

(6) (≤n)Hot0(k)

of objects satisfying
Hi(Y ) = 0 for i > n.

Namely, both subcategories (3) and (6) are defined in terms of the
same subcategory of Hotab0(k), namely (4), as the inverse image of the [p. 535]
latter by either Lπ•, or LH•. Now, the point is that the properties of this
subcategory, with respect to the inner structure of Hotab0(k) (involving
the “left” and the “right” homotopy operations, notably the suspension
and the loop functors, respectively) are by no means autosymmetric.
The main dissymmetry, it would seem, turns out in this, that (4) is
stable under the loop functor, and by no means under the suspension
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functor. This is the reason why, even if we assume that (in analogy
to what happens for the categories (3)) the inclusion functors from
the categories (5) into Hot0(k) do admit the relevant (namely right)
adjoints (which I greatly doubt anyhow. . . ), and thus give rise for any
object X to an increasing filtration (*), the Postnikov-type relationships
between Xn and Xn+1 cannot be quite dualized to a similar relationship
between nX and n+1X . We may think next, of course, of defining an
increasing sequence of subcategories (5) of Hot0(k) in terms of LH•
and a corresponding sequence of subcategories of Hotab0(k), different
from the categories (4), and stable under suspensions. But there doesn’t
seem to be anything reasonable around along these lines.

To sum up, it doesn’t seem one should overemphasize the somewhat
startling symmetry which appeared in section 124 between “homotopy”
embodied in Lπ•, and “homology” embodied in LH• – in some essential
respects, it would seem that the corresponding two functors do have
non-mutually symmetry properties. I guess I have to apologize for
having taken that long for coming to a conclusion which, presumably,
must be felt as a kind of self-evidence by all homotopy people!

127 Before leaving (for the time being) the topic of schematic homotopy Schematic homotopy types and Il-
lusie’s derived category for a topos.types and schematization, I would like still to add a few comments,

about various possibilities for working with different kinds of models for
defining schematic homotopy types. My point here is not in replacing
the basic test-category we are working with, here , by some other
(say the category of standard hemispheres) – this choice I feel should
be more or less irrelevant, so we may as well keep . Thus, we are
going to work with semisimplicial objects, and the main question then
is (for a given ground ring k) to say precisely what kind of objects we
are allowing (or imposing!) as components for our complexes. At any
rate, they should be “objects over k”, and the most encompassing choice [p. 536]
for such objects seems to be sheaves on the category of all schemes over
k (or equivalently, of all affine schemes over k), for a suitable topology
such as the fpqc topology (compare section 111, pages 446–447). Apart
from the technico-logical nuisance of this not being a U-site, where U is
our basic universe (cf. p. 492), which we’ll ignore here (as it isn’t really
too serious a difficulty), when working the semisimplicial sheaves, the
embryo of foundational work of Illusie’s on the derived category of a
topos via semisimplicial sheaves becomes available. Thus, for a map of

[Illusie (1971), chapter 1]semisimplicial sheaves over k,

(1) X∗→ Y∗,

we know already what it means to be a quasi-isomorphism (= weak
equivalence). It seems likely that, even when drastically restricting
the sheaves allowed as components for our semisimplicial models, the
notion of quasi-isomorphism relevant for these models should be the
same as Illusie’s for the encompassing topos. This is one point we have
been neglecting so far. I am not going here to recall Illusie’s definition
(in terms of the homotopy sheaves πi(X∗, s) where s is a section of X∗),

[in the typescript, the “π” is under-
lined. . . ]
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or translate it into cohomological terms. One point I want to make here,
is that it is by no means automatic that if (1) is a weak equivalence, the
same holds for the corresponding map of semisimplicial sets

(2) X∗(k)→ Y∗(k).

Thus, there is no more-or-less tautological “sections” functor from Il-
lusie’s derived category to the category (Hot) of usual homotopy types.
(There surely is a canonical functor, though, in the case of a general topos
T and Illusie’s corresponding derived category, namely what we would
like to call the “cointegration over T” functor, which should come out of
the formalism of stacks we haven’t begun to develop yet.) Presumably,
however, when working with semisimplicial models whose components
are restricted to be unipotent or something pretty close to these (see
below for examples), whenever (1) is a weak equivalence, the same
will hold for (2). As the choice of objects (let’s call them simply the
“bundles”) we are allowing should clearly be stable under ring extension,
it will then follow that more generally, for any algebra k′ over k, the
corresponding map

(2’) X∗(k
′)→ Y∗(k

′)

is a weak equivalence, too. Thus, a “schematic homotopy type over k” [p. 537]
should define a functor Alg/k → Hot.

For any choice of a “section”

(3) s ∈ X0(k)

of X∗, Illusie’s constructions yield sheaves

(4) πi(X∗, s) (i ≥ 0),

where π0 is a sheaf of sets, π1 a sheaf of groups, acting on the higher
πi ’s which are abelian sheaves. We will be mainly interested of course
in the case when π0 is the final sheaf (we’ll say that X∗ is relatively
0-connected over k), and moreover π1 is abelian and its action on the
higher πi is trivial (let’s say in this case that the relative homotopy
type defined by the semisimplicial sheaf X∗ is pseudo-abelian). In this
case, up to canonical isomorphisms, the abelian sheaves πi(X∗, s) do
not depend on the choice of s, and (provided the pseudoabelian notion
is defined locally) they make sense, independently even of the existence
of a section s. Our hope is, by suitably restricting our notion of “bundle”,
to get on the abelian sheaves πi for i ≥ 2, or even on all πi (i ≥ 1), a
natural structure of an Ok-module, and one moreover which in many
“good” cases turns it into a quasi-coherent Ok-module. Also, the natural
maps

(5) πi(X∗(k))→ πi(X∗)(k)

should be isomorphisms, i.e., takingπi andπi should commute to taking
sections (which will imply indeed that if (1) is a quasi-isomorphism, then
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so is (2)). Thus, a first basic question here is to find a suitable notion of a
“bundle” over k, in such a way that for semisimplicial bundles satisfying
some mild extra assumption (such as X0 = X1 = e) implying that X∗ is
pseudoabelian, the maps (5) should be isomorphisms. I expect this to
be true for the notion we have been working with so far, namely for
“unipotent bundles” (cf. section 111), but I haven’t made any attempt
yet to prove this. But even granting this property for a given notion of
“bundles”, the module structure on the πi ’s at this point remains still a
mystery, as long as we don’t tie them in with the Lie functor (compare
section 118). . .

Remark. Maybe, in the set-up of a general topos T and taking sections
on the latter, the maps (5) are isomorphisms, whenever the homotopy [p. 538]
sheaves πi satisfy the relations

(6) Hi(T,π j(X∗)) = 0 for i > 0,

as a consequence, maybe, of some spectral sequence whose abutment is
the graded homotopy of the cointegration of X∗ over T . If so, then (5)
are quasi-isomorphisms whenever the sheaves πi can be endowed with
the structure of a quasi-coherent Ok-module.

128 Next requirement about the notion of “bundles” we are going to work Looking for the right notion of “bun-
dles”; V -bundles versus W-bundles.with, is about existence of a “linearization functor”; associating to every

bundle X another bundle, namely its “linearization” L(X ), endowed
moreover with the structure of an Ok-module. We insist that for a given
bundle X , L(X ) should be at any rate a bundle too. More specifically, if
U(k) denotes the category of all bundles over k, we should also introduce
a corresponding “k-linear” category, or more accurately an Ok-linear
category, Uab(k), whose objects should be objects of U(k) endowed with
the extra structure of an Ok-module, possibly subject to some restrictions
– thus, we’ll get a forgetful functor

(7) K : Uab(k)→ U(k).

When we take U(k) to be unipotent bundles in the sense of section 111,
the evident choice for Uab(k) is to take the category of quasicoherent
Ok-modules, equivalent to the category of k-modules, Abk. Dually, we
may take U(k) to be the category of sheaves over k isomorphic to the
underlying sheaf of sets of a vector bundle V (M) over k associated to a
k-module M , by the requirement

(8) V (M)(k′) = Hom(k-Mod)(M , k′).

The evident corresponding choice for Uab(k) is to take the category
of all vector bundles over k, which is equivalent to the category Abop

k
opposite to the category of k-modules, as the functor M 7→ V (M) is
contravariant in M . Maybe we should distinguish between these two
choices of bundles by different notations, namely

(9) UW (k) and UV (k),
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where the subscripts W and V are meant to suggest the standard descrip-
tions of objects via (the underlying sheaves of sets of the Ok-modules)

W (M) and V (M)

respectively, where (we recall)

(10) W (M)(k′) = M ⊗k k′.

Reverting to a general notion of “bundles” U(k), we define now a [p. 539]
linearization functor

(11) L : U(k)→ Uab(k)

to be a functor left adjoint to the forgetful functor (7), i.e., giving rise
to an adjunction isomorphism

(12) HomU(k)(X , K(L))' HomUab(k)(L(X ), L),

where X is in U(k), L in Uab(k). Passing over to semisimplicial objects
and the corresponding derived categories, the functors K and L in (7)
and (11) should give rise to the functors eK and LH• of section 124.

When we take U(k) = UW (k), there is a drawback, though, because
(as we saw in section 115) the functor K does not admit a left adjoint,
only a proadjoint, associating to an object X a proobject L(X ) of Uab(k).
As pointed out in section 124 (p. 522), if we want a nice pair (K , L) of ad-
joint functors, this forces us to work with pro-unipotent bundles instead
of just unipotent ones, thus getting out of the haven of sheaves over k
and into the somewhat dubious sea of prosheaves and semisimplicial
prosheaves, which have not been provided for in Illusie’s foundational
ponderings! If we do stick to the W -approach, this promises us a fair
amount of extra sweat, putting in proobjects everywhere, not too entic-
ing a prospect, is it?

It would seem that we are better off with the V -approach, in which
case the bundles (more accurately, V -bundles) we are working with are
actual schemes, indeed affine schemes over k, as we get

(13) V (M)' Spec(Symk(M)).

Now, let more generally X be any scheme, and let’s look at maps from
X into any vector bundle V (M), we get

Hom(X , V (M))
def
= HomOX

(p∗( eM),OX )
adjunction
' HomOS

( eM , p∗(OX )),
(*)

where
p : X → S = Spec k

is the structural map of X , and eM the restriction of W (M) to the usual
Zariski site of S = Spec(k). It is well-known that under a rather mild
restriction on X (namely X quasi-compact and quasi-separated), always



§128 Looking for the right notion of “bundles”; V -bundles . . . 482

satisfied when X is affine, p∗ takes quasi-coherent sheaves on X (for
the usual small Zariski site) into quasi-coherent sheaves on S = Spec k;
thus, if A is the k-module (a k-algebra as a matter of fact) such that [p. 540]

eA' p∗(OX ), i.e., A= Γ (S, p∗(OX ))' Γ (X ,OX ),

the last member of (*) is

HomOX
( eM , eA)' Homk(M , A)' HomOk

(V (A), V (M)),

and finally we get

(14) Hom(X , V (M))' HomOk
(V (A), V (M)).

This shows that the forgetful functor from the category UabV of all vector
bundles over k to the category of all k-schemes which are quasi-compact
and quasi-separated, admits a left adjoint LV , where

(15) LV (X ) = V (A), where A= Γ (S, pX ∗(OX ))' Γ (X ,OX ).

In case X is affine, A is just the affine ring of X , which is a k-algebra,
from which we retain only (in formula (15)) the k-module structure.

Thus, as far as the notion of k-linearization goes, V -bundles behave in
a considerably nicer way than W -bundles, without any need to go over
to proobjects. Thus, it may be preferable to work with V -bundles rather
than W -bundles. We may wonder at this point why not admit, then, as
“bundles” any k-scheme X which is quasi-compact and quasi-separated,
or at any rate any affine k-scheme, as these can be quite conveniently
described in terms of k-algebras. Thus, semisimplicial affine schemes
over k just correspond to co-semisimplicial commutative algebras over k,
and likewise for maps – and linearization just corresponds to forgetting
the algebra structure in this co-semisimplicial object, and retain the
structure of a co-semisimplicial k-module, which corresponds dually to
a semisimplicial vector bundle. This is a perfectly simple relationship
– why bother about restricting the “bundles” from arbitrary affine k-
schemes to those which are isomorphic to a vector bundle?

We should remember here our initial motivation, which was, in case
when k = Z, to get a category of “schematic” homotopy types as close
as possible to the usual one. One plausible way of achieving this is by
restricting the notion of a bundle the more we can, so as to get still
the possibility of “schematization” for a very sizable bunch of ordinary
homotopy types. Postnikov dévissage then suggested to work with
so-called “unipotent bundles”, and it was almost a matter of chance [p. 541]
50/50 that we took first the choice of using W -bundles, rather than
V -bundles which are the dual choice, giving rise in some respects to
a simpler algebraic formalism (and to a less satisfactory one in some
others. . . ). In both cases, an instinct of “economy” is leading us. It isn’t
always clear that instinct isn’t misleading at times – after all, it would
be nice too to have a so-called “schematic” homotopy type (and hence a
usual one) associated to rather general types of semisimplicial schemes,
say. But here already, if we want to get a usual homotopy type just



§129 Quasi-coherent homological quasi-isomorphisms, versus . . . 483

by taking sections, we’ve seen that this isn’t so automatic, that this is
tied up with the expectation that the maps (5) should be isomorphisms,
which presumably will not be true unless we make rather drastic extra
assumptions on the “bundles” we are working with.

Thus, a first main test whether the choice of W -bundles or of V -
bundles is a workable one, is to see whether this condition on (5) is
satisfied, possibly under a suitable extra assumption, such as X0 = e
or X0 = X1 = e. The next test, presumably a deeper one, is whether
these choices allow for a description of the homotopy sheaves πi(X∗) in
terms of the Lie functor, under the natural flatness assumption on the
components of X∗ (compare section 118). The only clue so far for such
a relationship comes from Postnikov dévissage, and this relationship
isn’t proved either, except in the more or less tautological “Postnikov
case”, and without naturality. In a way, it appears as a rather strange
kind of relationship, one which implies that the homotopy type of a
semisimplicial bundle is very strongly dominated (almost determined,
one might say) by its formal completion along a section – and even by
the first-order infinitesimal neighborhood already. Instinct again tells us
that reducing, as it were, a scheme to a tangent space at one of its points
might make sens when the scheme is isomorphic to affine n-space, and
that it is surely nonsense for general affine schemes (such as an elliptic
curve minus a point say!). To say it differently, we feel that such a thing
may be reasonable only when the given schemes Xn may be thought of
as “homotopically trivial” in some sense or other, which for an algebraic
curve, say, over an algebraically closed field k is surely not the case,
unless precisely the curve is isomorphic to the affine line.

14.10. [p. 542]

129 I have not been clear enough in yesterday’s notes, when introducing the Quasi-coherent homological quasi-
isomorphisms, versus weak equiva-
lences.

linearization functor (11)

L : U(k)→ Uab(k)

for a suitable notion of “bundles” and “linear bundles”, that it is by
no means automatic that such a functor (even when its existence is
granted) will induce a linearization functor

(16) LH• : Hot0(k)→ Hotab0(k)

for the corresponding derived categories. In other words, it is by no
means clear (and we haven’t even tried yet to prove in the UW set-up of
“unipotent bundles”) that if

(17) X∗→ Y∗

is a weak equivalence of semisimplicial objects of U(k), that the corre-
sponding map

(17’) L(X∗)→ L(Y∗)
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of semisimplicial objects in Uab(k) will again be a weak equivalence.
At any rate, for this statement even to make sense, we’ll have to make
clear what notion of weak equivalence we are taking for maps be-
tween semisimplicial objects of Uab(k), so as to get a localized category
Hotab0(k). The first obvious choice, of course, that comes to mind is to
take the notion of weak equivalence for the corresponding semisimpli-
cial sheaves of sets, which presumably is going to be the right one. Thus,
the existence of a “total homology” or “linearization” functor (16) may
be viewed as the “schematic” analog of W. H. C. Whitehead’s theorem
in the discrete set-up, which we had been puzzling about already in sec-
tion 92 (in connection with replacing the test category by a more or
less arbitrary small category). In the case of semisimplicial W -bundles
or V -bundles, under some extra assumption, presumably, such as X0 = e
or X0 = X1 = e on the semisimplicial objects we are working with, I do
expect that the linearization functor transforms weak equivalences into
weak equivalences, and that the converse holds true, too. This seems to
me to be the third main test (besides the two considered on previous
page 541) about a notion of “bundle” being suited for developing a
theory of schematic homotopy types.

This suggests that when working with more general semisimplicial
sheaves over k, such as semisimplicial schemes, say, it may be useful to [p. 543]
introduce a notion of “quasi-coherent homological quasi-isomorphism”
between such objects, as a map (17) such that the corresponding map
(17’) should be a quasi-isomorphism, which presumably may be in-
terpreted also in cohomological terms, as usual. As just noticed, it is
doubtful that this is implied by (17) being a weak equivalence, and
even if it should be implied, it looks considerably weaker in a way – just
as in the set-up of usual homotopy types, a homology equivalence is
a considerably weaker notion than homotopy equivalence, unless we
make a 1-connectedness assumption. We could reinforce, of course,
this notion of (quasi-coherent) “homological” or “cohomological” quasi-
isomorphism by taking to the cohomological version of it, and instead
of quasi-coherent coefficients coming from the base S = Spec(k), admit
equally the analog of “twisted coefficients”, which would amount here to
taking as coefficients quasi-coherent sheaves F∗ on Y∗, such that for any
structural morphism

ϕ : Ym→ Yn

associated to a map in , the corresponding map of quasi-coherent
sheaves on Ym

ϕ∗(Fn)→ Fm

should be an isomorphism. (These “twisted coefficients” should corre-
spond to quasi-coherent sheaves on S = Spec(k), on which the sheaf of
groups π1(Y∗) operates, in case at least when Y∗ is relatively 0-connected
and endowed with a section, so thatπ1(Y∗)makes sense.) My point here
is that it may be interesting to take the derived category of a suitable
category of semisimplicial schemes (submitted to some very mild condi-
tions, such as quasi-compactness and quasi-separation, say) with respect
to this notion of q.c.h. quasi-isomorphism – with the hope that the set of
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maps with respect to which we are now localizing is wide enough, so as
to get the same derived category as when working only with “bundles”,
namely getting just schematic homotopy types. This would give a very
strong link between more or less arbitrary semisimplicial schemes over
k (and stronger still when k = Z), and ordinary homotopy types, of a
much subtler nature than the known link with ordinary pro-homotopy
types via étale cohomology with discrete coefficients. But maybe the
daydreaming is getting here so much out of reach or maybe simply crazy,
that I better stop along this line! [p. 544]

130 In a more down-to-earth line, and reverting to the “unipotent” approach A case for non-connected bundles.
still (in either W - or V -version for “unipotent bundles”), I would still
like to point out one rather mild extension of the set-up as contem-
plated initially. The suggestion here is to admit as components for our
semisimplicial models not merely sheaves of sets which are “unipotent
bundles”, but equally direct sums of such. After making such extension,
the linearization functor L ((11) p. 539) still makes sense, provided
Uab(k) is stable under infinite sums (otherwise, we’d have to restrict to
a finite number of connected components for our “bundles”). Presum-
ably, once we get into this, we will have to admit “twisted” finite direct
sums as well, in order to have basic notions compatible with descent –
never mind such technicalities at the present stage of reflections! Thus,
applying componentwise (i.e., to each component Xn) the π0-functor
(“connected components”), a semisimplicial “bundle” X∗ in the wider
sense gives rise to an associated usual semisimplicial set, let’s call it
π0/k(X∗), together with a map

(18) X∗→ π0/k(X∗),

where the second-hand side is interpreted as a semisimplicial con-
stant object over k. (For simplicity, we have assumed here Spec(k)
to be 0-connected, and that the direct sums involved in the Xn’s are
not twisted. . . ) Intuitively, we may interpret (18) as defining X∗ as a
(“strict”, namely componentwise connected) schematic homotopy type,
lying “over” the discrete (or “constant”) homotopy type π0/k(X∗) = E∗.
The latter introduces homotopy invariants of its own, which strictly
speaking shouldn’t be viewed as being of a “schematic” nature. Thus,
when our exclusive emphasis is on studying the “strict” schematic homo-
topy types, we’ll restrict our models X∗ by demanding that the associated
discrete homotopy type π0/k(X∗) should be aspheric, i.e., isomorphic in
Hot to a one-point space. Under this restriction, presumably, working
with those slightly more general models should give (up to equivalence)
the same derived category Hot0(k), as when working with (connected)
unipotent bundles. Allowing connected components may prove useful
for giving a little more “elbow freedom” in working with models, as
it allows for instance anodyne operations such as taking direct sums.
Thus, all constant semisimplicial objects will be allowed, or at any rate
those which correspond to aspheric semisimplicial sets – which includes
notably the objects of ˆ represented by the standard simplices n; [p. 545]
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and it is useful indeed to be able to have these among our models.
My motivation for suggesting to allow for connected components

for our bundles, comes from an attempt to perform the “integration”
operation for an indexes family of schematic homotopy types, under
suitable assumptions – one among these being that the indexing small
category I should be aspheric (in order to meet the above asphericity
requirement on E∗, for the semisimplicial bundle obtained). When just
paraphrasing the construction of integration for ordinary homotopy
types (as indicated in section 69 – we’re going to come back upon this in
a later chapter), we just cannot help but run into a bunch of connected
components, for the components of the semisimplicial sheaf expressing
the integrated type. The general idea here, of course, is to perform the
basic homotopy operations (essentially, integration and cointegration
operations) in the context of semisimplicial sheaves, and then look and see
whether (or when) this doesn’t take us out of the realm semisimplicial
“bundles”. I am sorry I didn’t work out any clear-cut result along these
lines yet, and I am going to leave it at that for the time being.

One serious drawback, however, when allowing for connected com-
ponents of the components Xn or our semisimplicial bundles, is that we
can hardly expect anymore that the homotopy sheaves of X∗ may be
expressed in terms of tangent sheaves, as contemplated in section 118.
At any rate, this extension of our category of “models” would seem a
reasonable one only if we are able to show that we get the same derived
category (up to equivalence) as when working with the more restricted
models, using as components Xn only (connected) unipotent bundles. I
didn’t make any attempt either to try and prove such a thing.

16.9.

131 Yesterday again, I didn’t do any mathematics – instead, I have been Tentative description of the spherical
functor eS, and “infinitesimal” exten-
sion of the basic notion of “bundles”.

writing a ten pages typed report on the preparation and use of kimchi,
the traditional Korean basic food of fermented vegetables, which I have
been practicing now for over six years. Very often friends ask me for
instructions for preparing kimchi, and a few times already I promised
to put it down in writing, which is done now. Besides this, I wrote to
Larry Breen to tell him a few words about my present ponderings as he
is the one person I would think of for whom my rambling reflections on [p. 546]
schematization and on schematic homotopy types may make sense.

Definitely, my suggestion in the last notes, to work with non-connected
“bundles”, isn’t much more than the reflection of my inability so far to
make a breakthrough and get the “left” homotopy constructions in
terms of semisimplicial (connected) unipotent bundles alone. Besides
the serious drawback already pointed out at the end of section 130,
another one occurred to me – namely that with the suggested extension,
one is losing track of the extra condition X0 = e (or even X0 = X1 = e)
on our models, which is often remaining implicit in the notes, and which,
however, is an important restriction, actually needed for the kind of
things we want to do. For one thing, when we drop it, and even when we
otherwise restrict to components Xn which are standard affine spaces Edn

k ,
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say, there is no hope of getting a Lie-type description for the homotopy
sheaves πi(X∗) – for instance, the Lie-type invariants we get by using
different sections of X0 over S = Spec(k) are by no means related (as
the πi should) by a transitive system of canonical isomorphisms; this
is easily seen already when taking the “trivial” semisimplicial bundle
described by Xn = X0 for all n (the constant functor with value X0 from

op to U(k))! Of course, even when allowing connected components for
the “bundles” Xn, we may formally still throw in the condition X0 = e
– but this is cheating and no use at all, if we remember that the main
motivation for allowing connected components was in order to be able
(in suitable cases) to perform an integration operation of schematic
homotopy types. But when following the standard construction, for the
resulting X∗ the component X0 as well as all others will have lots of
connected components, and hence the condition X0 = e will not hold
true. The same remark applies also to the “constant” semisimplicial
bundles (namely with components which are “constant” schemes over
S) defined by the standard simplices n. To sum up, while it is certainly
quite useful to view semisimplicial “bundles”, used for describing the
“schematic homotopy types” we are after, as particular cases of more
general semisimplicial sheaves on the fpqc site of S = Spec(k), we
will probably have to be quite careful in keeping the “bundles” we
are working with restricted enough, and not confuse our models for
schematic homotopy types (allowing for a nice description of the basic
Lπ• and LH• invariants) with more general semisimplicial sheaves which
may enter the picture in various ways.

I would like, however, to suggest still another extension of the notion [p. 547]
of a “bundle”, which maybe will prove something better than just a
random way out of embarrassment! It has to do with an attempt to come
to a description of one among the four “basic functors” of section 124,
namely the “spherical” functor

(1) eS : Hotab0(k)→ Hot0(k),

which for the time being is remaining hypothetical, due notably to
my inability so far to carry out the suspension operation for schematic
homotopy types. There are two basic formal properties giving us some
clues about this functor, namely, it should be left adjoint to the “total
homotopy” or “Lie” functor Lπ•, and it should be right inverse to the
(reduced) total homology functor LeH• (cf. pages 523–525). Let’s work
for the sake of definiteness, for describing Hot0(k), with semisimplicial
V -bundles X∗ satisfying the extra assumption X0 = e (and presumably
a little more), corresponding therefore to co-semisimplicial algebra
A∗ satisfying A0 = k, such that the components An be isomorphic to
symmetric algebras

(2) An ' Symk(M
n),

where we’ll assume the modules M n (or equivalently, the algebras An)
flat over k. The condition A0 = k implies that the algebras An are
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k-augmented, and if m(n) is the augmentation ideal, we get

(3) m(n)/(m(n))2 ' M n,

thus, the modules M n may be viewed as the components of a co-
semisimplicial k-module M∗, giving rise to a semisimplicial vector bun-
dle V (M∗) over k, and we may write

(4) Lπ•(X∗)' V (M∗),

where the second member is viewed as a chain complex (rather than as
a semisimplicial module) in the usual way. Consider now an object L∗
in Hotab0(k), it is described in terms of a co-semisimplicial k-module
L∗ by the formula

(5) L∗ = V (L∗),

and we get now

(*) HomOk
(L∗, Lπ•(X∗))' HomOk

(V (L∗), V (M∗))' HomOk
(M∗, L∗).

Now, if M is any k-module, let

(6) D(M) = Symk(M)(1)' k⊕M

be the corresponding augmented k-algebra admitting M as a square-zero [p. 548]
augmentation ideal, and let

(7) I(M) = Spec(D(M))

its spectrum, which is a first-order infinitesimal neighborhood of S =
Spec(k). For variable M , D(M) depends covariantly, I(M) contravari-
antly on M . Thus,

(8) D(L∗)

is a co-semisimplicial algebra, depending covariantly on L∗, hence con-
travariantly on L∗ = V (L∗), and accordingly

(9) I(L∗) = Spec(D(L∗))

(where in both members I and Spec are applied again componentwise)
is a semisimplicial affine scheme, indeed a first-order infinitesimal one,
depending contravariantly on L∗, hence covariantly on L∗. Now, the last
member of (*) may be interpreted non-linearly as

(**) Homco-ss k-alg(A
∗, D(L∗))' Hom(I(L∗), X∗),

where in the second term the Hom means homomorphisms of semisim-
plicial schemes. Let’s now write (with an obvious afterthought!)

(10) eS(L∗) = I(L∗) whenever L∗ = V (L∗),
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the sequence of isomorphisms (*) and (**) may be summed up by

(11) Hom(L∗, Lπ•(X∗))' Hom(eS(L∗), X∗),

where the first Hom means maps of semisimplicial Ok-modules, whereas
the second is a Hom of semisimplicial schemes. It looks very much like
the adjunction formula (p. 524, (7b)) we are after, with however two
big grains of salt. The smaller one is that this formula doesn’t take
place in derived categories, but rather in the categories of would-be
models. The considerably bigger grain of salt is that eS(L∗) isn’t at all in
our model category, its components are purely infinitesimal, first-order
schemes, and far from being vector bundles! Essentially, what we have
been using for getting the (admittedly quite tautological) adjunction
formula (11) is that the Lie functor on schemes-with-section over S is
representable in an obvious way, namely by the scheme-with-section

I(k) = Spec(k[T]/(T 2)),

which is a first-order infinitesimal scheme-with-section over k.
Our tentative eS functor in (10) has been constructed in the most [p. 549]

evident way, in order to satisfy an adjunction formula (11), valid on the
level of semisimplicial objects (and carrying over, hopefully, to the similar
adjunction formula for suitable derived categories). Next question is
then, what about the inversion formula

(12) LeH•(eS(L∗))' L∗?

The question makes sense, as LeH• is defined for any semisimplicial affine
scheme-with-section over k, or equivalently for any co-semisimplicial
augmented k-algebra A∗ over k, by taking the augmentation ideal m∗

in the latter and retaining only its linear (co-semisimplicial) structure.
Keeping this in mind, formula (12) comes out indeed a tautology again!

The tentative description we just got is indeed of a most seducing
simplicity, as seducing indeed as the description of homotopy in terms
of the Lie functor, and closely related to the latter. It gives as a particular
case an exceedingly simple description of the sought-for “spheres over
k” S(k, n). But it is clear that this description is liable to makes sense
only at the price of suitably extending the notion of a “bundle” we are
working with, in a rather different direction, I would say, from adding (or
allowing) connected components, as suggested in the previous section.
Maybe we might view it, though, as a kindred, but somewhat subtler
extension of our initial bundles, namely that we are now allowing, not
a discrete non-trivial “set” or k-scheme of connected components, but
rather, an infinitesimal one. More specifically, the suggestion which
comes to mind here, is to call now “bundle” over k any scheme X over
k admitting a subscheme

X∗ ⊂ X

in such a way that X0 should be a V -bundle (namely isomorphic to a
vector bundle) over k, and X should be an infinitesimal neighborhood
of X0, i.e., X0 should be definable by a quasi-coherent ideal on X which
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is nilpotent. Equivalently, in terms of the affine ring A of X , we are
demanding that A should admit a nilpotent ideal J (which is of course
not part of its structure), such that A/J should be isomorphic to a
symmetric algebra over k (with respect to some k-module M). Possibly,
we may have moreover to impose further flatness restrictions.

When working with this extended notion of bundles, there is no
problem for describing for the corresponding semisimplicial models the [p. 550]
three functors LeH•, eK, eS. Indeed, as we just recalled, the first of the
three functors is well-defined and has an evident description for all
semisimplicial affine schemes over k. As for eK and eS, they are obtained
in terms of a variable co-semisimplicial k-module L∗ (representing the
semisimplicial vector bundle L∗ = V (L∗)) by applying componentwise
the functor Symk and the first-order truncation Symk(−)(1), respectively
– one may hardly imagine something simpler! This brings to my attention
that in terms of this description, we get a canonical functorial map

(13) eS(L∗) ,→ eK(L∗)

when working with the semisimplicial models, and hence presumably
a corresponding map for the functors between the relevant derived
categories Hotab0(k) and Hot0(k). Working either in the model or in
the derived categories, this map, as a matter of fact, may be deduced
from the basic formulaire of section 124, where it had by then escaped
my attention. Indeed, eS is a left adjoint of Lπ•, and eK a right adjoint
of LeH•, to give such a map (13) is equivalent with giving either one of
two maps

(14)

�

a) L∗→ Lπ•(eK(L∗))
b) LeH•(eS(L∗))→ L∗ ,

and the formulaire provides for two such maps, namely the “inversion
isomorphisms” ((9), p. 525). Thus, there is an extra property which was
forgotten in the formulaire, namely that the two maps (13) associated to
the two inversion isomorphisms should be the same. A nicer way, then,
to state the formulaire is to consider the map (13) as a basic datum,
and say that the two maps in (14) deduced from it by the adjunction
property should be isomorphisms. The situation is reminiscent of the
two ways by which we could obtain the Hurewicz map (p. 525, C))
– presumably, the basic data for the formulaire of section 124 should
be the functors eS and eK and the map (13) between them, with the
property that the relevant adjoint functors Lπ• and LeH• exist, and that
the corresponding maps in (14) should be isomorphisms, which then
will allow to define a unique Hurewicz map Lπ•→ LeH•.

As long as we are sticking to the purely formal aspect, and even
when working in the larger context of semisimplicial affine schemes
over k satisfying merely X0 = e, or more generally still, dropping the
last restriction and taking “k-pointed” semisimplicial affine schemes
instead, the whole “four functors formalism” (including even Lπ•) as
contemplated in section 124 (and with the extra feature (13) above [p. 551]
as just notice) goes over very smoothly, in an essentially tautological
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way. As recalled on p. 547, the Lπ•-functor, when interpreted on the
co-semisimplicial side of the dualizing functor, appears as a quotient of
the LeH•-functor, the latter identified to the functor obtained by taking
augmentation ideals of co-semisimplicial algebras – the quotient being
obtained by dividing out by the squares of the latter ideals. Dually,
we get the Hurewicz map for semisimplicial vector bundles, which is
always an inclusion. Again, imagine something simpler! The only
trouble (but an extremely serious one indeed!) is that in this general
set-up, the relation of the so-called Lπ•-functor to homotopy groups-
or-sheaves becomes a very dim one. Definitely, the only firm hope
here is that the relationship between the two is OK (as contemplated in
section 118) whenever the components Xn are actual flat vector bundles,
satisfying moreover X0 = e (at the very least) – plus possibly even some
extra Kan type conditions (sorry for the vagueness of even this one
“firm hope”!). If we take already the “next best” set of assumptions,
namely essentially that the Xn be flat “bundles” in the sense above (not
necessarily vector bundles, though), then the hoped-for relationship
again seems to vanish. The first case of interest, of course, is the case
when X∗ is of the form eS(L∗), which includes (if our eS functor is “the
right one” indeed) the n-spheres over k. We get in this case (namely
when X∗ is a first-order neighborhood of the marked section) the trivial,
and really stupid relation

Lπ•(eS(L∗))' L∗ (!!!),

which translates into: the homotopy groups of a sphere, computed in
the most naive “Lie” way, are canonically isomorphic to its homology
groups! Not much of a success. . .

132 This makes it very clear that, while the functors eK, eS, LeH• in our new A crazy tentative wrong-quadrant
(bi)complex for the homotopy groups
of a sphere.

context of semisimplicial “bundles” make perfectly good sense as they
are, the Lπ• functor computed naively (taking tangent spaces) definitely
doesn’t, except when actually working with flat (hence, essentially
“smooth”) vector bundles as components of our semisimplicial models.
This, after all, shouldn’t be too much of a surprise, if we remember the
way differentials and tangent spaces fit into a sweeping homology or
cohomology formalism. It has become quite familiar to people “in the
know” that taking the sheaf of 1-differentials, say, or its dual, or a sheaf
of 1-differentials or a tangent sheaf along a section, behaves as “the” [p. 552]
good object in terms of homological algebra and obstruction theory in
various geometric situations, only in the case when the relative scheme
(X say) we are working with is smooth over the base scheme S – which
in the present case amounts to saying (when X = Xn is a component of
a semisimplicial “bundle”) that X is indeed a flat vector bundle over S.
In more general cases, the work of André-Quillen-Illusie tells us that

[André (1967, 1974), Illusie
(1971), and Quillen (1970); see
also Berthelot, Grothendieck, and
Illusie (SGA 6). . . ]

the relevant object which replaces Ω1
X/S or its dual TX/S is the relative

tangent or cotangent complex LX/S
• or L•X/S , the second being the dual of

the other

(15) L•X/S = RHomOX
(LX/S
• ,OX ),
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these objects being viewed, respectively, as objects in the derived cate-
gories D•(OX ) and D•(OX ) (deduced from chain and cochain complexes
of OX -modules). When X is endowed with a section over S, the naive
differentials and codifferentials along this section should in the same
way be replaced by the co-Lie and Lie complexes

(16) `•(X/S, s) and `•(X/S, s)' RHom(`•(X/S, s),OS),

where s is the given section, obtained from the previous complexes
by taking its inverse images Ls∗ by s. As a matter of fact, the chain
complex LX/S

• can be realized canonically, up to unique isomorphism,
via a semisimplicial module

LX/S
∗

on X , whose components are free OX -modules. Accordingly, we get (16)
in terms of a well-defined semisimplicial OS-module,

(17) `∗(X/S, s)

whose components are free – and as S = Spec(k), we may interpret
this more simply as a semisimplicial k-module with free components.
When we apply this to the components Xn of a semisimplicial bundle
X∗, we get however the co-Lie invariants; in order to get the relevant
Lie invariants we’ll have to take the duals

(17’) `∗(X/S, s) = Homk(`∗(X/S, s), k),

where X is any one among the Xn’s, and s its marked section. Thus,
the “corrected” description of Lπ•, by using the André-Quillen-Illusie
version of the “Lie-functor along a section”, would seem to be

(18) Lπ•(X∗) = `
∗(X∗/k, e∗) (?),

where now the second member appears as a mixed complex of k-modules [p. 553]

(n, p) 7→ `p(Xn/k, en) : op × → Abk,

contravariant with respect to the index n, covariant with respect to p.
Translating this via Kan-Dold-Puppe, we get a bicomplex of k-modules,
which we’ll write in cohomological notation (with the two partial differ-
ential operators of degree +1)

(Cn,p) = (Cn,p(X∗))

situated in the “quadrant”

n≤ 0, p ≥ 0.

As we finally want an object of the derived category D(Abk) of the cate-
gory of k-modules, and even an object in the subcategory D•(Abk), the
evident thing that seems to be done now is to take the associated simple
complex, which hopefully may prove to be the “correct” expression of
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the looked-for Lπ• – and this (if any) should be the precise meaning of
(18).

The associations for getting (18) are very tempting, indeed, the ex-
pression we got makes us feel a little uneasy, though. The main point is
that the quadrant where our bicomplex lies in is one of the two “awk-
ward” ones, which implies that a) for a given total degree, there are an
infinity of summands occurring (and one has to be careful, therefore, if
these should be “summands” indeed, or rather “factors”, namely if we
should take an infinite direct sum, or an infinite product instead); and
b) the total complex will have components of any degree both positive
and negative, and it isn’t clear at all that it should be (as an object of
D(Abk)) of the nature of a chain complex, namely that its cohomology
modules vanish for (total) degree d > 0. If it should turn out that this is
not so (I didn’t yet check any particular case), this would imply for the
least that (18) should be corrected, by taking the relevant truncation of
the second-hand side.

Working with the L∗X/S and `∗(X/S, s) invariants brings in a slightly
awkward feature of its own which we have been silent about, namely (ex-
cept under suitable finiteness conditions) it brings in non-quasi-coherent
OX or OS-modules. This may encourage us to dualize (18), which will
amount to working with the co-semisimplicial algebra A∗ expressing
X∗, and taking componentwise the reduced (via augmentations) André-
Quillen complexes (rather than their duals). At any rate, the would-be [p. 554]
expression of “total co-homotopy” of X∗ we’ll get this way isn’t so much
more appealing than (18) – it lies still in one of the wrong quadrants,
which definitely makes us feel uncomfortable.

In principle, the tentative formula (18), when applied say to an object
such as

S(n, k)
def
= eS(k[n]),

gives a rather explicit (but for the time being highly hypothetical!)
expression of the homotopy modules of the n-sphere over k, which in
case k = Z are hoped to be just the homotopy groups of the ordinary n-
sphere. To test whether this makes at all sense, we’ll have to understand
first the structure of the André-Quillen “Lie complex” of an algebra (6)
of the type D(M), for variable k-module M . I haven’t started looking
into this yet, and I doubt I am going to do it presently.

At any rate, whether or not the formula (18) we ended up with is
essentially correct, in order (among other things) to get a method for
computing the total homotopy Lπ• for a semisimplicial bundle X∗ that
isn’t a flat vector bundle, we’ll have to find out some more or less explicit
means of replacing X∗ by some X ′∗ whose components are flat vector
bundles, and which is isomorphic to X∗ in the relevant derived category
Hot0(k). When k isn’t a field, the question arises already even when
the components X∗ are vector bundles, when these are not flat. The
first idea that comes to mind, from the André-Quillen theory precisely,
in terms of the co-semisimplicial algebra A∗ expressing X∗, is to take
“projective resolutions” of the various components An by polynomial
algebras. Again we end up with a mixed complex, this time a complex
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of augmented algebras depending on two indices n, p, covariant in n
and contravariant in p, or the reverse if we replace those algebras An

p by
their spectra X p

n . In any case, we again end up in a “wrong quadrant”!
The hesitating question that comes to mind now is whether it is at

all feasible to work with a category of models which isn’t a category
of semisimplicial bundles say, but one of such mixed wrong-quadrant
bundles; namely, use these as “models” for getting hold of a reasonable
derived category of “schematic homotopy types”? I never heard of
anything such yet, and I confess that at this point my (anyhow rather
poor!) formal intuition of the situation breaks down completely – maybe
the suggestion is complete nonsense, for some wholly trivial reason!
Maybe Larry Breen could tell me at once – or someone else who has
more feeling than I for semisimplicial and cosemisimplicial models?



Part VII

Linearization of homotopy types
(2)

22.10. [p. 555]

133 Again nearly a week has passed by without writing any notes – the tasks Birth of Suleyman.
and surprises of life took up almost entirely my attention and my energy.
It were days again rich in manifold events – most auspicious one surely
being the birth, three days ago, of a little boy, Suleyman, by my daughter.
The birth took place at ten in the evening, in the house of a common
friend, in a nearby village where my daughter had been awaiting the
event in quietness. It came while everyone in the house was in bed, the
nearly five years old girl sleeping next to her mother giving birth. The
girl awoke just after the boy had come out, and then ran to tell Y (their
hostess) she got a little brother. When I came half an hour later, the
little girl was radiant with joy and wonder, while telling me in whispers,
sitting next to her mother and to her newborn brother, what had just
happened. As usual with grownups, I listened only distractedly, anxious
as I was to be useful the best I could. There wasn’t too much by then I
could do, though, as the mother knew well what was to be done and
how to do it herself – presently, tie the chord twice, and then cut it
in-between. “Now you are on your own, boy!” she told him with a smile
when it was done. A little later she and Y helped the baby to a warm
bath – and still later, while the girl was asleep next to her brother and
Y in her room, the mother took a warm bath herself in the same basin,
to help finishing with the labors. When her mother arrived a couple of
hours later, everybody in the house was asleep except me in the room
underneath, awaiting her arrival while taking care of some fallen fruit
which had been gathered that very day.

This birth I feel has been beneficial, a blessing I might say, in a number
of ways. The very first one I strongly perceived, was about Suleyman’s
sister, who had so strongly participated in his birth. This girl has been
marked by conflict, and her being is in a state of division, surely as
strongly as any other child of her age. However, after this experience, if
ever her time should come to bear a child and give birth, she will do so

495
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with joy and with confidence, with no secret fear or refusal interfering
with her labors and with the act of giving birth – this most extraordinary
act of all, maybe, which a human being is allowed to accomplish; this
unique privilege of woman over man, this blessing, carried by so many
like a burden and like a curse. . . And there are other blessing too in
this birth which I perceive more or less clearly, and surely others still
which escape my conscious attention. [p. 556]

I suspect that potentially, in every single instance anew, the act of
giving birth, and the sudden arrival and presence of a newborn, are a
blessing, carry tremendous power. In many cases, however, the greatest
part (if not all) of this beneficial power is lost, dispersed through the
action of crispation and fear (including the compulsory medical “mise
en scène”, from which it gets over harder to get rid in our well-to-do
countries. . . ). A great deal could be said on this matter in general,
while my own leanings at present would be, rather, to ponder about
the manifold personal aspects and meaning of the particular, manifold
event I have just been involved in. But to yield fully now to this leaning
of mine would mean to stop short with the mathematical investigation
and with these notes. The drive carrying this investigation is very much
alive, though, and I have been feeling it was time getting back to work –
to this kind of work, I mean.

This brings me to somewhat more mundane matters – such as the
beginning of school and teaching duties. This year I am in charge of
preparing the “concours d’agrégation”, something which, I was afraid,

[these are the civil service compet-
itive examinations for high school
(lycée) teachers. . . ]

would be rather dull. Rather surprisingly, the first session of common
work on a “problème d’agrègue” wasn’t dull at all – the problem looked
interesting, and two of the three students who turned up so far were
interested indeed, and the atmosphere relaxed and friendly. It looks as
though I was going again to learn some mathematics through teaching,
or at any rate to apply things the way I have known and understood
them (in a somewhat “highbrow” way, maybe) to the more down-to-
earth vision going with a particular curriculum (here the “programme
d’agrègue”) and corresponding virtuosity tests – something rather far, of
course, from my own relation to mathematical substance! Besides these
arpeggios, we started a microseminar with three participants besides me,
on the Teichmüller groupoids; I expect one of the participants is going
to take a really active interest in the stuff. I have been feeling somewhat
reluctant to start this seminar while still involved with the homotopy
story, which is going to keep me busy easily for the next six months
still, maybe even longer. Sure enough, the little I told us about some
of the structures and operations to be investigated, while progressively
gaining view of them again after a long oblivion – and as discovering
them again hesitatingly, while pulling them out of the mist by bribes
and bits – this little was enough to revive the special fascination of these
structures, and all that goes with them. It seems to me there hasn’t been [p. 557]
a single thing in mathematics, including motives, which has exerted

[unreadable margin note]such a fascination upon me. It will be hard, I’m afraid, to carry on a
seminar on such stuff, and go on and carry to their (hopefully happy!)
end those ponderings and notes on homotopical algebra, so-called –
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and a somewhat crazy one too at times, I am afraid! We’ll see what
comes out of all this! The night after the seminar session at any rate,
and already during the two hours drive home, the Teichmüller stuff was
brewing anew in my head. Maybe it would have gone on for days, but
next day already several things came up demanding special attention,
last not least being the birth of Suleyman. . .

[the typescript says “26.8.” but it
must be a misprint!]

26.10.

134 It is time to come back to the “review” of linearization of (ordinary)
Back to linearization in the mod-
elizer (Cat): another handful of
questions around Kan-Dold-Puppe.

homotopy types, and the homology and cohomology formalism in the
context of the modelizer (Cat), which has been pushed aside now for
over two months, for the sake of that endless digression on schemati-
zation of homotopy types. The strong tie between these two strains of
reflection has been the equal importance in both of the linearization
process. Technically speaking though, linearization, as finally handled in
the previous chapter (via the so-called “integrators”), looks pretty much
different from the similar operation in the schematic set-up, due (at least
partly) to the choice we made of models for expressing schematic ho-
motopy types, namely taking semisimplicial scheme-like objects; which
means, notably, working with rather than more general test cate-
gories, and relying heavily on the Kan-Dold-Puppe relationship. In the
discrete set-up, it turned out (somewhat unexpectedly) that the latter
can be replaced, when working with more general categories A than
(which need not even be test categories or anything of the kind), by the
Lpab

! operation (when p : A→ e is the map from A to the final object e in
(Cat)), computable in terms of a choice of an “integrator” for A. More
specifically, recalling that

(1) pab
! : Aâb→ (Ab)

is defined as the left adjoint of the inverse image functor

p∗ : (Ab)→ Aâb,

associating to every abelian group the corresponding “context” abelian [p. 558]
presheaf on A, and

(2) LH• = Lpab
! : D−(Aâb)→ D−(Ab), inducing D•(Aâb)→ D•(Ab)

is its left derived functor (computed using projective resolution of com-
plexes bounded above in Aâb), composing (2) with the tautological
inclusion functor

Aâb ,→ D•(Aâb) ,→ D−(Aâb),

we get a canonical functor

(3) Lpab
! � Aâb : Aâb→ D•(Ab),

which may be expressed in terms of an integrator LB
• for B = Aop, i.e., a

projective resolution of the constant presheaf ZB in Bâb, as the composi-
tion

(4) Aâb→ Ch•(Ab)→ D•(Ab),
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where the first arrow is

(5) F 7→ F ∗Z LB
• : Aâb→ Ch•(Ab),

and the second is the canonical localization functor. The functors (2) and
(3) may be viewed as the (total) homology functors of A, with coefficients
in complexes of abelian presheaves, resp. in abelian presheaves simply.
When we focus attention on the latter, we may introduce in Aâb the
set of arrows which become isomorphisms under the total homology
functor (3), let’s call them “abelian weak equivalences” in Aâb, not to
be confused with the notion of quasi-isomorphism for a map between
complexes in Aâb. Let’s denote by

(6) HotabA = (W
ab
A )
−1Aâb

the corresponding localized category of Aâb, where W ab
A denotes the set

of abelian weak equivalences in Aâb. Thus, the choice of an integrator
LB
• for A (i.e., a cointegrator for B) gives rise to a commutative diagram

of functors

(7)

Aâb Ch•(Ab)

HotabA D•(Ab)D•(Ab)
def
= Hotab ,

where the lower horizontal arrow is defined via (3) (independently of the
choice of LB

• ), the vertical arrows being the localization functors. Beware
that even when A= and LB

• is the usual, “standard” integrator for , [p. 559]
the upper horizontal arrow in (7) is not the Kan-Dold-Puppe equivalence
of categories, it has to be followed still by the “normalization” operation.
Thus, we certainly should not expect in any case the functor (5) to be an
equivalence – however, we suspect that when A is a test category (maybe
even a weak test category would do it), then the lower horizontal arrow
in (7)

(8) HotabA→ D•(Ab) = Hotab

is an equivalence of categories. Whenever true, for a given category A,
this statement looks like a reasonable substitute (on the level of the
relevant derived categories) for the Kan-Dold-Puppe theorem, known
in the two cases and .

There are however still two important extra features in the case
A = , which deserve to be understood in the case of more general
A. One is that a map u : F → G in Aâb is in W ab

A (i.e., is an “abelian
weak equivalence”) iff it is in WA, i.e., iff it is a weak equivalence when
forgetting the abelian structures. In terms of a final object e in A (when
such object exists indeed), viewing the categories A/F (for F in Aâb) it is enough that A be 1-connected instead

of having a final objectpointed by the zero map e→ F , which yields the necessary base-point
eF for defining homotopy invariants πi(F) for i ≥ 0, the relationship just
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considered between abelian weak equivalence and weak equivalence,
will follow of course whenever we have functorial isomorphisms

(9) πi(F)
def
= πi(A/F , eF )' Hi(A, F),

which are known to exist indeed in the case A= . It should be noted
that in section 92, when starting (in a somewhat casual way) with some
reflections on “abelianization”, we introduced a category (denoted by
HotabA) by localizing Aâb with respect to the maps which are weak
equivalences (when forgetting the abelian structures), whereas it has
now become clear that, in case the latter should not coincide with
the “abelian weak equivalences” defined in terms of linearization or
homology, it is the category (6) definitely which is the right one. Still,
the question of defining isomorphisms (9) when A has a final object,
and whether the equality

(10) W ab
A = forg−1

A (WA)

holds, where
forgA : Aâb→ Aˆ

is the “forgetful functor”, should be settled for general A.
The other “extra feature” is about the relationship of W ab

A with the [p. 560]
notion of homotopism. In case A= , a map in Aâb is a weak equivalence
(or equivalently, an abelian weak equivalence) iff it is a homotopism
when forgetting the abelian structures – this follows from the well-known
fact that semisimplicial groups are Kan complexes. There is of course
also a notion of homotopism in the stronger abelian sense – a particular
case of the notion of a homotopism between semisimplicial objects
in an arbitrary category (here in (Ab)). The Kan-Dold-Puppe theory
implies that if F and G in âb have as values projective Z-modules,
then a map F → G in âb is a weak equivalence iff it is an “abelian”
homotopism; and likewise, two maps u, v : F ⇒ G are equal in Hotab
iff they are homotopic (in the strict, abelian sense of the word). The
corresponding statements still make sense and are true, when replacing
Z by any ground ring k, working in k̂ rather than Ẑ = âb – and
more generally still, when working in

M̂
= Hom( op,M),

where M is any abelian category. Now, replacing by an arbitrary object
A in (Cat), these statements still make sense, it would seem, provided we
got on Aˆ a suitable “homotopy structure”, more specifically, a suitable
“homotopy interval structure” (in the sense of section 51). In section 97
(p. 355) we reviewed the three standard homotopy interval structures
which may be introduced on a category Aˆ, and their relationships –
the main impression remaining was that, in case A is a contractor (cf.
section 95), those three structures coincide, and may be defined also in
terms of a contractibility structure on Aˆ (section 51), the latter giving
rise (via the general construction of section 79) to the usual notion of
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weak equivalence WA in Aˆ. Thus, we may hope that the feature just
mentioned for ˆ may be valid too for Aˆ, whenever A is a contractor.
In case A is only a test category, then the most reasonable homotopy
interval structure on Aˆ, I would think, which possibly may still yield
the desired “extra feature”, is the one defined in terms of the set WA of
weak equivalences in Aˆ as in section 54 (namely hWA

).

135 This handful of questions (some of which we met with before) is mainly Proof of “integrators are abelianiza-
tors” (block against homology reced-
ing?).

a way of coming into touch again with the abelianization story, which
has been becoming somewhat remote during the previous two months. I
am not sure I am going to make any attempt, now or later, to come to an

[p. 561]answer. The last one, anyhow, seems closely related to the formalism of
closed model structure on categories Aˆ, and the proper place for dealing
with it would seem to be rather next chapter VII, where such structures

[I guess AG thought this was still
Part VI. Since there was never a sec-
ond volume of PS, we refer to Cisin-
ski (2006) for a discussion of closed
model structures on presheaf topoi,
now known as Cisinski model struc-
tures. . . ]

are going to be studied. What I would like to do, however, here-and-now,
is to establish at last the long promised relationship “integrators are
abelianizators”, which we have kept turning around and postponing
ever since section 99, when those integrators were finally introduced,
mainly for this purpose (of furnishing us with “abelianizators”).

First of all, I should be more outspoken than I have been before, in
defining the “abelianization functor” (or “absolute Whitehead functor”):

(1) Wh : (Hot)
def
= W−1(Cat)→ Hotab

def
= D•(Ab),

without any use of the semisimplicial machinery which, at the beginning
of our reflections, had rather obscured the picture (section 92). Defining
such a functor amounts to defining a functor

(2) LH• : (Cat)→ D•(Ab),

or “total homology functor”, which should take weak equivalences into
isomorphisms. For an object A in (Cat), we define

(3) LH•(A) = LH•(A,ZA) = LpA
ab
! (ZA),

where ZA is the constant abelian presheaf on A with value Z, and

pA : A→ e

is the map to the final object of (Cat). We have to define the functorial
dependence on A. More generally, for pairs

(A, F), with A in (Cat), F in Aâb,

the expression
LH•(A, F) in D•(Ab)

is functorial with respect to the pair (A, F), where a map

(A, F)→ (A′, F ′)
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is defined to be a pair ( f , u), where

(4) f : A→ A′, u : F → f ∗(F ′),

the composition of maps being the obvious one. To see that such a pair
defines a map

(5) LH•( f , u) : LH•(A, F)→ LH•(A
′, F ′),

we use [p. 562]
pA = pA′ ◦ f ,

hence

(*) (pA)
ab
! ' (pA′)

ab
! ◦ f ab

! , and L(pA)
ab
! ' L(pA′)

ab
! ◦ L f ab

! ,

taking into account that f ab
! maps projectives to projectives. Hence, we

get

LH•(A, F)
def
= L(pA)

ab
! (F)' L(pA′)

ab
! (L f ab

! (F))
def
= LH•(A

′, L f ab
! (F)).

This, in order to get (5), we need only define a map in D−(A′âb)

(6) L f ab
! (F)→ F ′,

which will be obtained as the composition

(6’) L f ab
! (F)→ f ab

! (F)→ F ′,

where the first map in (6’) is the canonical augmentation maps towards
the H0 object, and where the second corresponds to u in (4) by adjunc-
tion. This defines the map (5), and compatibility with compositions
should be a tautology. Hence the functor (2). To get (1), we still have
to check that when

f : A→ A′

is a weak equivalence, then

LH•( f ) : LH•(A)→ LH•(A
′)

is an isomorphism in D•(Ab). It amounts to the same to check that for
any object K• in D+(Ab), the corresponding map between the RHom’s
with values in K• is an isomorphism in D+(Ab). But the latter map can
be identified with the map for cohomology

RH•(A′, K•A′)→ RH•(A, K•A),

with coefficients in the constant complex of presheaves defined by K•

on A′ and on A, which is an isomorphism, by the very definition of weak
equivalences in (Cat) via cohomology.

Now, the statement “an integrator is an abelianizator” may be rephrased
rather evidently, without any reference to a given integrator, as merely
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the commutativity, up to canonical isomorphism, of the following dia-
gram for a given A in (Cat): [p. 563]

(7)

Aˆ (Hot)

Aâb (Hotab)(Hotab)
def
= D•(Ab)

ϕA

WhA Wh

LH•(A,−)
,

or equivalently, of the corresponding diagram where the categories Aˆ,
Aâb are replaced by the relevant localizations:

(7’)

HotA Hot

HotabA Hotab .

The left vertical arrow in (7) is of course the trivial abelianization functor
in Aˆ:

WhA : Aˆ→ Aâb, X 7→ Z(X ) =
�

a 7→ Z(X (a))
�

.

Going back to the definitions, the commutativity of (7) up to isomor-
phism, means that for X in Aˆ, there is a canonical isomorphism

(8) LH•(A/X ,Z)' LH•(A,Z(X )),

functorial with respect to X . To define (8), let

f : A′
def
= A/X → A

be the canonical functor, then we get (using (*) of the previous page,
with the roles of A and A′ reversed)

LH•(A
′,ZA′)' LH•(A, L f ab

! (ZA′)),

and the relation (8) follows from the more precise relation

(9) L f ab
! (ZA′)

∼−→ Z(X ).

To get (9), we remark that we have the tautological relation

(9’) f ab
! (ZA′)' Z(X ),

hence the map (9). To prove it is an isomorphism amounts to proving

Li f ab
! (ZA′) = 0 for i > 0,

but we have indeed

(10) Li f ab
! = 0 for i > 0, i.e., f ab

! is exact,

not only right exact, a rather special feature, valid for a localization [p. 564]
functor like f : A/X → A, namely for a functor which is fibering (in the
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sense of the theory of “fibered categories”) and has discrete fibers. It
comes from the explicit description of f ab

! , as

(11) f ab
! (F) =

�

a 7→
⊕

u∈X (a)

F(a)u
�

,

where, for a group object F in Aˆ/X ' (A/X )ˆ, and u in X (a) (defining
therefore an object of A/X ) F(a)u = fiber of F(a) at u ∈ X (a) is the
corresponding abelian group. I’ll leave the proof of (11) to the reader,
it should be more or less tautological.

Once the whole proof is written down, it looks so simple that I feel
rather stupid and can’t quite understand why I have turned around it for
so long, rather than writing it down right away more than three months
ago! The reason surely is that I have been accustomed so strongly to
expressing everything via cohomology rather than homology, that there
has been something like a block against doing work homologically, when
it is homology which is involved. This block has remained even after
I took the trouble of telling myself quite outspokenly (in section 100)
that homology was just as important and meaningful as cohomology,
and more specifically still (in section 103) that the proof I had in mind
first, via Quillen’s result about A' Aop in (Hot) and via cohomology, was
an “awkward”, an “upside-down”, one. The review on abelianization
I went into just after made things rather worse in a sense, as there I
took great pains to make the point that homology and cohomology were
just one and the same thing (so why bother about homology!). Still, I
did develop some typically homologically flavored formalism with the
∗k operation, and I hope that at the end that block of mine is going to
recede. . .

27.10. [p. 565]

136 I just spent a couple of hours, after reading the notes of last night, trying Preliminary perplexities about a full-
fledged “six operations duality for-
malism” within (Cat).

to get a better feeling of the basic homology operation in the context of
the basic localizer (Cat), namely taking the left derived functor L f ab

! of
the “unusual” direct image functor for abelian presheaves, associated to
a map

f : A→ B

in (Cat). This led me to read again the notes of section 92, when I
unsuspectingly started on an “afterthought, later gradually turning into
a systematic reflection on abelianization. With a distance of nearly four
months, what strikes me most now in these notes is awkwardness of
the approach followed at start, when yielding to the reflex of laziness
of describing abelianization of homotopy types via the semisimplicial
grindmill. The uneasiness in these notes is obvious throughout – I kind
of knew “au fond” that dragging in the particular test category was

[“au fond” – at the bottom – deep
down]

rather silly. In section 100 only, does it get clear that the best description
for abelianization, with the modelizer (Cat), is via the unusual direct
image pab

! corresponding to the projection

p = pA : A→ e
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of the “model” A in (Cat) to the final object (formulæ (11) and (12)
page 359), by applying pab

! to a “cointegrator” LA
• for A, namely to a

projective resolution of ZA (where A is written B by the way, as I had
been led before to replace a given A in (Cat) by its “dual” or opposite
B = Aop, bound as I was for interpreting “integrators” for A in terms of
“cointegrators” for B. . . ); and in the next section the step is finally taken
(against the “block”!) to write

pab
! (L

B
• ) = Lpab

! (ZB),

which inserts abelianization into the familiar formalism of (left) derived
functors of standard functors. The reasonable next thing to do was of
course what I finally did only yesterday, namely check the commutativ-
ity of the diagram (7) of p. 563, namely compatibility of this notion of
abelianization (or homology) with Whitehead’s abelianization, when
working with models coming from Aˆ, A any object in (Cat). This by
the way, when applied to the case A= , gives at once the equivalence
of the intrinsic definition of abelianization, with the semisimplicial one
we started with – provided we remark that in this case, Lpab

! (rather, its
restriction to âb) may be equally interpreted as the Kan-Dold-Puppe [p. 566]
functor (more accurately, the composition of the latter with the localiza-
tion functor Ch•(Ab)→ D•(Ab) = Hotab). The equivalence of the two
definitions of abelianization is mentioned on the same p. 369, somewhat
as a chore I didn’t really feel then to dive into. Besides the “block” against
homology, the picture was being obscured, too, by the “computational”
idea I kept in mind, of expressing Lpab

! (F) for F in Aâb in terms of an
“integrator” for A, i.e., as F ∗Z LB

• – whereas I should have known best
myself that for establishing formal properties relating various derived
functors, the particular approaches used for “computing” them more or
less elegantly are wholly irrelevant. . .

One teaching I am getting out of all this, is that when expressing
abelianization, or presumably any other kind of notion or operation of
significance for homotopy types, one should be careful, for any modelizer
one chooses to work in, to dig out the description which fits smoothly
those particular models. Clearly, when working with semisimplicial
models, the description via tautological abelianization Wh and using
Kan-Dold-Puppe is the best. When working within the modelizer (Cat),
though, making the detour through ˆ is awkward and makes us just
miss the relevant facts. Once we got this, it gets clear, too, what to do
when is replaced by any other object A in (Cat) when taking models
in Aˆ (never minding even whether Aˆ is indeed a “modelizer”): namely,
apply WhA, and take total homology!

This brings to my mind another example, very similar indeed. Some
time after I got across Thomason’s nice paper, showing that (Cat) is a
closed model category (see comments in section 87), I got from Tim
Porter another reprint of Thomason’s, where he gives the description of

[Thomason (1979)]“homotopy colimits” (or “integration”, as I call it) within the modelizer
(Cat), in terms of the total category associated to a fibered category
(compare section 69). There he grinds through a tedious, highly techni-
cal proof, whereas the direct proof when describing “integration” as the
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left adjoint functor to the tautological “inverse image” functor, is more
or less tautological, too. The reason for this awkwardness is again that,
rather than being content to work with the models as they are, Thomason
refers to the Bousfield-Kan description of colimits in the semisimplicial

[Bousfield and Kan (1972)]set-up which he takes as his definition for colimits. I suspect that (Cat)
is the one modelizer most ideally suited for expressing the “integration”
operation, and that the Bousfield-Kan description is just the obvious,
not-quite-as-simple one which can be deduced from the former, using [p. 567]
the relevant two functors between (Cat) and ˆ which allow to pass
from one type of models to another. (Sooner or later I should check in
Bousfield-Kan’s book whether this is so or not. . . ) Thomason, however,
did the opposite, and it is quite natural that he had to pay for it by a fair
amount of sweat! (Reference of the paper: Homotopy colimits in the
category of small categories, Math. Proc. Cambridge Philos. Soc. (1979),
85, p. 91–109.)

The proof written down yesterday for compatibility of abelianization
of homotopy types with the Whitehead abelianization functor within
a category Aˆ, still goes through when replacing abelianization by k-
linearization, with respect to an arbitrary ground ring k (not even
commutative). It wasn’t really worth while, though, to introduce a ring
k, as the general result should follow at once from the case k = Z, by
the formula

(1) Lpk
! (kA)' LpZ! (ZA)

L
⊗Z k,

where in the left-hand side we are taking the left derived functor for the
functor

pk
! : Ak̂ → (Abk)

generalizing pab
! = pZ! (with p : A → e as above), and where in the

right-hand side we are using the ring extension functor

L
⊗Z : D•(Ab)→ D•(Abk)

for the relevant derived categories. This reminds me of the need of
developing a more or less exhaustive formulaire around the basic oper-
ations

(2) L f!, f ∗, Rf∗,

including the familiar one for the two latter, valid more generally for
maps between ringed topoi, and including also a “projection formula”
generalizing (1). Such a formula will be no surprise, surely, to a reader
familiar with a duality context (such as étale cohomology, or “coherent”
cohomology of noetherian schemes, say), where a formalism of the “four

variances” f!, f ∗, f∗, f ! and the “two internal operations”
L
⊗ and RHom

can be developed – it would seem that the formal properties of the triple
(2), together with the two internal operations just referred to, are very
close (for the least) to those of the slightly richer one in duality set-ups,
including equally an “unusual inverse image” f !, right adjoint to Rf∗



§136 Preliminary perplexities about a full-fledged “six . . . 506

(denoted sometimes simply by f∗). This similarity is a matter of course, [p. 568]
as far as the two last among the functors (2), together with the two
internal operations, are concerned, as in both contexts (homology and
cohomology formalism within (Cat) on the one hand, and the “sweeping
duality formalism” on the other) the formulaire concerning these four
operations

f ∗, Rf∗,
L
⊗, RHom

is no more, no less than just the relevant formulaire in the context of
arbitrary (commutatively) ringed topoi, and maps between such. The
common notation f! (occurring in L f! in the (Cat) context, in Rf! in the
“duality” context) is a very suggestive one, for the least, and I am rather
confident that most reflexes (concerning formal behavior of f! with
respect to the other operations) coming from one context, should be OK
too in the other. Whether this is just a mere formal analogy, or whether
there is a deeper relationship between the two kinds of contexts, I am at
a loss at present to say. It doesn’t seem at all unlikely to me that among
arbitrary maps in (Cat), one can single out some, by some kind of “finite
type” condition, for which a functor

(*) f ! : D+(Bk̂ )→ D+(Ak̂ )

can be defined (where f : A → B), right adjoint to the familiar Rf∗
functor, so that (2) can be completed to a sequence of four functors

(3) L f!, f ∗, Rf∗, f !,

forming a sequence of mutually adjoint functors between derived cat-
egories, in the usual sense (the functor immediately to the right of
another being its right adjoint). I faintly remember that Verdier worked
out such a formalism within the context of discrete or profinite groups,
or both, in a Bourbaki talk he gave, this being inspired by the similar
work he did within the context of usual topological spaces. In the latter,
the finiteness condition required for a map

f : X → Y

of topological spaces to give rise to a functor f ! (between, say, the
derived categories of the categories of abelian sheaves on Y and X )
is mainly that X should be locally embeddable in a product Y × Rd

– a rather natural condition indeed! As we are using (Cat) as a kind
of algebraic paradigm for the category of topological spaces, this last
example for “sweeping duality” makes it rather plausible that something
of the same kind should exist indeed in (Cat) – and likewise for the
context of groups (which we may view as just particular cases of models [p. 569]
in (Cat)).

I am sorry I was a bit confused, when describing f ! as a right adjoint
to Rf∗ – I was thinking of the analogy with a map of schemes, or spaces,
which is not only “of finite type” in a suitable sense, but moreover proper
– in which case, in those duality contexts, Rf∗ is canonically isomorphic
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with the functor denoted by f! or Rf!. Otherwise, the (“non-trivial”)
“duality theorem” will assert, rather, that the pair

Rf!, f !

is a pair of adjoint functors, just as is the pair

f ∗, Rf∗ (or simply f∗).

But even when f is assumed to be proper, the sequence (3) isn’t a se-
quence of adjoint functors in the standard duality contexts, namely Rf!
is by no means left adjoint to f ∗, i.e., f ∗ isn’t isomorphic to f ! (except
in extremely special cases, practically I would think only étale maps are
OK, which in the context of (Cat) would correspond to maps in (Cat) iso-
morphic to a map A/X → A for X in Aˆ, namely maps which are fibering
with discrete fibers). This does make an important discrepancy indeed,
between the two kinds of contexts – and increases my perplexity, as to
whether or not one should expect a “four variance duality formalism”
to make sense in (Cat). If so, presumably the f! or Rf! it will involve
(perhaps via a suitable notion of “proper” maps in (Cat), as already
referred to earlier (section 70)) will be different after all from the L f!
we have been working with lately, embodying homology properties. But
so does Rf! too, in a rather strong sense, via the “duality theorem”!

In the various duality contexts, a basic part is played by the three
particular classes of maps: proper maps, smooth maps, and immersions,
and factorizations of maps into an immersion followed by either a proper,
or a smooth map. In the context of Cat, there is a very natural way
indeed to define the three classes of maps, as we’ll see in the next chapter,
presumably – so natural indeed, that it is hard to believe that there may
be any other reasonable choice! One very striking feature (already
mentioned in section 70) is that the two first notions are “dual” to each
other in the rather tautological sense, namely that a map f : A→ B
in (Cat) is proper iff the corresponding map f op : Aop→ Bop is smooth
(whereas the notion of an immersion is autodual). How does this fit [p. 570]
with the expectation of developing a “four variance” duality formalism
within (Cat)? It rather heightens perplexity at first sight! Proper maps
include cofibrations (in the sense of category theory, not in Kan-Quillen’s
sense!); dually, smooth maps include fibrations. Consequently, maps
which are moth smooth and proper include bifibrations, and hence
are not too uncommon. Now, how strong a restriction is it for a map
f : A→ B in (Cat) to factor into

f = p ◦ i,

where i is an immersion A→ A′ (namely, a functor identifying A to a
full subcategory of A′, whose essential image includes, with any two
objects x , y, any other z which is “in between”: x → z→ y), and p is
both proper and smooth (a bifibration, say)?

I start feeling like a battle horse scenting gunpowder again – still, I
don’t think I’ll run into it. Surely, there is something to be cleared up, and
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perhaps once again a beautiful duality formalism with the six operations
and all will emerge out of darkness – but this time I will not do the
pulling. Maybe someone else will – if he isn’t discouraged beforehand,
because the big-shots all seem kind of blasé with “big duality”, derived
categories and all that. As for my present understanding, I feel that the
question isn’t really about homotopy models, or about foundations of
homotopy and cohomology formalism – at any rate, that I definitely
don’t need this kind of stuff, for the program I have been out for. I
shouldn’t refrain, of course, to pause on the way every now and then
and have a look at the landscape, however remote or misty – but I am
not going to forget I am bound for a journey, and that the journey should
not be an unending one. . .

27.10.

137 It occurred to me that I have been a little rash yesterday, when asserting Looking for the relevant notions of
properness and smoothness for maps
in (Cat). Case of ordered sets as a
paradigm for cohomology theory of
conically stratified spaces.

that the notions of “smoothness” and “properness” for maps in (Cat)
which I hit upon last Spring is the only “reasonable” one. Initially, I
referred to these notions by the names “cohomologically smooth”, “co-
homologically proper”, as a measure of caution – they were defined by
properties of commutation of base change to formation of the Leray
sheaves Ri f∗ (i.e., essentially, to “cointegration”), which were familiar to
me for smooth resp. proper maps in the context of schemes, or ordinary
topological spaces. These cohomological counterparts of smoothness [p. 571]
and properness fit very neatly into the homology and cohomology for-
malism, and I played around enough with them, last Spring as well
as more than twenty years ago when developing étale cohomology of
schemes, for there being no doubt left in my mind that these notions are
relevant indeed. However, I was rather rash yesterday, while forgetting
that these cohomological versions of smoothness and properness are
considerably weaker than the usual notions. Thus, in the context of
schemes over a ground field, the product of any two schemes is coho-
mologically smooth over its factors – or equivalently, any scheme over
a field k is cohomologically smooth over k! Similarly, in the context
of (Cat), any object in (Cat), namely any small category, is both coho-
mologically smooth and proper over the final object e (as it is trivially
“bifibered” over e). On the other hand, it isn’t reasonable, of course,
to expect any kind of Poincaré-like duality to hold for the cohomology
(with twisted coefficients, say) of an arbitrary object A in (Cat). To be
more specific, it is easy to see that in many cases, the functor

Rf∗ : D+(Aâb)→ D+(Ab)

does not admit a right adjoint (which we would call f !). For instance,
when A is discrete, then f ! exists (and may then be identified with f ∗) iff
A is moreover finite – a rather natural condition indeed, when we keep
in mind the topological significance of the usual notion of properness!
This immediately brings to mind some further properties besides base
change properties, which go with the intuitions around properness –
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for instance, we would expect for proper f , the functors f∗ and Rf∗ to
commute to filtering direct limits, and the same expectation goes with
the assumption that Rf∗ should admit a right adjoint. This exactness
property is not satisfied, of course, when A is discrete infinite. We now
may think (still in case of target category equal to e) to impose the
drastic condition that the category A is finite. Such restriction however
looks in some respects too weak, in others too strong. Thus, it will
include categories defined by finite groups, which goes against the
rather natural expectation that properness + smoothness, or any kind of
Poincaré duality, should go with finite cohomological dimension. On the
other hand, there are beautiful infinite groups (such as the fundamental
group of a compact surface, or of any other compact variety that is a
K(π, 1) space. . . ) which satisfy Poincaré duality.

These reflections make it quite clear that the notions of properness [p. 572]
and of smoothness for maps in (Cat), relevant for a duality formalism,
have still to be worked out. Two basic requirements to be kept in mind
are the following: 1) for a proper map f : A → B, and any ring of
coefficients k, the functor

Rf∗ : D+(Ak̂ )→ D+(Bk̂ )

should admit a right adjoint f !, and 2) for a smooth map f factored as
f = g ◦ i, with g proper and i an “open immersion”, the composition

f ! def
= i∗ ◦ g ! should be expressible as

(5) f ! : K• 7→ f ∗(K)
L
⊗k T f (k)[d f ],

where T f (k) is a presheaf of k-modules on A locally isomorphic to the
constant presheaf kA (T f (k) may be called the orientation sheaf for f ,
with coefficients in k), and d f is a natural integer (which may be called
the relative dimension of A over B, or of f ). (For simplicity, I assume
in 2) that A is connected, otherwise d f should be viewed as a function
on the set of connected components of A.) This again should give the
correct relationship, for f as above, between the (for the time being

hypothetical) Rf! (
def
= Rg∗ ◦ L f!) and our anodyne L f!, for an argument

L• in D•(Ak̂ ) say:

(6) Rf!(L•)' L f!(L• ⊗ T−1
f )[−d f ],

where the left-hand side is just Rf∗(L•), if we assume moreover f to be
proper.

This precise relationship between the two possible versions of an f!
operation between derived categories, namely L f! embodying homology,
defined for any map f in (Cat), and Rf! embodying “cohomology with
proper supports”, defined for a map that may be factored as g ◦ i with
g “proper” and i an (open, if we like) immersion, relation valid if f is
moreover assumed to be “smooth”, greatly relaxes yesterday’s perplexity,
coming from a partial confusion in my mind between the operations
Rf! and L f!. (Beware the notation Rf! is an abuse, as it doesn’t mean
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at all anything like the right derived functor of the functor f!!) At the
same time, I feel a lot less dubious now about the existence of a “six
operations” duality formalism in the (Cat) context – I am pretty much
convinced, now, that such a formalism exists indeed. The main specific
work ahead is to get hold of the relevant notions of proper and smooth
maps. The demands we have on these, besides the relevant base change [p. 573]
properties, are so precise, one feels, that they may almost be taken
as a definition! Maybe even the “almost” could be dropped – namely
that a comprehensive axiomatic set-up for the duality formalism could
be worked out, in a way applicable to the known instances as well as
to the presently still unknown one of (Cat), by going a little further
still than Deligne’s exposition in SGA 5 (where the notions of “smooth”

[Deligne (SGA 4 1
2 , Dualité)]and “proper” maps were supposed to be given beforehand, satisfying

suitable properties). Before diving into such axiomatization game, one
should get a better feeling, though, through a fair number of examples
(not all with e as the target category moreover), of how the proper,
the smooth and the proper-and-smooth maps in (Cat) actually look
like. Here, presumably, Verdier’s work in the context of discrete infinite
groups should give useful clues.

Other important clues should come from the opposite side so to say –
namely ordered sets. Such a set I , besides defining in the usual way a
small category and hence a topos, may equally be viewed as a topological
space, more accurately, the topos it defines may be viewed as being
associated to a topological space, admitting I as its underlying set (cf.
section 22, p. 18). This topological space is noetherian iff the ordered
set I is – for instance if I is finite. In such a case, an old algebraic
geometer like me will feel in known territory, which maybe is a delusion,
however – at any rate, I doubt the duality formalism for topological
spaces (using factorizations of maps X → Y via embeddings in spaces
Y ×Rd) makes much sense for such non-separated spaces. However,
as we saw in section 22, when I satisfies some mild “local finiteness”
requirement (for instance when I is finite), we may associate to it a
geometrical realization |I |, which is a locally compact space (a compact
one indeed if I is finite) endowed with a “conical subdivision” (index
by the opposite ordered set Iop), hence canonically triangulated via the
“barycentric subdivision”. The homotopy type of this space is canonically
isomorphic to the homotopy type of I , viewed as a “model” in (Cat).
What is more important here, is that a (pre)sheaf of sets (say) on the
category I may be interpreted as being essentially the same as a sheaf of
sets on the geometric realization |I | which is locally constant (and hence
constant) on each of the “open” strata or “cones” of I . This description
then carries over to sheaves of k-modules. The “clue” I had in mind is
that within the context of locally finite ordered sets, the looked-for “six
operations duality formalism” should be no more, no less than the accurate
reflection of the same formalism within the context of (locally compact) [p. 574]
topological spaces, as worked out by Verdier in one of his Bourbaki talks
– it being understood that when applying the latter formalism to spaces
endowed with conical stratifications, maps between these which are
compatible with the stratifications (in a suitable sense which should still
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be pinned down), and to sheaves of modules which are compatible with
the stratifications in the sense above, these will give rise (via the “six
operations”) to sheaves satisfying the same compatibility. (NB when
speaking of “sheaves”, I really mean complexes of sheaves K•, and
the compatibility condition should be understood as a condition for the
ordinary sheaves of modules Hi(K•).) This remark should allow to work
out quite explicitly, in purely algebraic (or “combinatorial”) terms, the
“six operations” in the context of locally finite ordered sets, at any rate.

This interpretation suggests that an ordered set I should be viewed
as a “proper” object of (Cat) iff I is finite. In the same vein, whenever I
is “locally proper”, namely locally finite, and moreover its topological
realization |I | is a “smooth” topological space in the usual sense, namely
is a topological variety (for which it is enough that for every x in I , the
topological realization

(7) |I>x |

of the set of elements y such that y > x should be a sphere), we would
consider I as a “smooth” object in (Cat). If A is any object in (Cat) and
I is an ordered set which is finite resp. “smooth” in the sense above, we
will surely expect A× I → A to be “proper” resp. “smooth” for the duality
formalism we wish to develop in (Cat).

It should be kept in mind that for the algebraic interpretation above
to hold, for sheaves on a conically stratified space |I | in terms of an
ordered set I , we had to take on the indexing set I for the strata the
order relation opposite to the inclusion relation between (closed) strata
– otherwise, the correct interpretation of sheaves constant on the open
strata is via covariant functors I → (Sets), i.e., presheaves on Iop (not I).
At any rate, as there is a canonical homeomorphism

(8) |I | ' |Iop|

respecting the canonical barycentric subdivisions of both sides, notions
for I (such as properness, or smoothness) which are expressed as intrin-
sic properties of the corresponding topological space |I | (independently
of its subdivision) are autodual – they hold for I iff they do for Iop. [p. 575]
This is in sharp contrast with the more naive notions of “cohomological”
properness and smoothness via base change operations, which are in-
terchanged by duality (which was part of yesterday’s perplexities, now
straightening out. . . ).

I feel I should be a little more outspoken about the relevant notion
of “proper maps” between ordered sets, which should be the algebraic
expression of the geometric notion alluded to above, of a map between
conically stratified spaces being “compatible with the conical stratifica-
tions”. In order for the corresponding direct image functor for sheaves
to take sheaves compatible with the stratification above to sheaves of
same type below, we’ll have to insist that the image by f of a strata
above should be a whole strata below. Now, it is clear that any map

(9) f : I → J
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between ordered sets takes flags into flags, and hence induces a map

(10) | f | : |I | → |J |

between the geometric realizations, compatible with the barycentric
triangulations and thus taking simplices into simplices. But even when I
and J are finite (hence “proper”), the latter map does not always satisfy
the condition above. Thus, when I is reduced to just one point, hence
(9) is defined by the image j ∈ J of the latter, the corresponding map
(10) maps the unique point of |I | to the barycenter of the stratum C j
in |J |, which is a stratum of |J | iff C j is a minimal stratum, i.e., j is a
maximal element in J . A natural algebraic condition to impose upon f ,
in order to ensure that | f | satisfy the simple geometric condition above,
is that for any x in I , and any y ′ in J such that

y ′ > y
def
= f (x),

there should exist an x ′ in I satisfying

(11) x ′ > x and f (x ′) = y ′.

This condition strongly reminds us of the valuative criterion for proper-
ness in the context of schemes, where the relation y ′ ≥ y or y → y ′, say,
should be interpreted as meaning that y ′ is a specialization of y . How-
ever, in the valuative criterion for properness (for a map of preschemes
of finite type over a noetherian prescheme say), if one wants actual
properness indeed (including separation of f , not just that f is univer- [p. 576]
sally closed), one has to insist that the x ′ above should be unique: every
specialization y ′ of y = f (x) lifts to a unique specialization x ′ of x . If
we applied this literally in the present context, this would translate into
the condition that | f | should map injectively each closed stratum Cx of
|I | – which would exclude such basic maps as the projection I → e to
just one point!

One may wonder why trouble about the analogy with algebraic ge-
ometry and any extra condition on f besides the one we got. The point,
however, is that we would like the map

(12) Cx = |I≥x | → Cy = |I≥y |

between corresponding strata induced by | f | to be “cohomologically
trivial” in a suitable sense, not only surjective – in analogy, say, with analogy: aspheric fibers! [I think that’s

what the footnote says; it’s hard to read. . . ]the usual notion of maps between triangulated spaces; if we don’t have
some condition of this type, we will have no control over the structure
of the direct image and the higher direct images Ri | f |∗ of an “admissible”
sheaf upstairs. I didn’t really analyze the situation carefully, in terms
of what we are after here in the context of those stratified geometric
realizations. I feel pretty sure, though, that there the general notion of
“cohomological properness” which I worked out last Spring fits in just
right, to give the correct answer. The criterion I obtained (necessary and
sufficient for the relevant compatibility property of Ri f∗ with arbitrary
base change J ′→ J in (Cat)) reads as follows: let

(13) I( f , x , x ′) = {x ′ ∈ I | x ′ > x and f (x ′) = y ′}
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be the subset of I satisfying the conditions (11) above. Instead of
demanding only that this set be non-empty, or going as far as demanding
that it should be reduced to just one point, we’ll demand that this
set should be aspheric. (When we are concerned with cohomology
with commutative coefficients only, presumably it should be enough
to demand only that this set be acyclic – which should be enough for
the sake of a mere duality formalism. . . ) In more geometric terms, this
should mean, I guess, that the inverse image, by the map (12) above
between closed strata, of any closed stratum below, should be aspheric.
I doubt this condition holds under the mere assumption that the sets
(13) be non-empty, i.e., (12) be surjective – I didn’t sit down, though,
to try and make an example.

Thus, we see that when working with the notion of properness of [p. 577]
maps, even for such simple gadgets as finite ordered sets, which should
be viewed as “proper” (or “compact”) objects by themselves, this notion
is far from being a wholly trivial one – for instance, it does not hold
true that any map between such “proper” objects is again “proper”. This
now seems to me just a mathematical “fact of life”, which we may not
disregard when working with finite ordered sets, say, in view of express-
ing in algebraic terms some standard operations in the cohomology
theory of sheaves on topological spaces, endowed with suitable conical
stratifications. The fault, surely, is not with the notion of conical stratifi-
cation itself, which may be felt by some as being ad hoc, awkward and
what not. I know the notion is just right – but at any rate, even when
working with strata which are perfect topological cells (so that nobody
could possibly object to them), exactly the same facts of life are there
– not every map between such cellular decompositions, mapping cells
onto cells, will fit into a “combinatorial” description when it comes to
describing the standard operations of the cohomology of sheaves, for
sheaves compatible with the stratifications. . .

To sum up, it seems to me that definitely, there is a very rich experimen-
tal material available already at present, in order to come to a feeling of
what duality is like in the context of (Cat), and for developing some of
the basic intuitions needed for working out, hopefully, “the” full-fledged
duality theory which should hold in (Cat). Before leaving this question,
I would like to point out still one other property connected with the intu-
itions around “properness” – more generally, around maps “of finite type”
in a suitable sense, which sometimes may translate into: factorizable as
a composition f = g ◦ i, with g proper and i an immersion. This is about
stability of “constructibility” or “finiteness” conditions for (complexes
of) sheaves of k-modules, with respect to the standard operations Rf∗,
Rf!, f ! (stability by f ∗ being a tautology in any case). Such stability
of course, whenever it holds, is an important feature, for instance for
making “virtual” calculations in suitable “Grothendieck groups” (where
Euler-Poincaré type invariants may be defined). It should be recalled,
however, that the six fundamental operations in the duality formulaire,
as well as nearly all of the formulaire itself, make sense (and formulæ
hold true) without any finiteness conditions on the complexes of sheaves
we work with, except just boundedness conditions on the degrees of
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those complexes.

Remarks. 1) One of the (rather few) instances in the duality formulaire [p. 578]
where finiteness conditions are clearly needed, is the so-called “biduality
theorem”, when taking RHom’s with values in a so-called “dualizing
complex”, which here should be an object

R• in Db(Ak̂ )

(for given A in (Cat) and given ring of coefficients k, for instance k = Z).
The question arises here, for any given A and k, a) whether there exists
a dualizing complex R• (which, as usual, will be unique up to dimension
shift and “twist” by an invertible sheaf of k-modules on A), and b) can
such dualizing complex be obtained as

R• = p!(ke),

where p : A→ e is the projection to the final object of (Cat)? It should
be easy enough, once the basic duality formalism is written down for
ordered sets, as contemplated above, to show that when A is a finite
ordered set (or only locally finite of finite combinatorial dimension),
then p!(ek) is indeed a dualizing complex. To refer to something more
“en vogue” at present than those poor dualizing complexes, it is clear,
from what I heard from Illusie and Mebkhout about the “complexe
d’intersection” for stratified spaces, that this complex can be described
also in the context of locally finite ordered sets (if I got the stepwise
construction of this complex right). As the construction here corresponds
to stratifications where the strata are by no means even-dimensional,
I am not too sure, though, if the complex obtained this way is really
relevant – it isn’t a topological invariant of the topological space at any
rate, independently of its stratification – a bad point indeed. Too bad!

2) Here is a rather evident example showing that the asphericity
condition on (13) is not automatic. Take I with a smallest element x
(hence Cx = |I |), and J = 1 = (0→ 1). To give a map I → J amount
to give I0 = f −1(0) ⊂ I , which is any open subset of I (i.e., such that
a ∈ I0, b ≤ a implies b ∈ I0). If we take I0 = {x}, then properness of f
is equivalent with I1 = I \ I0 = I \ {x} being aspheric, while the weaker
condition contemplated first (the sets (13) non-empty) means only that
I1 6= ;. Now, I1 may of course be taken to be any (finite say) ordered
set – the construction made amounting to taking the cone over the map
|I1| → e. In this examples, all fibers of | f | : |I | → |J | are (canonically)
homeomorphic to I1, except the fiber at the “barycenter” 1, which is [p. 579]
reduced to a point – visibly not a very “cellular” behavior when |I1|
isn’t aspheric! At any rate, as the sheaves Ri | f |∗(F) (for F a constant
sheaf above, say) may be computed fiberwise, we see that if I1 isn’t
aspheric, these sheaves (which are constant on |J |\{1}) are not going to
be constant on |J |\{0}, as they should if we want an algebraic paradigm
of operations like R| f |∗ in terms of sheaves on finite ordered sets.

In this example we could take |I | to be a perfect n-cell (n≥ 1), hence
I1 is an (n− 1)-sphere, whereas |J | isn’t really a (combinatorial) 1-cell,



§138 Niceties and oddities: Rf! commutes to . . . 515

as its boundary has just one point 0, instead of two. The 1-cell structure
corresponds to the ordered set (opposite to the ordered set formed by
the two endpoints and the dimension 1 stratum)

J =
y

0 1
.

For any ordered set I , to give a map f : I → J amounts to giving the
two subsets

I0 = f −1(0), I1 = f −1(1),

subject to the only condition of being open and disjoint. In terms of
strata of |I |, this means that we give two sets I0, I1 of strata, containing
with any stratum any smaller one, and having no stratum in common.
The condition that the sets (13) should be non-empty says that any
point in I which is neither in I0 nor I1 admits majorants in both – or
geometrically, any stratum which isn’t in I0 nor in I1 meets both |I0| and
|I1|, i.e., contains strata which are in I0 and strata which are in I1. Even
when |I | is a combinatorial 2-cell, i.e., a polygonal disc, this condition
does not imply asphericity of the sets (13) (not even 0-connectedness).
To see this, we take the set (13) where x is the dimension 2 stratum,
i.e., the smallest element of I , mapped to y (the smallest in J), and
y ′ either 0 or 1. The reader will easily figure out on a drawing the
structure of the map | f |, as I just did myself: the fibers at the endpoints
of the segment |J | are, as given, discrete with cardinal m, the fiber at a
point different from the endpoints and from their barycenter are disjoint
sums of m segments (hence homotopic to the former fibers), whereas
the fiber at the barycenter is the union of m segments meeting in their [p. 580]
common middle, hence is contractible. Thus, the R0| f |∗ of a constant
sheaf on the disc |I | is by no means constant on the open, dimension
one stratum of |J |.

These examples bring to my mind that for any map f : I → J between
finite ordered sets, possibly submitted to the mild restriction that the
sets (13) should be non-empty, the homotopy types of those ordered
sets (13) (for the order relation induced by I) should be exactly the
homotopy types of the fibers of the maps (12) between strata. Thus,
asphericity of these ordered sets should express no more, no less than
the contractibility of those fibers. This latter condition is exactly what is
needed in order to ensure stability by R| f |∗ of the notion of complexes
of sheaves compatible with the stratifications.
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28.10.

138 Yesterday and the day before, I got involved in that unforeseen digres- Niceties and oddities: Rf! commutes
to colocalization, not localization.sion around the foreboding of a “six operations duality formalism” in

(Cat), and suitable notions for smoothness and (more important still) of
properness for a map in (Cat). This digression wholly convinced me that
the usual duality formalism should hold in (Cat) too. Working this out
in full detail should be a most pleasant task indeed, and presumably the
best, or even the only way for gaining complete mastery of the cohomol-
ogy formalism within (Cat) or, what more or less amounts to the same,
for topoi which admit sufficiently many projective objects. In the previ-
ous two sections, I referred to such duality formalism as one concerned
with sheaves of k-modules, for any fixed ring k – but from the example
of étale duality for schemes, say, it is likely that instead of fixing a ring
k, we may as well take objects A in (Cat) endowed with an arbitrary
sheaf of rings OA (which we’ll only have to suppose commutative when

concerned with the two internal operations
L
⊗ and RHom), and taking

maps of such ringed objects as the basic maps. In the present context,
the usual “six operations” in duality theory will be enriched, however,
by still another one, namely L f!, defined for any map f between such
ringed objects (not to be confused with the Rf! operation, defined only
under suitable finiteness assumptions, such as “properness”, for the
underlying map in (Cat)), whose relationship to the other operations
should be understood and added to the standard duality formulaire.
One such formula, namely the precise relation between L f! and Rf! for [p. 581]
a smooth f , was given yesterday (p. 572 (6)).

The day before, I was out for trying to get a better understanding of
the Rf! operation (including the case of non-constant sheaves of rings
for the modules we work with). This operation still remains unfamiliar
to me, very unlike my old friend Rf∗ – there is a number of things about
it which are not quite clear yet in my mind, even when just taking the
functor f! between modules, before taking a left derived functor. For
instance, for general rings of operators OA and OB, when f is a ringed
map

(1) f : (A,OA)→ (B,OB),

it doesn’t seem that formation of f! commutes to restriction of rings of
operators (to the constant rings ZA and ZB, say), namely that for a given
OA-module F , f!(F) may be interpreted as just f0

ab
! (F) with suitable

operations of OB on the latter, where

(2) f0 : A→ B

is the map in (Cat) underlying f . When reducing to a suitable “universal”
case, this may be expressed by saying that for given map f0 and given
abelian sheaf F on A, if we define

OA = EndZ(F), OB = f∗(OA),
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there doesn’t seem to be a natural operation of OB upon f0
ab
! (F); all

we can say, it seems, is that the ring of global sections of OB operates
on f0

ab
! (F). More generally, reverting to the general case of a map f

of ringed objects in (Cat), the ring of global sections of OB operates on
f0

ab
! (F). When OB is a constant sheaf of rings kB, this implies of course

that k operates on this abelian sheaf on B, from which will follow by
an obvious argument that with this structure of a sheaf of k-modules,
f0

ab
! (F) may indeed be identified with f!(F).
Going over to L f! which we would like to express via L f0

ab
! , the situa-

tion is worse, as we still have to check (granting OB to be constant) that
for F a projective OA-module, we got

(3) Li f0
ab
! (F) = 0 for i > 0.

This isn’t always true, even when B is the final object in (Cat), and A has
a final object, hence OA is a projective module over itself, and (3) reads [p. 582]

Hi(A,OA) = 0 for i > 0,

which isn’t always true. (NB if it were for any commutative ring OA on
A, it would be too for any abelian sheaf M on A, as we see by taking
OA = ZA ⊗ M , hence A would be homological dimension 0, a drastic
restriction, indeed, even when A has a final object.)

When however OA is equally a constant sheaf of rings, say OA = k′A,
then the relation (3) holds for any projective module on A. We need
only check it for

F = O
(a)
A = k′(a),

with a in A, then (3) follows from

(4) Li f0
ab
! (M

(a)) = 0 for i > 0, M in (Ab),

To check (4), we take a projective resolution of M (a), by using a projec-
tive resolution L• of M in (Ab) and taking L(a)• (using the fact that the
functor

L 7→ L(a) : (Ab)→ Aâb

is exact). We then get

L f0!(M
(a)) = f0!(L

(a)
• ) = L(b)• ' M (b),

where b = f0(a), and where the last equality stems from exactness
of L 7→ L(b). (NB the relation (4) generalizes a standard acyclicity
criterion in the homology theory of discrete groups. . . )

Thus, we get finally that in case both rings OA and OB are constant,
that formation of L f! commutes to restriction of operator rings (provided
the rings to which we are restricting are constant too – say they are just
the absolute ZA and ZB). Presumably, a little more care should show
the similar result for locally constant rings.

Reverting to the case (1) of a general map between ringed objects in
(Cat), our inability, for a given OA-module F on A, to define an operation
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of OB upon f0
ab
! (while there is an operation of the ring Γ (B,OB) upon

it), is tied up with this difficulty, that formation of f0
ab
! , and a fortiori of

f! for arbitrary rings OA and OB, does not commute to “localization” (as
f∗ and Rf∗ does), namely to base change of the type [p. 583]

(5) B/b → B,

where b is a given object in B, and B/b designates as usual the category
of all “objects over b” in B, i.e., of all arrows in B with target b. This
gives rise to the cartesian square in (Cat)

(6)

A/b A

B/b B ,

where A/b is the category of all pairs

(a, u) with u : f0(a)→ b,

which may be identified equally with the category A/ f ∗0 (b)
. The commu-

tation property we have in mind is a tautology for f∗, and it follows for
Rf∗, because the inverse image by A/b → A of an injective module on A
is an injective module on A/b. The latter fact is true, more generally, for
any “localization map”, of the type A/X → A, with X in Aˆ, i.e., any map
which is fibering with discrete fibers. Thus, the commutation property
for Rf∗ is valid more generally for any base change of the type

B/Y → B,

with Y in Bˆ (not necessarily in B). More generally still, it can be shown
to hold for any map

B′→ B

which is fibering (not necessarily with discrete fibers).
On the other side of the mirror, when taking f! and its left derived

functor, already the former definitely does not commute to base change
of the type (5), i.e., to “localization on the base” – something a little
hard to get accustomed to! The base changes which will do here, are
those of the dual type

(5’) b\B→ B,

we may call them maps of “colocalization” on the base B. It gives rise
to a cartesian diagram in (Cat) dual to (6)

(6’)

b\A A

b\B B ,

where now b\A is the category of pairs [p. 584]
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(a, u) with u : b→ f0(a).

We’ll have to assume now that both shaves of rings OA, OB are constant,
and correspond to the same ring k. Thus, modules on A and B are
just contravariant functors from these categories to the category Abk of
k-modules, and accordingly, f! (left adjoint to the composition functor
f ∗) may be computed by a well-known formula, involving direct limits
on the categories b\A:

(7) f!(F)(b)' lim−→
b\A

F(a),

where the limit in the second member is relative to the composition
[It seems to me that we’re forget-
ting that F is contravariant. Should
be easily fixed by inserting op’s,
though. . . ]

b\A→ A
F
−→ Abk.

(NB This formula is dual to the formula for f∗, the right adjoint of f ∗,
closer to intuition – to mine at any rate – because the lim←− in

f∗(F)(b)' lim←−
A/b

F(a)

may be “visualized” as the set of “sections” of F over A/b.) From this
formula (7) follows at once commutation of f! with colocalization. To
get the corresponding result for L f!, we have only to use the fact that the
relevant inverse image functor (corresponding to b\A→ A) transforms
projective modules into projective modules. As the map b\B→ B is a
cofibering functor with discrete fibers, so is the map

h : A′ = b\A→ A

deduced by base change. Now, for any such functor h : A′→ A between
small categories, the inverse image functor

h∗ : Aˆ→ A′ˆ, or h∗k : Ak̂ → A′ k̂

carries indeed projectives into projectives. This statement is dual for-
mally to the corresponding statement for injectives, valid when we make
on h the dual assumption of being fibering with discrete fibers – in the
latter case the (well-known) proof comes out formally from the fact that
the left adjoint functor h! or hk

! carries monomorphisms into monomor-
phisms – a fact that we used in section 135 in the form Lhk

! = hk
! (in

case k = Z). In the present case, the proof is essentially the dual one
– as a matter of fact, as there are enough projectives, the statement [p. 585]
about h∗ or h∗k taking projectives into projectives is equivalent with the
right adjoint h∗ or hk

∗ (for sheaves of sets, resp. sheaves of k-modules)
transforming epimorphisms into epimorphisms, which in the case of
k-modules can be written equally under the equivalent form

(8) Rih∗ = 0 for i > 0.
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Now, this exactness property for h∗, in the case when h is cofibering
with discrete fibers, is I guess well known (it is well-known to me at any
rate), and comes from the specific computation of h∗(F) for F in A′ˆ,
valid whenever h is cofibering (with arbitrary fibers)

(9) h∗(F)(x)' Γ (A′x , F � A′X ) for x in A,

where A′X is the fiber of A′ over x (a category not to be confused with
A′
/x , the two being closely related, however. . . ). In case the fibers of

h are discrete, the right-hand side of (9) may be written as a product,
hence the formula

(10) h∗(F)(x)'
∏

x ′ in A′X

F(x ′),

(which may be viewed as the dual of the formula (11) p. 564). As in
the category of sets (and hence also in Abk) a product of epimorphisms
is again an epimorphism, the result we want follows indeed.

Remarks. 1) The results just given, as well as their proofs, concerning
inverse images of injectives or projectives, are valid not only in the case
of a common constant sheaf of rings on A and A′, but more generally
for any sheaf of rings OA on A, when taking on A′ the “induced” sheaf of
rings

(11) OA′ = h∗(OA).

However, it doesn’t seem that the result about commutation of L f!
to colocalization is valid under the corresponding assumption OA =
f ∗(OB), without assuming moreover OB to be constant (hence OA too),
because already for the functor f! itself for modules it doesn’t seem that
commutation will hold.

2) I should correct as silly mistake I made at the very beginning of
this section, when rashly stating that the functor L f! may be defined
for any map (1) between ringed objects in (Cat). I was thinking of the
fact that for any ringed object (A,OA) in (Cat), there are indeed enough
projectives in the category of OA-modules – thus, the modules [p. 586]

(12) O
(a)
A , for a in A,

are clearly projective, and there are “sufficiently many”. Thus, any
additive functor from Mod(OA) to an abelian category admits a total
left derived functor. However, it is not always true, for a map (1) of
small ringed categories, that the corresponding inverse image functor
for modules

G 7→ f ∗(G) = f0
∗(G)⊗ f0

∗(OB) OA

admits a left adjoint f!, or what amounts to the same, that this functor
(which is right exact) is left exact and commutes to small products. It
isn’t even true, necessarily, when we assume A and B to be the final
category! Left exactness of f ∗ just means flatness of OA over OB, i.e.,
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that for any a in A, OA(a) is flat as a module over OB(b), where b = f (a).
As for commutation to small products, it amounts (together with the
first condition) to the still more exacting condition that OA(a) should
be a projective module of finite type over OB(b), for any a in A. This
condition is so close to the condition OA = f0

∗(OB) (already considered
in (11) above), that for a bird’s eye view as we are aiming at here, we
may as well assume this slightly stronger condition! Anyhow, as noticed
before, to get commutation of f! with restriction of scalars and with
colocalization, even this assumption isn’t enough, apparently, and we’ll
have to assume moreover that OB (hence also OA) is constant, or for the
least, locally constant.

This brings us back to the case when a fixed ring k is given, and
when we are working with categories of presheaves of k-modules – a
situation studied at length in chapter V. In case the target category B
is the final category, hence L f! is just (absolute) total homology of A,
this then may be computed nicely, using an “integrator” for A, namely
a projective resolution of kAop in (Aop)k̂ . This is more or less where we
ended up by the end of chapter V, when developing a nicely autodual
homology-cohomology set-up, replacing the category of k-modules Abk
by a more-or-less arbitrary abelian category. I was about to go on and
carry through a similar treatment in the “relative” case, namely for an
arbitrary map f in (Cat) (but then I got caught unsuspectingly by that
unending digression on schematic homotopy types, finally making up a
whole chapter by itself). Maybe it is still worthwhile to come back to
this without necessarily grinding through a complete formulaire for the [p. 587]

five main operations we got so far (namely L f!, f ∗, Rf∗,
L
⊗, RHom). Not

later than two pages ago or so, we were faced again with two visible
dual statements, one about L f!, the other about Rf∗ – and feeling silly
not to be able to merely deduce one from the other!

29.10.

139 Last night I still pondered a little about the L f! operation, and did some Retrospective on ponderings on
abelianization, and on coalgebra
structures in (Cat).

more reading in the notes of chapter V of about three months ago, which
had been getting a little distant in my mind. In those notes a great deal
of emphasis goes with the notions of integrators and cointegrators – as a
matter of fact, that whole chapter sprung from an attempt to understand
the meaning of certain “standard complexes” associated with standard
test categories such as , which then led us to the notions of an integra-
tor (via the intermediate one of an “abelianizator”). This in turn brought
us to the ∗k formalism, expressing most conveniently the relationship
between categories such as Ak̂ and (Aop)k̂ (k any commutative ring),
and its various avatars. I was so pleased with this formalism and its
“computational” flavor, that in my enthusiasm I subsumed under it the
dual treatment of homology and cohomology for an object A of (Cat)
(with coefficients in a complex of M-valued presheaves, M being an
abelian category satisfying some mild conditions), in section 108, as a

particular case of the total derived functors F•
L
∗k L′• and RHomk(L•, K•)
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(with values in the derived category of M). The main point here was us-
ing projective resolutions of the argument L• in Bk̂ or Ak̂ (where B = Aop),
which in the most important case was just the constant sheaf of rings kB
or kA – rather than resolve the argument F• (projectively) or K• (injec-
tively), namely the coefficients for homology or cohomology. It was the
enthusiasm of the adept of a game he just discovered – I was going to
try it out for the next step, namely relative homology and cohomology
L f! and Rf∗, with f any map in (Cat) – but then I got caught by the more
fascinating schematization game. Coming back now upon the rather
routine matter of looking up a comprehensive mutually dual treatment
of L f! and Rf∗, it doesn’t seem that the formalism of integrators and
cointegrators is going to be of much help. To be more specific, in order
to compute (or simply define) L f!(F•) or Rf∗(K•), for a general map [p. 588]

f : A→ B

in (Cat), and F• ∈ D−(Ak̂ ), K• ∈ D+(Ak̂ ), I do not see any means of
bypassing projective resolutions of L•, injective ones of K•. Taking the
more familiar case of Rf∗(K•), one natural idea of course would be to
take a projective resolution LA

• of kA (i.e., a cointegrator for A), and
write tentatively

(1) Rf∗(K
•)

?
' f∗(Hom••k (L

A
• , K•).

The (misleading) reflex inducing us to write down this formula, is that
this formula looks as if it were to boil down to the similar (correct)
formula for the maps A/b → e, when taking the localizations on B,

B/b → B.

For this intuition to be correct, it should be true that the restriction
(or “localization”) of LA

• to A/b (which is of course a resolution of the
constant sheaf k on A/b) is indeed a cointegrator on A/b, namely that
its components are still projective. This, however, we suspect, will hold
true only under very special assumptions – as in general, it is inverse
image by colocalization (not by localization) that takes projectives into
projectives. Thus, I don’t expect a relation (1) to hold, except under
most exacting conditions on f and K•, which I didn’t try to pin down.
To take an example, assume A has a final object, hence kA is projective
and we may take LA

• = kA, then (1) reads (when K• = K is reduced to
degree zero)

Rf∗(K)' f∗(K), i.e., Ri f∗(K) = 0 for i > 0,

which need not hold true even if K is constant (= kA say). For instance,
we may start with an arbitrary object A0 of (Cat) and add a final object
e1 to get A (intuitively, it is the “cone” over A0), which is mapped into
the cone over e, B = 1 = (0→ 1), in the obvious way. Then for any
sheaf K on A, with restriction K0 to A0, we get

Ri f∗(K)0 (fiber at 0) = Hi(A0, K0),
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which needs not be 0 for i > 0.
There is a big blunder at the end of section 101, where the formulæ

(12), (12’), (13) (p. 377) (supposed to be “essentially trivial”), are
false for essentially the same kind of reason. The formulæ ran into the
typewriter as a matter of course, as they looked just the same as familiar [p. 589]
ones from the standard duality formulaire (with L f!, f ∗ replaced by Rf!,
f !). The first one reads, in case as above when A has a final object ε

(2) Rf∗( f
∗(K))

?
' Homk( f!(kA), K),

But we have

f!(kA) = f!(k
(ε)) = k(b), where b = f!(ε) = f (ε),

and if f takes final object into final object, we thus get f!(kA) = kB, and
the right-hand side of (2) is just K , and hence (2) implies

Ri f∗( f
∗(K)) = 0 for i > 0,

which, however, needs not be true even for K = kB, as we saw with the
previous example.

To come back to the general L f!, Rf∗ formalism, it seems it can’t
be helped, we’ll have to do the usual silly thing and just resolve the
argument involved, projectively in one case, injectively in the other.
Even in the “absolute case” when B = e, we couldn’t help it, either
taking such resolutions, when it comes to working with the internal

operations RHomk(L•, K•) or F•
L
⊗k L′•, as we saw already in section 108

(which should have tuned down a little my committedness to integrators,
but it didn’t!).

Once this got clear, in order to turn the homological algebra mill, all
we still need is a handy criterion for existence of “enough” projectives
or injectives in categories of the type

A
M̂
= Hom(Aop,M),

with M an abelian category. In section 109 we got such a criterion
(prop. 4 p. 433) – the simplest one can imagine: it is sufficient that
(besides the stability under direct or inverse limits, needed anyhow in
order for the functor f! resp. f∗ from A

M̂
to B

M̂
to exist) that in M there [p. 590]

should be enough projectives resp. injectives! This gives what is needed,
surely, in order to grind through a mutually dual treatment of relative
homology L f! and cohomology Rf∗. I have the feeling that the little work
ahead, for defining the basic operations and working out the relevant
formulaire (including “cap products”), is a matter of mere routine, and
I don’t really expect any surprise may come up. Therefore, I don’t feel
like grinding through this, and rather will feel free to use whenever
needed the most evident formulæ, as the adjunction formulæ between
the three functors

L f!, f ∗, Rf∗,
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transitivity isomorphisms for a composition of maps, possibly also vari-
ous projection formulæ – trying however to be careful with base change
questions, notably for L f!, and not repeat the same blunders!

In retrospect, the main role for me of the reflections of chapter V
on abelianization has been to become a little more familiar with the
homology formalism in (Cat), namely essentially with the L f! operation,
which has been more or less a white spot in my former experience,
centered rather upon cohomology. An interesting, still somewhat routine
byproduct of these ponderings has been the careful formulation of
the duality relationship around the pairings between sheaves and co-
sheaves, namely the operations ∗k and þk. Granting this, the game
with integrators and cointegrators boils down to the standard reflex, of
taking projective resolutions of the “unit” sheaf or cosheaf, kA or kAop

– which are the most obvious objects at hand of all, in our coefficient
categories.

The one idea which seems to me of wider scope and significance in this
whole reflection on abelianization, is the “further step in linearization”,
whereby the models in (Cat) are replaced by their k-additive envelope,
endowed moreover with their natural diagonal map (section 109). The
psychological effect of this discovery has been an immediate one – it
triggered at once the reflection on schematization of chapter VI. This
reflection, apparently, took me into a rather different direction from
those “k-coalgebra structures in (Cat)”, which had reawakened and
made more acute the feeling that homotopy types should make sense
“over any ground ring”. Coming back now to the homology and coho-
mology formalism within (Cat), it remains a very striking fact indeed for [p. 591]
me, that as far as I can see at present, all basic operations in the (commu-
tative) homology and cohomology formalism in (Cat), and their basic
properties and interrelations, should make sense for these linearized ob-
jects, which therefore may be viewed as more perfect carriers still than
small categories for embodying the relevant formalism. To what extent
this feeling is indeed justified, cannot of course be decided beforehand –
only experience can tell. For instance, does the “six operations duality
formalism” contemplated lately for (Cat) (sections 136, 137), which has
still to be worked out, carry over to this wider, linearized set-up? This
will become clearer when the relevant notions in (Cat) are understood,
so that it will become a meaningful question whether for a map in (Cat),
the property of being proper, or smooth, or an immersion, may be read
off in terms of properties of the corresponding map of coalgebra struc-
tures in (Cat). And what about subtler types of cohomology operations,
such as the Steenrod operations (which, I remember, may be defined
in the context of cohomology with coefficients in general sheaves of
Fp-modules)?

When concerned with homology and cohomology formalism in (Cat),
involving general sheaves of coefficients, not merely locally constant
ones, we are leaving, strictly speaking, the waters of a reflection on
“homotopy models”. The objects of (Cat) now are no longer viewed as
mere models for homotopy types, but rather, each one as defining a topos,
with the manifold riches it carries; a richness similar to the one of a
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topological space, almost all of which is being stripped off when looking
at the mere homotopy type – including even such basic properties as
dimension, compactness, smoothness, cardinality and the like. When
passing from an object in (Cat) to the corresponding coalgebra structure
in (Cat), much of this richness is preserved – maybe everything, indeed,
which can be expressed in terms of commutative sheaves of coefficients.
As for the realm of non-commutative cohomology formalism (which
is supposed to be the main theme of these notes, with overall title
“Pursuing Stacks”!), it doesn’t seem, not at first sight at any rate, that
much of this could be read off the enveloping coalgebra P = Addk(A) of
a given object A in (Cat) – except of course in the case when A can be
recovered in terms of P, maybe as the category of “exponential” pairs
(x , u), where x is in P and

u : δ(x)' x ⊗k x

an isomorphism.

4.11. [p. 592]

140 Life keeps pushing open the doors of that well-tempered hothouse of my The meal and the guest.
mathematical reflections, as a fresh wind and often an impetuous one,
sweeping off the serene quietness of abstraction, – a breath rich with the
manifold fragrance of the world we live in. This is the world of conflict,
weaving around each birth and each death and around the lovers’ play
alike – it is the world we all have been born into without our choosing.
I used to see it as a stage – the stage set for our acting. Our freedom
(rarely used indeed!) includes choosing the role we are playing, possibly
changing roles – but not choosing or changing the stage. It doesn’t seem
the stage ever changes during the history of mankind – only the decors
kept changing. More and more, however, over the last years, I have
been feeling this world I am living in, the world of conflict, somehow as
a meal – a meal of inexhaustible richness. Maybe the ultimate fruit and
meaning of all my acting on that stage, is that parts of that meal, of that
richness, be actually eaten, digested, assimilated – that they become part
of the flesh and bones of my own being. Maybe the ultimate purpose
of conflict, so deeply rooted in every human being, is to be the raw
material, to be eaten and digested and changed into understanding
about conflict. Not a collective “understanding” (I doubt there is such
a thing!), written down in textbooks or sacred books or whatever, nor
even something expressed or expressible in words necessarily – but the
kind of immediate knowledge, rather, the walker has about walking,
the swimmer about swimming, or the suckling about milk and mother’s
breasts. My business is to be a learner, not a teacher – namely to allow
this process to take place in my being, letting the world of conflict, of
suffering and of joy, of violence and of tenderness, enter and be digested
and become knowledge about myself.

I am not out, though, to write a “journal intime” or meditation notes,
so I guess I better get back to the thread of mathematical reflection
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where I left it, rather than write allusively about the events of these last
days, telling me about life and about myself through one of my children.

12.11.
Maybe at times I like to give the impression, to myself and hence

others, that I am the easy learner of things of life, wholly relaxed, “cool” [p. 593]
and all that – just keen for learning, for eating the meal and welcome
smilingly whatever comes with its message, frustration and sorrow and
destructiveness and the softer dishes alike. This of course is just humbug,
an image d’Épinal which at whiles I’ll kid myself into believing I am like.

[the Épinal prints being proverbial
for a naive depiction, showing only
good aspects. . . ]

Truth is that I am a hard learner, maybe as hard and reluctant as anyone.
At any rate, the inbuilt mechanisms causing rejection of the dishes
unpalatable to my wholly conditioned, wholly ego-controlled taste, are
as much present in me now as they have ever been in my life, and as
much as in anyone else I know. This interferes a lot with the learning –
it causes a tremendous amount of friction and energy dispersion (wholly
unlike what happens when I am learning mathematics, say, namely
discovering things about any kind of substance which my own person
and ego is not part of. . . ). If there has been anything new appearing in
my life, it is surely not the end of this process of dispersion, or the end
of inertia, closely related to dispersion. It is something, rather, which
causes learning to take place all the same – be it the hard way, as it
often happens, very much like the troubled digestion of one who took a
substantial meal reluctantly or in a state of nervousness, of crispation.
Once one is through with the digestion, though, the food one ate is
transformed into flesh and muscles, blood and bones and the like, just
as good and genuine as if the meal had been taken relaxedly and with
eager appetite, as it deserved. What really counts for the process of
assimilation to be able to take place, is that in a certain sense the food,
palatable or not, be accepted – not vomited, or just kept in the bowels like
a foreign body, sometimes for decennaries. The remarkable fact I come

[decennary = decade]to know through experience, is that even after having been kept thus
inertly for a lifetime, a process of digestion and assimilation may still
come into being and transform the obtrusive stuff into living substance.

During the last week I have been sick for a few days – a grippe I might
[grippe = the flu]say, but surely a case of troubled digestion too. It seems though I am

through now – till the next case at any rate! I daresay life has been
generous with me for these last three months, while I haven’t even taken
the trouble to stop with the mathematical nonsense for any more than a
week or two. This week, too, I still did some mathematical scratchwork,
still along the lines of abelianization, which keeps showing a lot richer
than suspected.
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